US20040018788A1 - Durable hydrophilic coating for textiles - Google Patents

Durable hydrophilic coating for textiles Download PDF

Info

Publication number
US20040018788A1
US20040018788A1 US10/620,791 US62079103A US2004018788A1 US 20040018788 A1 US20040018788 A1 US 20040018788A1 US 62079103 A US62079103 A US 62079103A US 2004018788 A1 US2004018788 A1 US 2004018788A1
Authority
US
United States
Prior art keywords
poly
ranges
subscript
fabric
resins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/620,791
Inventor
Christine Phillips
Susan Nye
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/620,791 priority Critical patent/US20040018788A1/en
Publication of US20040018788A1 publication Critical patent/US20040018788A1/en
Assigned to JPMORGAN CHASE BANK, N.A. AS ADMINISTRATIVE AGENT reassignment JPMORGAN CHASE BANK, N.A. AS ADMINISTRATIVE AGENT SECURITY AGREEMENT Assignors: MOMENTIVE PERFORMANCE MATERIALS GMBH & CO. KG, MOMENTIVE PERFORMANCE MATERIALS HOLDINGS INC., MOMENTIVE PERFORMANCE MATERIALS JAPAN HOLDINGS GK
Assigned to MOMENTIVE PERFORMANCE MATERIALS INC., MOMENTIVE PERFORMANCE MATERIALS GMBH & CO KG, MOMENTIVE PERFORMANCE MATERIALS JAPAN HOLDINGS GK reassignment MOMENTIVE PERFORMANCE MATERIALS INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT
Abandoned legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain
    • D06M15/647Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain containing polyether sequences
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0834Compounds having one or more O-Si linkage
    • C07F7/0838Compounds with one or more Si-O-Si sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/46Block-or graft-polymers containing polysiloxane sequences containing polyether sequences
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/02Natural fibres, other than mineral fibres
    • D06M2101/04Vegetal fibres
    • D06M2101/06Vegetal fibres cellulosic
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/02Natural fibres, other than mineral fibres
    • D06M2101/10Animal fibres
    • D06M2101/12Keratin fibres or silk
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/18Synthetic fibres consisting of macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/10Coatings without pigments
    • D21H19/14Coatings without pigments applied in a form other than the aqueous solution defined in group D21H19/12
    • D21H19/24Coatings without pigments applied in a form other than the aqueous solution defined in group D21H19/12 comprising macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H19/32Coatings without pigments applied in a form other than the aqueous solution defined in group D21H19/12 comprising macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds obtained by reactions forming a linkage containing silicon in the main chain of the macromolecule
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31659With cellulosic layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31663As siloxane, silicone or silane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2139Coating or impregnation specified as porous or permeable to a specific substance [e.g., water vapor, air, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2484Coating or impregnation is water absorbency-increasing or hydrophilicity-increasing or hydrophilicity-imparting
    • Y10T442/2492Polyether group containing

Definitions

  • the present invention relates to low molecular weight silicone polyether ABA type block copolymers that are useful to imparting a hydrophilic coating to the surface of either woven or non-woven textiles.
  • Textiles are made from a variety of materials both natural and man made. Natural textiles include cotton, wool, silk, linen and the like while synthetic textiles are derived from various high polymers such as polyesters, polyamides, polyimides, and the various polyolefins, e.g. polyethylene, polypropylene, polybutylene. While polymers are used extensively to make a variety of products ranging from blown and cast films, extruded sheets, injection molded articles, foams, blow molded articles, extruded pipe, monofilaments and non-woven webs many of the polymers used for such materials are hydrophobic. In many cases this property is an advantage.
  • polymers there are a number of uses to which polymers may be put where their hydrophobic nature either limits their usefulness or requires some modification. This is particularly true of polyolefins such as polyethylene and polypropylene which are used to manufacture polymeric fabrics which are used in disposable absorbent articles such as diapers, training pants, incontinence products, wipes, feminine care products and the like. These polymeric fabrics are typically non-woven webs prepared by meltblowing, coforming or spunbonding. For uses such as the foregoing these non-woven fabrics need to be wettable. Frequently wettability can be obtained by coating the fabric in some fashion with a treatment solution during or after formation of the fabric web and drying the web.
  • topically applied treatments are nonionic treatments, for example polyethoxylated octylphenols and the condensation products of propylene oxide with propylene glycol. These types of treatments are effective in rendering normally hydrophobic polymeric fabrics wettable or hydrophilic. However, the treatment is readily removed from the fabric, often after only a single exposure to an aqueous liquid.
  • a treatment mixture that includes a sorbitol succinate treatment and a co-wetting aid that can be a silicone polyether or a primary or secondary alcohol;
  • R 1 and R 6 are selected from the group of hydrogen and C 1-8 alkyl and aryl
  • R 2 , R 3 , R 4 and R 5 are selected from the group of C 1-8 alkyl and aryl
  • the subscript a represents an integer ranging from about 8 to about 25
  • the subscript b represents an integer ranging from about 8 to about 25
  • the ratio of b to a is in a range of from about 0.7 to about 1.5
  • the subscript c represents an integer from 1 to about 10
  • the subscript d represents an integer of from about 40 to about 70 the ratio of d to two times the sum of a and b is in a range of from about 0.7 to about 1.5
  • the number average molecular weight is preferably in a range of from about 5,000 to about 35,000, more preferably from about 6,500 to about 18,500 and most preferably about 7,000.
  • the present invention provides for a treatment silicone compound selected from the group consisting of:
  • R 1 is selected from the group consisting of hydrogen and alkyls and R 2 and R 3 are each independently selected from the group consisting of one to forty carbon atom monovalent hydrocarbon radicals; the subscript a ranges from about 1 to about 8; the subscript b ranges from about 1 to about 10; the subscript c ranges from zero to 2; the subscript d ranges from about to 1 to about 10; and the number average molecular weight ranging from ranges from about to 300 to about 1,000.
  • R 1 is selected from the group consisting of hydrogen and alkyls and R 2 and R 3 are each independently selected from the group consisting of one to forty carbon atom monovalent hydrocarbon radicals; the subscript a ranges from about to 1 to about 8; the subscript b ranges from about 1 to about 10; the subscript c ranges from zero to 2; the subscript d ranges from about to 1 to about 10; and the number average molecular weight ranging from ranges from about to 300 to about 1,000;
  • R 1 is selected from the group consisting of hydrogen and alkyls and R 2 and R 3 are each independently selected from the group consisting of one to forty carbon atom monovalent hydrocarbon radicals; the subscript a ranges from about to 1 to about 8; the subscript b ranges from about 1 to about 10; the subscript c ranges from zero to 2; the subscript d ranges from about to 1 to about 10; the subscript e ranges from about to 1 to about 10; and the number average molecular weight ranging from ranges from about to 300 to about 1,000; and
  • Such treatment silicone compositions are useful for treating fabrics comprised of natural or synthetic polymeric materials to render the fabrics hydrophilic, i.e. capable of picking up and absorbing quantities of water.
  • Such treatment silicone compositions are useful for treating cellulosic materials such as paper.
  • polymeric fabric means a fabric prepared from any polymeric material capable of being formed into a fabric and includes fabric webs such as paper.
  • fabric webs such as paper.
  • such material can be synthetic or natural, although the former are more likely to be employed in the present invention.
  • natural polymeric materials include, cotton, silk, wool, and cellulose, by way of illustration only.
  • Synthetic polymeric materials in turn, can be either thermosetting or thermoplastic materials, with thermoplastic materials being more common.
  • fabric means any textile, non-woven or woven, or any web such as paper or felt.
  • thermosetting polymers include, by way of illustration only, alkyd resins, such as phthalic anhydride-glycerol resins, maleic acid-glycerol resins, adipic acid-glycerol resins, and phthalic anhydride-pentaerythritol resins; allylic resins, in which such monomers as diallyl phthalate, diallyl isophthalate diallyl maleate, and diallyl chlorendate serve as nonvolatile cross-linking agents in polyester compounds; amino resins, such as aniline-formaldehyde resins, ethylene urea-formaldehyde resins, dicyandiamide-formaldehyde resins, melamine-formaldehyde resins, sulfonamide-formaldehyde resins, and urea-formaldehyde resins; epoxy resins, such as cross-linked epichlorohydrin-bisphenol A resins; phenolic
  • thermoplastic polymers include, by way of illustration only, end-capped polyacetals, such as poly(oxymethylene) or polyformaldehyde, poly(trichloroacetaldehyde), poly(n-valeraldehyde), poly(acetaldehyde), poly(propionaldehyde), and the like; acrylic polymers, such as polyacrylamide, poly(acrylic acid), poly(methacrylic acid), poly(ethyl acrylate), poly(methyl methacrylate), and the like; fluorocarbon polymers, such as poly(tetrafluoroethylene), perfluorinated ethylene-propylene copolymers, ethylene-tetrafluoroethylene copolymers, poly(chlorotrifluoroethylene), ethylene-chlorotrifluoroethylene copolymers, poly(vinylidene fluoride), poly(vinyl fluoride), and the like; polyamides, such as poly(6-aminocaproic acid) or
  • the term “fabric” is used broadly herein to mean any fibrous material which has been formed into a sheet or web. That is, the fabric is composed, at least in part, of fibers of any length.
  • the fabric can be a woven or nonwoven sheet or web, all of which are readily prepared by methods well-known to those having ordinary skill in the art.
  • nonwoven webs are prepared by such processes as meltblowing, coforming, spunbonding, carding, air laying, and wet laying.
  • the fabric can consist of a single layer or multiple layers.
  • a multilayered fabric can include films, scrim, and other nonfibrous materials.
  • the term “durable” means that the polymeric fabric to which a treatment has been applied can be subjected to the rigorous washing procedure described hereinafter or to multiple exposures to water and remain wettable.
  • treatment is used herein to mean any active agent that is capable of durably rendering a polymeric fabric (i.e. a fabric either woven or non-woven made from a polymeric fiber) wettable.
  • the treatment is a linear polysiloxane that is terminated at each end by a polyether moiety derived from ethylene oxide, commonly referred to as an A-B-A polymer.
  • the treatment is a polysiloxane polyether having the general formula:
  • R 1 is selected from the group consisting of hydrogen and alkyls and R 2 and R 3 are each independently selected from the group consisting of one to forty carbon atom monovalent hydrocarbon radicals;
  • the subscript a ranges from about to 1 to about 8, preferably from about to 1.5 to about 6, more preferably from about to 1.5 to about 5, and most preferably from about to 1.5 to about 4;
  • the subscript b ranges from about 1 to about 10, preferably from about 1 to about 7, more preferably from about 1 to about 5, and most preferably from about to 1 to about 3;
  • the subscript c ranges from zero to 2, more preferably from 1 to 2, and is most preferably 2;
  • the subscript d ranges from about to 1 to about 10, preferably from about to 2 to about 8, more preferably from about to 2 to about 7, and most preferably from about to 3 to about 5; and the number average molecular weight ranging from ranges from about to 300 to about 1,000, preferably from about to 400 to about 900, more preferably from about to 500 to about 900,
  • the treatment is a polysiloxane polyether having the general formula:
  • R 1 is selected from the group consisting of hydrogen and alkyls and R 2 and R 3 are each independently selected from the group consisting of one to forty carbon atom monovalent hydrocarbon radicals;
  • the subscript a ranges from about to 1 to about 8, preferably from about to 1.5 to about 6, more preferably from about to 1.5 to about 5, and most preferably from about to 1.5 to about 4;
  • the subscript b ranges from about 1 to about 10, preferably from about 1 to about 7, more preferably from about 1 to about 5, and most preferably from about to 1 to about 3;
  • the subscript c ranges from zero to 2, more preferably from 1 to 2, and is most preferably 2;
  • the subscript d ranges from about to 1 to about 10, preferably from about to 2 to about 8, more preferably from about to 2 to about 7, and most preferably from about to 3 to about 5; and the number average molecular weight ranging from ranges from about to 300 to about 1,000, preferably from about to 400 to about 900, more preferably from about to 500 to about 900,
  • the treatment is a polysiloxane polyether having the general formula:
  • R 1 is selected from the group consisting of hydrogen and alkyls and R 2 and R 3 are each independently selected from the group consisting of one to forty carbon atom monovalent hydrocarbon radicals;
  • the subscript a ranges from about to 1 to about 8, preferably from about to 1.5 to about 6, more preferably from about to 1.5 to about 5, and most preferably from about to 1.5 to about 4;
  • the subscript b ranges from about 1 to about 10, preferably from about 1 to about 7, more preferably from about 1 to about 5, and most preferably from about to 1 to about 3;
  • the subscript c ranges from zero to 2, more preferably from 1 to 2, and is most preferably 2;
  • the subscript d ranges from about to 1 to about 10, preferably from about to 2 to about 8, more preferably from about to 2 to about 7, and most preferably from about to 3 to about 5;
  • the subscript e ranges from about to 1 to about 10, preferably from about to 2 to about 8, more preferably from about to 2 to about 7, and most preferably from about to 3 to
  • the treatment of the present invention is a mixture comprising two or more of the first, second and third embodiments.
  • the subscripts a, b, c, d etc. will assume integral values.
  • the values of the subscripts will assume non-integral values depending on the population fraction for a given molecular weight, i.e. molar averaged stoichiometric subscripts will be non-integral in the case of mixtures as opposed to pure compounds.
  • the advantages of the present invention are that the silicone polyether compounds of the present invention do not require a co-treatment.
  • the materials also are effective at extremely low levels and maintain effectiveness after as many as five washings. Thus the materials maintain effectiveness after one, two, three, four and five washings. Effectiveness as to the hydrophilic coating is defined in the experimental section.
  • the hydrophilic coatings or treatments of the present invention typically comprise from about 0.01 to about 20.00 weight percent of the total weight of the treated fabric, preferably from about 0.10 to about 10.00 weight percent of the total weight of the treated fabric, more preferably from about 0.50 to about 5.00 weight percent of the total weight of the treated fabric, and most preferably from about 0.75 to about 2.50 weight percent of the total weight of the treated fabric.
  • the coated fabric may demonstrate a greater or lesser hydrophilic behavior for a given treatment composition depending on whether the coating is applied from an aqueous solution or dispersion or an alcoholic solution or dispersion.
  • the greatest hydrophilic behavior is observed when the hydrophilic coating is applied from an aqueous dispersion, particularly when water is the only solvent employed.
  • Textiles treated by the treatment of the present invention are useful for disposable absorbent articles such as diapers, training pants, incontinence products, wipes, feminine care products and the like. Wipes may be personal care wipes, floor care wipes, household care wipes, automotive care wipes and the like.
  • the treatment of the present invention involves depositing the treating agent, the compounds used in the present invention, onto the textile or fabric being treated to render it hydrophilic, preferably durably hydrophilic.
  • the base fabric used in evaluating the coating compositions of the present invention was a spunbound polypropylene nonwoven web having a basis weight of 15.5 g per square meter.
  • the fabric was cut into test swatches having dimensions of 22 ⁇ 5 cm ⁇ 28 ⁇ 5 cm and an average weight ranging from 0.9 to 1.1 g (1.00 ⁇ 0.10 g).
  • the silicone polyether compounds evaluated had the following structural formulas:
  • silicone polyethers listed in Table 1 were suspended or dissolved in a 50 weight percent aqueous solution of isopropanol (2-propanol) or water at levels of 2.0, 0.5, 0.4 and 0.1 weight percent.
  • Samples of the nonwoven spunbonded polypropylene fabric were treated by soaking them in the water-alcohol-silicone polyether mixture for 1-2 hours followed by drying in a forced air oven for 30 minutes at 105° C.
  • the coated textiles when coated with the compounds of the present invention will pick up varying amounts of water depending on how extensively the textile is treated. If only the external surfaces of the textile are treated at very low levels, the total amount of water absorbed by the treated textile will be very low and may be indistinguishable from an untreated fabric. However, if the entire body of the fabric, exterior and interior, has been treated, the treated fabric can absorb as much as 300 to 400 weight percent.

Abstract

Low molecular weight silicone polyether ABA type block copolymer treatments wherein a linear polysiloxane is terminated at each end by a polyether moiety derived from ethylene oxide are useful to imparting a hydrophilic coating to the surface of either woven or non-woven textiles.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a divisional of U.S. Ser. No. 09/997,939 filed Nov. 29, 2001 which is a continuation-in-part application of U.S. Ser. No. 09/443,182 filed Nov. 19, 1999 which is a continuation of U.S. Ser. No. 08/995,389 filed Dec. 22, 1997.[0001]
  • FIELD OF THE INVENTION
  • The present invention relates to low molecular weight silicone polyether ABA type block copolymers that are useful to imparting a hydrophilic coating to the surface of either woven or non-woven textiles. [0002]
  • BACKGROUND OF THE INVENTION
  • Textiles are made from a variety of materials both natural and man made. Natural textiles include cotton, wool, silk, linen and the like while synthetic textiles are derived from various high polymers such as polyesters, polyamides, polyimides, and the various polyolefins, e.g. polyethylene, polypropylene, polybutylene. While polymers are used extensively to make a variety of products ranging from blown and cast films, extruded sheets, injection molded articles, foams, blow molded articles, extruded pipe, monofilaments and non-woven webs many of the polymers used for such materials are hydrophobic. In many cases this property is an advantage. [0003]
  • There are a number of uses to which polymers may be put where their hydrophobic nature either limits their usefulness or requires some modification. This is particularly true of polyolefins such as polyethylene and polypropylene which are used to manufacture polymeric fabrics which are used in disposable absorbent articles such as diapers, training pants, incontinence products, wipes, feminine care products and the like. These polymeric fabrics are typically non-woven webs prepared by meltblowing, coforming or spunbonding. For uses such as the foregoing these non-woven fabrics need to be wettable. Frequently wettability can be obtained by coating the fabric in some fashion with a treatment solution during or after formation of the fabric web and drying the web. [0004]
  • Some of the more commonly applied topically applied treatments are nonionic treatments, for example polyethoxylated octylphenols and the condensation products of propylene oxide with propylene glycol. These types of treatments are effective in rendering normally hydrophobic polymeric fabrics wettable or hydrophilic. However, the treatment is readily removed from the fabric, often after only a single exposure to an aqueous liquid. [0005]
  • There have been several different approaches to increasing the durability of treatments that are topically applied to the surface of a fabric. Among these approaches have been: [0006]
  • (1) the use of a composition that includes water, a primary treatment, and a co-treatment that functions to wet the fabric with the treatment composition and that provides for a substantially uniform distribution of the primary treatment onto the fabric; [0007]
  • (2) the use of a treatment, with or without a nonionic co-treatment that is the reaction product of an acid anhydride derivative with a polyhydroxy compound, polyethylene glycol, triethanolamine, a polyhydroxyamine, and certain unsaturated aliphatic sulfo compounds; [0008]
  • (3) the use of a treatment, with or without a nonionic co-treatment that is the reaction product of certain unsaturated aliphatic sulfo compounds with the reaction product of an acid anhydride derivative with a polyamine having at least one NH group capable of addition to a double bond; [0009]
  • (4) the use of a treatment mixture that includes an ester acid, ester salt, or a mixture thereof, and an amide-acid, amide-salt or mixture thereof with or without a nonionic co-treatment; [0010]
  • (5) the use of a treatment mixture that includes a sorbitol succinate treatment and a co-wetting aid that can be a silicone polyether or a primary or secondary alcohol; and [0011]
  • (6) the use of a silicone polyether treatment having the formula: [0012]
    Figure US20040018788A1-20040129-C00001
  • where R[0013] 1 and R6 are selected from the group of hydrogen and C1-8 alkyl and aryl, R2, R3, R4 and R5 are selected from the group of C1-8 alkyl and aryl, the subscript a represents an integer ranging from about 8 to about 25, the subscript b represents an integer ranging from about 8 to about 25, the ratio of b to a is in a range of from about 0.7 to about 1.5, the subscript c represents an integer from 1 to about 10, the subscript d represents an integer of from about 40 to about 70 the ratio of d to two times the sum of a and b is in a range of from about 0.7 to about 1.5 and the number average molecular weight is preferably in a range of from about 5,000 to about 35,000, more preferably from about 6,500 to about 18,500 and most preferably about 7,000.
  • The examples of U.S. Pat. No. 5,540,984 ('984) teach that silicone polyether treatments having a molecular weight below about 7,000 do not provide the durability provided by patentee's invention. Further, the polyether endgroups on the silicone treatments employed by the '984 patent ranged from about 50 to 80 weight percent propylene oxide and from about 50 to about 20 weight percent ethylene oxide. The '984 patent specifically teaches that reversing this weight ratio of polyether end groups to 85 weight percent ethylene oxide and 15 weight percent propylene oxide (patentee's example P) does not provide a durable hydrophilic coating as defined by patentee. This is emphasized by patentee's results for a silicone polyether treatment having 100 weight percent ethylene oxide polyether groups wherein the treatment was not durable (patentee's example J). Thus, the '984 patent teaches that the polyether substituents of the silicone polyether treatment must contain a mix of ethylene oxide and propylene oxide groups or preferably all propylene oxide groups. These results were obtained for copolymers terminated with the respective polyether moieties. [0014]
  • Notwithstanding the advances that have been made in rendering fabrics wettable by providing for a hydrophilic coating there remains a need for further improvement in these areas. [0015]
  • SUMMARY OF THE INVENTION
  • The present invention provides for a treatment silicone compound selected from the group consisting of: [0016]
  • 1) polysiloxane polyethers having the formula: [0017]
    Figure US20040018788A1-20040129-C00002
  • where R[0018] 1 is selected from the group consisting of hydrogen and alkyls and R2 and R3 are each independently selected from the group consisting of one to forty carbon atom monovalent hydrocarbon radicals; the subscript a ranges from about 1 to about 8; the subscript b ranges from about 1 to about 10; the subscript c ranges from zero to 2; the subscript d ranges from about to 1 to about 10; and the number average molecular weight ranging from ranges from about to 300 to about 1,000.
  • 2) polysiloxane polyethers having the formula: [0019]
    Figure US20040018788A1-20040129-C00003
  • where R[0020] 1 is selected from the group consisting of hydrogen and alkyls and R2 and R3 are each independently selected from the group consisting of one to forty carbon atom monovalent hydrocarbon radicals; the subscript a ranges from about to 1 to about 8; the subscript b ranges from about 1 to about 10; the subscript c ranges from zero to 2; the subscript d ranges from about to 1 to about 10; and the number average molecular weight ranging from ranges from about to 300 to about 1,000;
  • 3) polysiloxane polyethers having the formula: [0021]
    Figure US20040018788A1-20040129-C00004
  • where R[0022] 1 is selected from the group consisting of hydrogen and alkyls and R2 and R3 are each independently selected from the group consisting of one to forty carbon atom monovalent hydrocarbon radicals; the subscript a ranges from about to 1 to about 8; the subscript b ranges from about 1 to about 10; the subscript c ranges from zero to 2; the subscript d ranges from about to 1 to about 10; the subscript e ranges from about to 1 to about 10; and the number average molecular weight ranging from ranges from about to 300 to about 1,000; and
  • 4) mixtures thereof. [0023]
  • Such treatment silicone compositions are useful for treating fabrics comprised of natural or synthetic polymeric materials to render the fabrics hydrophilic, i.e. capable of picking up and absorbing quantities of water. Such treatment silicone compositions are useful for treating cellulosic materials such as paper.[0024]
  • DETAILED DESCRIPTION OF THE INVENTION
  • As used herein, the term “polymeric fabric” means a fabric prepared from any polymeric material capable of being formed into a fabric and includes fabric webs such as paper. Thus, such material can be synthetic or natural, although the former are more likely to be employed in the present invention. Examples of natural polymeric materials include, cotton, silk, wool, and cellulose, by way of illustration only. Synthetic polymeric materials, in turn, can be either thermosetting or thermoplastic materials, with thermoplastic materials being more common. As used herein fabric means any textile, non-woven or woven, or any web such as paper or felt. [0025]
  • Examples of thermosetting polymers include, by way of illustration only, alkyd resins, such as phthalic anhydride-glycerol resins, maleic acid-glycerol resins, adipic acid-glycerol resins, and phthalic anhydride-pentaerythritol resins; allylic resins, in which such monomers as diallyl phthalate, diallyl isophthalate diallyl maleate, and diallyl chlorendate serve as nonvolatile cross-linking agents in polyester compounds; amino resins, such as aniline-formaldehyde resins, ethylene urea-formaldehyde resins, dicyandiamide-formaldehyde resins, melamine-formaldehyde resins, sulfonamide-formaldehyde resins, and urea-formaldehyde resins; epoxy resins, such as cross-linked epichlorohydrin-bisphenol A resins; phenolic resins, such as phenol-formaldehyde resins, including Novolacs and resols; and thermosetting polyesters, silicones, and urethanes. [0026]
  • Examples of thermoplastic polymers include, by way of illustration only, end-capped polyacetals, such as poly(oxymethylene) or polyformaldehyde, poly(trichloroacetaldehyde), poly(n-valeraldehyde), poly(acetaldehyde), poly(propionaldehyde), and the like; acrylic polymers, such as polyacrylamide, poly(acrylic acid), poly(methacrylic acid), poly(ethyl acrylate), poly(methyl methacrylate), and the like; fluorocarbon polymers, such as poly(tetrafluoroethylene), perfluorinated ethylene-propylene copolymers, ethylene-tetrafluoroethylene copolymers, poly(chlorotrifluoroethylene), ethylene-chlorotrifluoroethylene copolymers, poly(vinylidene fluoride), poly(vinyl fluoride), and the like; polyamides, such as poly(6-aminocaproic acid) or poly(epsilon-caprolactam), poly(hexamethylene adipamide), poly(hexamethylene sebacamide), poly(11-amino-undecanoic acid), and the like; polyaramides, such as poly(imino-1,3-phenyleneiminoisophthaloyl) or poly(m-phenylene isophthalamide), and the like; parylenes, such as poly-p-xylylene, poly(chloro-p-xylylene), and the like; polyaryl ethers, such as poly(oxy-2,6-dimethyl-1,4-phenylene) or poly(p-phenylene oxide), and the like; polyaryl sulfones, such as poly(oxy-1,4-phenylenesulfonyl-1,4-phenyleneoxy-1,4-phenylene-isopropylidene-1,4-phenylene), poly(sulfonyl-1,4-phenyleneoxyl, 4-phenylenesulfonyl-4,4′-biphenylene), and the like; polycarbonates, such as poly(bisphenolA)orpoly(carbonyldioxy-1,4-phenyleneisopropylidene-1,4-phenylene), and the like; polyesters, such as poly(ethylene terephthalate), poly(tetramethylene terephthalate), poly(cyclohexylene-1,4-dimethylene terephthalate) or poly(oxymethylene-1,4-cyclohexylenemethyleneoxyterephthaloyl), and the like; polyaryl sulfides, such as poly(p-phenylene sulfide) or poly(thio-1,4-phenylene), and the like; polyimides, such as poly(pyromellitimido-1,4-phenylene), and the like; polyolefins, such as polyethylene, polypropylene, poly(1-butene), poly(2-butene), poly(1-pentene), poly(2-pentene), poly(3-methyl-1-pentene), poly(4-methyl-1-pentene), 1,2-poly-1,3-butadiene, 1,4-poly-1,3-butadiene, polyisoprene, polychloroprene, polyacrylonitrile, poly(vinyl acetate), poly(vinylidene chloride), polystyrene, and the like: copolymers of the foregoing, such as acrylonitrile-butadiene-styrene (ABS) copolymers, and the like; and the like. In certain embodiments, the polymeric fabric will be prepared from a polyolefin. In other embodiments, the polyolefin will be polypropylene or polyethylene. [0027]
  • The term “fabric” is used broadly herein to mean any fibrous material which has been formed into a sheet or web. That is, the fabric is composed, at least in part, of fibers of any length. Thus, the fabric can be a woven or nonwoven sheet or web, all of which are readily prepared by methods well-known to those having ordinary skill in the art. For example, nonwoven webs are prepared by such processes as meltblowing, coforming, spunbonding, carding, air laying, and wet laying. Moreover, the fabric can consist of a single layer or multiple layers. In addition, a multilayered fabric can include films, scrim, and other nonfibrous materials. [0028]
  • As used herein, the term “durable” means that the polymeric fabric to which a treatment has been applied can be subjected to the rigorous washing procedure described hereinafter or to multiple exposures to water and remain wettable. [0029]
  • The term “treatment” is used herein to mean any active agent that is capable of durably rendering a polymeric fabric (i.e. a fabric either woven or non-woven made from a polymeric fiber) wettable. In some embodiments, the treatment is a linear polysiloxane that is terminated at each end by a polyether moiety derived from ethylene oxide, commonly referred to as an A-B-A polymer. In one embodiment, the treatment is a polysiloxane polyether having the general formula: [0030]
    Figure US20040018788A1-20040129-C00005
  • where R[0031] 1 is selected from the group consisting of hydrogen and alkyls and R2 and R3 are each independently selected from the group consisting of one to forty carbon atom monovalent hydrocarbon radicals; the subscript a ranges from about to 1 to about 8, preferably from about to 1.5 to about 6, more preferably from about to 1.5 to about 5, and most preferably from about to 1.5 to about 4; the subscript b ranges from about 1 to about 10, preferably from about 1 to about 7, more preferably from about 1 to about 5, and most preferably from about to 1 to about 3; the subscript c ranges from zero to 2, more preferably from 1 to 2, and is most preferably 2; the subscript d ranges from about to 1 to about 10, preferably from about to 2 to about 8, more preferably from about to 2 to about 7, and most preferably from about to 3 to about 5; and the number average molecular weight ranging from ranges from about to 300 to about 1,000, preferably from about to 400 to about 900, more preferably from about to 500 to about 900, and most preferably from about to 600 to about 800.
  • In a second embodiment, the treatment is a polysiloxane polyether having the general formula: [0032]
    Figure US20040018788A1-20040129-C00006
  • where R[0033] 1 is selected from the group consisting of hydrogen and alkyls and R2 and R3 are each independently selected from the group consisting of one to forty carbon atom monovalent hydrocarbon radicals; the subscript a ranges from about to 1 to about 8, preferably from about to 1.5 to about 6, more preferably from about to 1.5 to about 5, and most preferably from about to 1.5 to about 4; the subscript b ranges from about 1 to about 10, preferably from about 1 to about 7, more preferably from about 1 to about 5, and most preferably from about to 1 to about 3; the subscript c ranges from zero to 2, more preferably from 1 to 2, and is most preferably 2; the subscript d ranges from about to 1 to about 10, preferably from about to 2 to about 8, more preferably from about to 2 to about 7, and most preferably from about to 3 to about 5; and the number average molecular weight ranging from ranges from about to 300 to about 1,000, preferably from about to 400 to about 900, more preferably from about to 500 to about 900, and most preferably from about to 600 to about 800.
  • In a third embodiment, the treatment is a polysiloxane polyether having the general formula: [0034]
    Figure US20040018788A1-20040129-C00007
  • where R[0035] 1 is selected from the group consisting of hydrogen and alkyls and R2 and R3 are each independently selected from the group consisting of one to forty carbon atom monovalent hydrocarbon radicals; the subscript a ranges from about to 1 to about 8, preferably from about to 1.5 to about 6, more preferably from about to 1.5 to about 5, and most preferably from about to 1.5 to about 4; the subscript b ranges from about 1 to about 10, preferably from about 1 to about 7, more preferably from about 1 to about 5, and most preferably from about to 1 to about 3; the subscript c ranges from zero to 2, more preferably from 1 to 2, and is most preferably 2; the subscript d ranges from about to 1 to about 10, preferably from about to 2 to about 8, more preferably from about to 2 to about 7, and most preferably from about to 3 to about 5; the subscript e ranges from about to 1 to about 10, preferably from about to 2 to about 8, more preferably from about to 2 to about 7, and most preferably from about to 3 to about 5; and the number average molecular weight ranging from ranges from about to 300 to about 1,000, preferably from about to 400 to about 900, more preferably from about to 500 to about 900, and most preferably from about to 600 to about 800.
  • In a fourth embodiment the treatment of the present invention is a mixture comprising two or more of the first, second and third embodiments. It should be noted that for molecular species the subscripts a, b, c, d etc. will assume integral values. When a mixture of compounds is employed as the treatment component, the values of the subscripts will assume non-integral values depending on the population fraction for a given molecular weight, i.e. molar averaged stoichiometric subscripts will be non-integral in the case of mixtures as opposed to pure compounds. [0036]
  • The advantages of the present invention are that the silicone polyether compounds of the present invention do not require a co-treatment. The materials also are effective at extremely low levels and maintain effectiveness after as many as five washings. Thus the materials maintain effectiveness after one, two, three, four and five washings. Effectiveness as to the hydrophilic coating is defined in the experimental section. [0037]
  • The hydrophilic coatings or treatments of the present invention typically comprise from about 0.01 to about 20.00 weight percent of the total weight of the treated fabric, preferably from about 0.10 to about 10.00 weight percent of the total weight of the treated fabric, more preferably from about 0.50 to about 5.00 weight percent of the total weight of the treated fabric, and most preferably from about 0.75 to about 2.50 weight percent of the total weight of the treated fabric. [0038]
  • Depending on the means employed to coat the fabric, the coated fabric may demonstrate a greater or lesser hydrophilic behavior for a given treatment composition depending on whether the coating is applied from an aqueous solution or dispersion or an alcoholic solution or dispersion. The greatest hydrophilic behavior is observed when the hydrophilic coating is applied from an aqueous dispersion, particularly when water is the only solvent employed. Textiles treated by the treatment of the present invention are useful for disposable absorbent articles such as diapers, training pants, incontinence products, wipes, feminine care products and the like. Wipes may be personal care wipes, floor care wipes, household care wipes, automotive care wipes and the like. In one embodiment, the treatment of the present invention, heretofore referred to as a coating, which coating may be a partial coating or a complete coating, involves depositing the treating agent, the compounds used in the present invention, onto the textile or fabric being treated to render it hydrophilic, preferably durably hydrophilic. [0039]
  • All U.S. patents referenced herein are specifically herewith and hereby incorporated by reference. [0040]
  • The following experiments are to be regarded as illustrative only and are not intended by their presentation to constitute any limitations upon the appended claims. [0041]
  • Experimental [0042]
  • The base fabric used in evaluating the coating compositions of the present invention was a spunbound polypropylene nonwoven web having a basis weight of 15.5 g per square meter. The fabric was cut into test swatches having dimensions of 22±5 cm×28±5 cm and an average weight ranging from 0.9 to 1.1 g (1.00±0.10 g). The silicone polyether compounds evaluated had the following structural formulas: [0043]
    Figure US20040018788A1-20040129-C00008
  • The silicone polyether compounds evaluated for the purposes of the present invention are listed in Table 1. [0044]
    TABLE 1
    Structural Parameters for Silicone Polyethers
    Sample
    No. Type R1 R2 R3 a b c d e
    1 A H CH3 CH3 1.8 3 2 3 0
    2 A H CH3 CH3 4 3 2 0 0
    3 A H CH3 CH3 4 3 2 3 0
    4 A H CH3 CH3 4 3 2 4 0
    5 A H CH3 CH3 4 3 2 5 0
    6 A H CH3 CH3 8 3 2 3 0
    7 A H CH3 CH3 8 3 2 5 0
    8 A H CH3 CH3 8 3 2 10 0
    9 A H CH3 CH3 12 3 2 15 0
    10 A H CH3 CH3 20 3 2 25 0
    11 B H CH3 CH3 1.7 3 2 3 0
    12 C H CH3 CH3 12 3 3 20 3
  • The silicone polyethers listed in Table 1 were suspended or dissolved in a 50 weight percent aqueous solution of isopropanol (2-propanol) or water at levels of 2.0, 0.5, 0.4 and 0.1 weight percent. Samples of the nonwoven spunbonded polypropylene fabric were treated by soaking them in the water-alcohol-silicone polyether mixture for 1-2 hours followed by drying in a forced air oven for 30 minutes at 105° C. The treated fabrics, having swatch dimensions of 22×28 cm. and weighing on average 0.95 g each were tested for hydrophilicity by pouring 100 g of water onto the fabric samples while the fabric sample was supported at a 35° angle above horizontal with an absorbent pad directly underneath the sample, which is known in the art as a run-off test. The absorbent pad was obtained by placing ten layers of commercially available paper towels one on top of each other; the paper towels having essentially the same dimensions as the fabric test swatch. Any of the water that ran off the fabric and was not absorbed was collected and measured. The treated fabric was judged effective or as having an effective hydrophilic coating if the fabric swatch and the absorbent pad thereunder retained 80 g of the 100 g poured onto the fabric, i.e. 80%. Conversely, if 20 g of water or more was recovered from the test the fabric sample was deemed to have failed the test. Fabrics that were treated with a water solution or dispersion of the compounds of the present invention tended to perform better than fabrics treated with alcoholic solutions or dispersions. The amount of coating it is possible to impart to the treated fabric tends to be a function of how the fabric is treated, i.e. whether the external surfaces of the fabric are treated or whether the entire fabric is immersed into the impregnating solution or dispersion. [0045]
    TABLE 2
    Coating Weights of Hydrophilic Silicone Coating
    on Textile Samples
    Solution Concentra- Coating
    Concentra- tion of Weight
    tion of Aqueous of Silicone,
    Sample No. A D Silicone, wt. % iso-Pr-OH wt. %
    A-1 1.8 3 0.05 0 4.67
    A-3 4 3 2.00 50 6.59
    A-3 4 3 0.50 50 0.66
    A-3 4 3 0.40 50 1.20
    A-3 4 3 0.40 0 15.03
    A-3 4 3 0.30 0 6.88
    A-3 4 3 0.20 0 4.64
    A-3 4 3 0.10 0 1.75
    A-3 4 3 0.05 0 1.68
    A-5 4 5 2.00 50 8.01
    A-5 4 5 0.50 50 1.30
    A-5 4 5 0.05 0 1.25
    A-6 8 3 0.05 0 0
    A-7 8 5 2.00 50 3.44
    A-8 8 10 2.00 50 3.78
    A-8 8 10 0.05 28 0
    A-9 12 15 0.05 28 0
    A-10 20 25 0.05 28 0.02
    B-1 1.7 2 2.00 50 9.01
    B-1 1.7 3 0.50 50 1.31
    C-1 8 1 0.05 0 0
    C-2 12 3 2.00 50 5.39
    C-2 12 3 0.05 28 0.05
  • The coated textiles when coated with the compounds of the present invention will pick up varying amounts of water depending on how extensively the textile is treated. If only the external surfaces of the textile are treated at very low levels, the total amount of water absorbed by the treated textile will be very low and may be indistinguishable from an untreated fabric. However, if the entire body of the fabric, exterior and interior, has been treated, the treated fabric can absorb as much as 300 to 400 weight percent. [0046]

Claims (16)

Having described the invention that which is claimed is:
1. A polymeric fabric treated with a silicone compound selected from the group consisting of:
1) polysiloxane polyethers having the formula:
Figure US20040018788A1-20040129-C00009
where R1 is selected from the group consisting of hydrogen and alkyls and R2 and R3 are each independently selected from the group consisting of one to forty carbon atom monovalent hydrocarbon radicals; the subscript a ranges from about 1 to about 8; the subscript b ranges from about 1 to about 10; the subscript c ranges from zero to 2; the subscript d ranges from about to 1 to about 10; and the number average molecular weight ranging from ranges from about to 300 to about 1,000.
2) polysiloxane polyethers having the formula:
Figure US20040018788A1-20040129-C00010
where R1 is selected from the group consisting of hydrogen and alkyls and R2 and R3 are each independently selected from the group consisting of one to forty carbon atom monovalent hydrocarbon radicals; the subscript a ranges from about to 1 to about 8; the subscript b ranges from about 1 to about 10; the subscript c ranges from zero to 2; the subscript d ranges from about to 1 to about 10; and the number average molecular weight ranging from ranges from about to 300 to about 1,000;
3) polysiloxane polyethers having the formula:
Figure US20040018788A1-20040129-C00011
where R1 is selected from the group consisting of hydrogen and alkyls and R2 and R3 are each independently selected from the group consisting of one to forty carbon atom monovalent hydrocarbon radicals; the subscript a ranges from about to 1 to about 8; the subscript b ranges from about 1 to about 10; the subscript c ranges from zero to 2; the subscript d ranges from about to 1 to about 10; the subscript e ranges from about to 1 to about 10; and the number average molecular weight ranging from ranges from about to 300 to about 1,000; and
4) mixtures thereof
whereby said fabric is rendered durably hydrophilic.
2. The silicone compound of claim 1 wherein said silicone is:
Figure US20040018788A1-20040129-C00012
3. The treatment silicone compound of claim 1 wherein said silicone is:
Figure US20040018788A1-20040129-C00013
4. The silicone compound of claim 1 wherein said silicone is:
Figure US20040018788A1-20040129-C00014
5. A polymeric fabric wherein said fabric has been treated with the treatment silicone of claim 1.
6. A polymeric fabric wherein said fabric has been treated with the treatment silicone of claim 2.
7. A polymeric fabric wherein said fabric has been treated with the treatment silicone of claim 3.
8. A polymeric fabric wherein said fabric has been treated with the treatment silicone of claim 4.
9. The polymeric fabric of claim 5 comprising a polymer wherein said polymer is selected from the group consisting of:
alkyd resins, ophthalmic anhydride-glycerol resins, maleic acid-glycerol resins, adipic acid-glycerol resins, phthalic anhydride-pentaerythritol resins; allylic resins cross-linked by diallyl phthalate, diallyl isophthalate diallyl maleate, or diallyl chlorendate; aniline-formaldehyde resins, ethylene urea-formaldehyde resins, dicyandiamide-formaldehyde resins, melamine-formaldehyde resins, sulfonamide-formaldehyde resins, and urea-formaldehyde resins; epoxy resins, epichlorohydrin-bisphenol A resins; phenolic resins, phenol-formaldehyde resins, end-capped polyacetals, poly(oxymethylene), polyformaldehyde, poly(trichloroacetaldehyde), poly(n-valeraldehyde), poly(acetaldehyde), poly(propionaldehyde), acrylic polymers, polyacrylamide, poly(acrylic acid), poly(methacrylic acid), poly(ethyl acrylate), poly(methyl methacrylate), fluorocarbon polymers, poly(tetrafluoroethylene), perfluorinated ethylene-propylene copolymers, ethylene-tetrafluoroethylene copolymers, poly(chlorotrifluoroethylene), ethylene-chlorotrifluoroethylene copolymers, poly(vinylidene fluoride), poly(vinyl fluoride), polyamides, such as poly(6-aminocaproic acid) or poly(epsilon-caprolactam), poly(hexamethylene adipamide), poly(hexamethylene sebacamide), poly(11-amino-undecanoic acid), polyaramides, poly(imino-1,3-phenyleneiminoisophthaloyl) or poly(m-phenylene isophthalamide), parylenes, poly-p-xylylene, poly(chloro-p-xylylene), polyaryl ethers, poly(oxy-2,6-dimethyl-1,4-phenylene), poly(p-phenylene oxide), polyaryl sulfones, poly(oxy-1,4-phenylenesulfonyl-1,4-phenyleneoxy-1,4-phenylene-isopropylidene-1,4-phenylene), poly(sulfonyl-1,4-phenyleneoxyl,4-phenylenesulfonyl-4,4′-biphenylene), polycarbonates, poly(bisphenolA)orpoly(carbonyldioxy-1,4-phenyleneisopropylidene-1,4-phenylene), polyesters, poly(ethylene terephthalate), poly(tetramethylene terephthalate), poly(cyclohexylene-1,4-dimethylene terephthalate), poly(oxymethylene-1,4-cyclohexylenemethyleneoxyterephthaloyl), polyaryl sulfides, poly(p-phenylene sulfide), poly(thio-1,4-phenylene), polyimides, poly(pyromellitimido-1,4-phenylene), polyolefins, polyethylene, polypropylene, poly(1-butene), poly(2-butene), poly(1-pentene), poly(2-pentene), poly(3-methyl-1-pentene), poly(4-methyl-1-pentene), 1,2-poly-1,3-butadiene, 1,4-poly-1,3-butadiene, polyisoprene, polychloroprene, polyacrylonitrile, poly(vinyl acetate), poly(vinylidene chloride), polystyrene, copolymers of the foregoing, acrylonitrile-butadiene-styrene (ABS) copolymers, and mixtures thereof.
10. The polymeric fabric of claim 5 comprising a polymer wherein said polymer is a natural polymer selected from the group consisting of cotton, silk, wool, and cellulose.
11. The polymeric fabric of claim 9 wherein said polymer is selected from the group consisting of polyethylene, polypropylene, poly(1-butene), poly(2-butene), poly(1-pentene), poly(2-pentene), poly(3-methyl-1-pentene), poly(4-methyl-1-pentene), 1,2-poly-1,3-butadiene, 1,4-poly-1,3-butadiene, polyisoprene, polychloroprene, polyacrylonitrile, poly(vinyl acetate), poly(vinylidene chloride), polystyrene, copolymers of the foregoing, acrylonitrile-butadiene-styrene (ABS) copolymers, and mixtures thereof.
12. The polymeric fabric of claim 11 wherein said polymer is selected from the group consisting of polyethylene and polypropylene.
13. The polymeric fabric of claim 12 wherein said polymer is polyethylene.
14. The polymeric fabric of claim 13 wherein said polymer is polypropylene.
15. The polymeric fabric of claim 10 wherein said polymer is cellulose.
16. The polymeric fabric of claim 15 wherein said cellulose is paper.
US10/620,791 1997-12-22 2003-07-16 Durable hydrophilic coating for textiles Abandoned US20040018788A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/620,791 US20040018788A1 (en) 1997-12-22 2003-07-16 Durable hydrophilic coating for textiles

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US99538997A 1997-12-22 1997-12-22
US44318299A 1999-11-19 1999-11-19
US09/997,939 US6630415B2 (en) 1997-12-22 2001-11-29 Durable hydrophilic coating for textiles
US10/620,791 US20040018788A1 (en) 1997-12-22 2003-07-16 Durable hydrophilic coating for textiles

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/997,939 Division US6630415B2 (en) 1997-12-22 2001-11-29 Durable hydrophilic coating for textiles

Publications (1)

Publication Number Publication Date
US20040018788A1 true US20040018788A1 (en) 2004-01-29

Family

ID=25541729

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/997,939 Expired - Fee Related US6630415B2 (en) 1997-12-22 2001-11-29 Durable hydrophilic coating for textiles
US10/620,791 Abandoned US20040018788A1 (en) 1997-12-22 2003-07-16 Durable hydrophilic coating for textiles

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/997,939 Expired - Fee Related US6630415B2 (en) 1997-12-22 2001-11-29 Durable hydrophilic coating for textiles

Country Status (4)

Country Link
US (2) US6630415B2 (en)
EP (1) EP0924239B1 (en)
JP (1) JPH11240954A (en)
DE (1) DE69827751T2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090113637A1 (en) * 2006-06-07 2009-05-07 Kimmai Thi Nguyen Treating textiles with silicone polyether-amide block copolymers
US20100319149A1 (en) * 2007-06-26 2010-12-23 Live-Right, Llc Infant toothbrush

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3394262B2 (en) 1997-02-06 2003-04-07 セラセンス、インク. Small volume in vitro analyte sensor
US6338790B1 (en) 1998-10-08 2002-01-15 Therasense, Inc. Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator
EP2036481A3 (en) * 1999-09-27 2010-09-22 The Procter & Gamble Company Premoistened wipes and methods of use
US6495057B1 (en) 1999-12-28 2002-12-17 General Electric Company Wrinkle removing composition and process
US6613815B2 (en) * 2001-02-02 2003-09-02 Xerox Corporation Inks comprising linear ABSCS′B′A′or BASCS′A′B′alkylene oxide/siloxane block copolymers
NL1028692C2 (en) * 2005-04-04 2006-10-09 Pagter & Partners Int Bv Water-filling holder for flowers.
FR2889194A1 (en) * 2005-07-27 2007-02-02 Rhodia Chimie Sa BLOCK COPOLYMER COMPRISING LCST BLOCK HAVING LOW SOLUBILITE CRITICAL TEMPERATURE, FORMULATIONS COMPRISING THE COPOLYMER, AND USE FOR VECTORIZING AN ACTIVE INGREDIENT
US7584860B2 (en) * 2006-07-17 2009-09-08 General Electric Company Hydrophilic body and method of manufacture
CN102196804B (en) 2008-10-22 2013-11-06 陶氏康宁公司 Aminofunctional endblocked silicone polyether copolymers in personal care compositions
US8735524B2 (en) * 2011-09-09 2014-05-27 Air Products And Chemicals, Inc. Silicone containing compositions and uses thereof
WO2013066911A1 (en) * 2011-11-04 2013-05-10 Dow Corning Corporation Hydrophilic organosilanes
WO2014104719A1 (en) * 2012-12-26 2014-07-03 제일모직 주식회사 Curable polysiloxane composition for optical instrument, packaging material, and optical instrument

Citations (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US452671A (en) * 1891-05-19 Desk-cabinet
US2803619A (en) * 1954-12-23 1957-08-20 Dow Corning Low compression set siloxane elastomers containing a vinyl organosiloxane
USRE25727E (en) * 1965-02-09 Organosiloxane ethers
US3271331A (en) * 1963-10-10 1966-09-06 Union Carbide Corp Phenolic foams stabilized by siloxane-oxyalkylene copolymers
US3280160A (en) * 1965-03-30 1966-10-18 Union Carbide Corp Siloxane-oxyalkylene block copolymers
US3654215A (en) * 1967-12-26 1972-04-04 Gen Electric Filler cross-linked polysiloxanes
US3817910A (en) * 1973-01-02 1974-06-18 Stauffer Chemical Co Low compression set siloxane elastomers
US3984200A (en) * 1972-12-11 1976-10-05 Dow Corning Corporation Carpet dyeing antifoam
US4105567A (en) * 1976-02-12 1978-08-08 Th. Goldschmidt Ag Organosilicon compounds and textile fiber finishes containing them
US4287261A (en) * 1978-09-25 1981-09-01 Reeves Brothers, Inc. Fabric coating process and product thereof
US4351871A (en) * 1974-02-15 1982-09-28 Lewis Edward J Decorating textile fabrics
US4369231A (en) * 1980-03-24 1983-01-18 Reeves Brothers, Inc. Method of application, and product thereof
US4376149A (en) * 1980-07-18 1983-03-08 Sws Silicones Corporation Silicone polymer compositions
US4539357A (en) * 1982-06-16 1985-09-03 General Electric Company Peroxide curing polysiloxane compositions having a high tear strength
US4554147A (en) * 1984-04-02 1985-11-19 General Electric Company Method for treating fumed silica
US4690967A (en) * 1983-12-21 1987-09-01 Rhone-Poulenc Specialites Chimiques Heat-curable organopolysiloxane compositions
US4740528A (en) * 1986-07-18 1988-04-26 Kimberly-Clark Corporation Superwicking crosslinked polyurethane foam composition containing amino acid
US4818421A (en) * 1987-09-17 1989-04-04 Colgate-Palmolive Co. Fabric softening detergent composition and article comprising such composition
US4857251A (en) * 1988-04-14 1989-08-15 Kimberly-Clark Corporation Method of forming a nonwoven web from a surface-segregatable thermoplastic composition
US4921622A (en) * 1987-12-02 1990-05-01 Takemoto Yushi Kabushiki Kaisha Fluid-permeable agent for non-woven sheets of polyolefin fibers and method of application thereof: N,N-di-hydroxyethyl amide and polyoxyalkylene-modified silicone
US5004643A (en) * 1988-03-14 1991-04-02 Sili-Tex, Inc. Silicone polymer-internally coated webs
US5010883A (en) * 1983-12-24 1991-04-30 Smith & Nephew Associated Companies Plc Surgical dressing
US5045387A (en) * 1989-07-28 1991-09-03 Hercules Incorporated Rewettable polyolefin fiber and corresponding nonwovens
US5051259A (en) * 1987-12-15 1991-09-24 Coloplast A/S Skin barrier product with discontinuous adhesive layer
US5057361A (en) * 1989-11-17 1991-10-15 Kimberly-Clark Corporation Wettable polymeric fabrics
US5081172A (en) * 1989-12-13 1992-01-14 Dow Corning Corporation Method to reduce compression set in silanol-containing silicone elastomer bases
US5104919A (en) * 1989-03-16 1992-04-14 Shin-Etsu Chemical Co., Ltd. Curable silicone composition
US5110845A (en) * 1990-12-03 1992-05-05 Dow Corning Corporation Extrudable curable organosiloxane compositions
US5112885A (en) * 1989-04-28 1992-05-12 Shin-Etsu Chemical Co., Ltd. Room temperature vulcanizable silicon rubber composition
US5122562A (en) * 1990-09-25 1992-06-16 General Electric Company Heat curable silicone rubber compositions
US5132047A (en) * 1988-02-09 1992-07-21 Shin-Etsu Chemical Co., Ltd. Organopolysiloxane emulsion composition
US5153244A (en) * 1989-10-31 1992-10-06 Dow Corning Toray Silicone Company, Ltd. Curable organosiloxane composition yielding elastomers exhibiting reduced compression set values
US5183702A (en) * 1991-04-03 1993-02-02 Dover Corporation Barrier fabrics
US5200440A (en) * 1989-11-02 1993-04-06 Shin-Etsu Chemical Co., Ltd. Organosilicone-treated silica and a composition containing it
US5210133A (en) * 1992-06-15 1993-05-11 Siltech Inc. Silicone polyester polymers as delivery systems
US5209965A (en) * 1988-03-14 1993-05-11 Sili-Tex, Inc. Internally coated webs
US5219922A (en) * 1990-05-04 1993-06-15 Bayer Aktiengesellschaft Silicone elastomers having reduced compression set and a process for their production
US5236532A (en) * 1991-04-03 1993-08-17 Standard Textile Company, Inc. Barrier fabrics and methods of making same
US5248715A (en) * 1992-07-30 1993-09-28 Dow Corning Corporation Self-adhering silicone rubber with low compression set
US5258129A (en) * 1987-12-02 1993-11-02 Takemoto Yushi Kabushiki Kaisha Fluid-permeable agent for non-woven sheets of polyolefin fibers and method of application thereof
US5260364A (en) * 1992-08-07 1993-11-09 Wacker Silicones Corporation Silicone rubber having reduced compression set
US5276123A (en) * 1992-09-03 1994-01-04 Dow Corning Corporation Alkoxy endblocked polydiorganosiloxane and room temperature vulcanizable silicone elastomers made therefrom
US5283023A (en) * 1992-01-03 1994-02-01 Kimberly-Clark Corporation Method of imparting delayed wettability to a nonwoven web
US5380260A (en) * 1989-08-15 1995-01-10 Smith & Nephew Plc Medical paddings
US5380770A (en) * 1992-04-09 1995-01-10 General Electric Company Heat cured silicone rubber compositions containing a potassium aluminosilicate filler which provides resistance to hydrocarbon oils and adjustable shrinkage
US5391679A (en) * 1992-06-11 1995-02-21 Th. Goldschmidt Ag Method for the synthesis of polyether siloxanes
US5447783A (en) * 1995-01-26 1995-09-05 E. I. Du Pont De Nemours And Company Vapor-permeable, water resistant multicomponent film structure
US5474839A (en) * 1991-03-14 1995-12-12 Matsushita Electric Industrial Co., Ltd. Surface-treated apparel material
US5486551A (en) * 1995-01-03 1996-01-23 Dow Corning Corporation Method for preparing a finely divided, free flowing organosiloxane elastomer base exhibiting reduced compression set following curing
US5500254A (en) * 1993-12-21 1996-03-19 Kimberly-Clark Corporation Coated polymeric fabric having durable wettability and reduced adsorption of protein
US5519082A (en) * 1994-04-13 1996-05-21 Shin-Etsu Chemical Co., Ltd. Curable silicone rubber composition and method for preparing silicone rubber
US5556919A (en) * 1994-09-30 1996-09-17 Nippon Zeon Co., Ltd. Rubber composition comprising nitrile group-containing highly saturated copolymer rubber and ethylenically saturated copolymer rubber
US5569688A (en) * 1993-10-21 1996-10-29 Shin-Etsu Chemical Co., Ltd. Heat-curable silicone rubber compositions
US5597853A (en) * 1993-11-08 1997-01-28 Shin-Etsu Chemical Co., Ltd. Silicone rubber compositions
US5607992A (en) * 1993-08-27 1997-03-04 Toshiba Silicone Co., Ltd. Silicone rubber composition for injection molding
US5610213A (en) * 1995-06-30 1997-03-11 General Electric Company Heat cured rubbers
US5620788A (en) * 1992-11-19 1997-04-15 Kimberly-Clark Corporation Wettable polymeric fabrics with durable surfactant treatment
US5623028A (en) * 1995-12-01 1997-04-22 General Electric Company Heat cured rubbers
US5633007A (en) * 1993-07-21 1997-05-27 Smith & Nephew Plc Surgical dressing
US5698303A (en) * 1988-03-14 1997-12-16 Nextec Applications, Inc. Controlling the porosity and permeation of a web
US5811482A (en) * 1996-07-17 1998-09-22 Osi Specialties, Inc. Non-migrating hydrophilic silicone finish for hydrophobic substrates such as nonwovens
US6211284B1 (en) * 1998-06-30 2001-04-03 Dow Corning Toray Silicone Co. Highly storage-stable organopolysiloxane composition

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1039871A (en) * 1962-01-24 1966-08-24 Union Carbide Corp Coated inorganic and organic substrate materials
GB1557460A (en) 1975-12-09 1979-12-12 Johnson & Johnson Absorbent pad
DE2933346C2 (en) 1979-08-17 1982-07-01 Degussa Ag, 6000 Frankfurt Silane / filler preparations, processes for their production and application of the same
JPS606379B2 (en) 1979-09-10 1985-02-18 信越化学工業株式会社 Surface modification method of silica powder
JPS60215873A (en) 1984-04-06 1985-10-29 竹本油脂株式会社 Spinning oil composition of polyester or polyamide fiber yarn
EP0622421B1 (en) 1993-04-30 1999-10-27 General Electric Company Liquid injection moldable silicone compositions
JPH07238472A (en) * 1994-02-25 1995-09-12 Toray Dow Corning Silicone Co Ltd Straight finishing oil composition for fibrous material
US6103847A (en) * 1997-05-27 2000-08-15 Witco Corporation Siloxane-polyether copolymers with unsaturated functionalities, and process for making them

Patent Citations (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE25727E (en) * 1965-02-09 Organosiloxane ethers
US452671A (en) * 1891-05-19 Desk-cabinet
US2803619A (en) * 1954-12-23 1957-08-20 Dow Corning Low compression set siloxane elastomers containing a vinyl organosiloxane
US3271331A (en) * 1963-10-10 1966-09-06 Union Carbide Corp Phenolic foams stabilized by siloxane-oxyalkylene copolymers
US3280160A (en) * 1965-03-30 1966-10-18 Union Carbide Corp Siloxane-oxyalkylene block copolymers
US3654215A (en) * 1967-12-26 1972-04-04 Gen Electric Filler cross-linked polysiloxanes
US3984200A (en) * 1972-12-11 1976-10-05 Dow Corning Corporation Carpet dyeing antifoam
US3817910A (en) * 1973-01-02 1974-06-18 Stauffer Chemical Co Low compression set siloxane elastomers
US4351871A (en) * 1974-02-15 1982-09-28 Lewis Edward J Decorating textile fabrics
US4105567A (en) * 1976-02-12 1978-08-08 Th. Goldschmidt Ag Organosilicon compounds and textile fiber finishes containing them
US4287261A (en) * 1978-09-25 1981-09-01 Reeves Brothers, Inc. Fabric coating process and product thereof
US4369231A (en) * 1980-03-24 1983-01-18 Reeves Brothers, Inc. Method of application, and product thereof
US4376149A (en) * 1980-07-18 1983-03-08 Sws Silicones Corporation Silicone polymer compositions
US4539357A (en) * 1982-06-16 1985-09-03 General Electric Company Peroxide curing polysiloxane compositions having a high tear strength
US4690967A (en) * 1983-12-21 1987-09-01 Rhone-Poulenc Specialites Chimiques Heat-curable organopolysiloxane compositions
US5010883A (en) * 1983-12-24 1991-04-30 Smith & Nephew Associated Companies Plc Surgical dressing
US4554147A (en) * 1984-04-02 1985-11-19 General Electric Company Method for treating fumed silica
US4740528A (en) * 1986-07-18 1988-04-26 Kimberly-Clark Corporation Superwicking crosslinked polyurethane foam composition containing amino acid
US4818421A (en) * 1987-09-17 1989-04-04 Colgate-Palmolive Co. Fabric softening detergent composition and article comprising such composition
US4921622A (en) * 1987-12-02 1990-05-01 Takemoto Yushi Kabushiki Kaisha Fluid-permeable agent for non-woven sheets of polyolefin fibers and method of application thereof: N,N-di-hydroxyethyl amide and polyoxyalkylene-modified silicone
US5258129A (en) * 1987-12-02 1993-11-02 Takemoto Yushi Kabushiki Kaisha Fluid-permeable agent for non-woven sheets of polyolefin fibers and method of application thereof
US5051259A (en) * 1987-12-15 1991-09-24 Coloplast A/S Skin barrier product with discontinuous adhesive layer
US5132047A (en) * 1988-02-09 1992-07-21 Shin-Etsu Chemical Co., Ltd. Organopolysiloxane emulsion composition
US5698303A (en) * 1988-03-14 1997-12-16 Nextec Applications, Inc. Controlling the porosity and permeation of a web
US5418051A (en) * 1988-03-14 1995-05-23 Fabric Coating Corporation Internally coated webs
US5004643A (en) * 1988-03-14 1991-04-02 Sili-Tex, Inc. Silicone polymer-internally coated webs
US5209965A (en) * 1988-03-14 1993-05-11 Sili-Tex, Inc. Internally coated webs
US4857251A (en) * 1988-04-14 1989-08-15 Kimberly-Clark Corporation Method of forming a nonwoven web from a surface-segregatable thermoplastic composition
US5104919A (en) * 1989-03-16 1992-04-14 Shin-Etsu Chemical Co., Ltd. Curable silicone composition
US5112885A (en) * 1989-04-28 1992-05-12 Shin-Etsu Chemical Co., Ltd. Room temperature vulcanizable silicon rubber composition
US5045387A (en) * 1989-07-28 1991-09-03 Hercules Incorporated Rewettable polyolefin fiber and corresponding nonwovens
US5380260A (en) * 1989-08-15 1995-01-10 Smith & Nephew Plc Medical paddings
US5153244A (en) * 1989-10-31 1992-10-06 Dow Corning Toray Silicone Company, Ltd. Curable organosiloxane composition yielding elastomers exhibiting reduced compression set values
US5200440A (en) * 1989-11-02 1993-04-06 Shin-Etsu Chemical Co., Ltd. Organosilicone-treated silica and a composition containing it
US5057361A (en) * 1989-11-17 1991-10-15 Kimberly-Clark Corporation Wettable polymeric fabrics
US5081172A (en) * 1989-12-13 1992-01-14 Dow Corning Corporation Method to reduce compression set in silanol-containing silicone elastomer bases
US5219922A (en) * 1990-05-04 1993-06-15 Bayer Aktiengesellschaft Silicone elastomers having reduced compression set and a process for their production
US5122562A (en) * 1990-09-25 1992-06-16 General Electric Company Heat curable silicone rubber compositions
US5110845A (en) * 1990-12-03 1992-05-05 Dow Corning Corporation Extrudable curable organosiloxane compositions
US5474839A (en) * 1991-03-14 1995-12-12 Matsushita Electric Industrial Co., Ltd. Surface-treated apparel material
US5236532A (en) * 1991-04-03 1993-08-17 Standard Textile Company, Inc. Barrier fabrics and methods of making same
US5183702A (en) * 1991-04-03 1993-02-02 Dover Corporation Barrier fabrics
US5283023A (en) * 1992-01-03 1994-02-01 Kimberly-Clark Corporation Method of imparting delayed wettability to a nonwoven web
US5380770A (en) * 1992-04-09 1995-01-10 General Electric Company Heat cured silicone rubber compositions containing a potassium aluminosilicate filler which provides resistance to hydrocarbon oils and adjustable shrinkage
US5391679A (en) * 1992-06-11 1995-02-21 Th. Goldschmidt Ag Method for the synthesis of polyether siloxanes
US5210133A (en) * 1992-06-15 1993-05-11 Siltech Inc. Silicone polyester polymers as delivery systems
US5248715A (en) * 1992-07-30 1993-09-28 Dow Corning Corporation Self-adhering silicone rubber with low compression set
US5260364A (en) * 1992-08-07 1993-11-09 Wacker Silicones Corporation Silicone rubber having reduced compression set
US5276123A (en) * 1992-09-03 1994-01-04 Dow Corning Corporation Alkoxy endblocked polydiorganosiloxane and room temperature vulcanizable silicone elastomers made therefrom
US5620788A (en) * 1992-11-19 1997-04-15 Kimberly-Clark Corporation Wettable polymeric fabrics with durable surfactant treatment
US5633007A (en) * 1993-07-21 1997-05-27 Smith & Nephew Plc Surgical dressing
US5607992A (en) * 1993-08-27 1997-03-04 Toshiba Silicone Co., Ltd. Silicone rubber composition for injection molding
US5569688A (en) * 1993-10-21 1996-10-29 Shin-Etsu Chemical Co., Ltd. Heat-curable silicone rubber compositions
US5597853A (en) * 1993-11-08 1997-01-28 Shin-Etsu Chemical Co., Ltd. Silicone rubber compositions
US5540984A (en) * 1993-12-21 1996-07-30 Kimberly-Clark Corporation Coated polymeric fabric having durable wettability and reduced adsorption of protein
US5500254A (en) * 1993-12-21 1996-03-19 Kimberly-Clark Corporation Coated polymeric fabric having durable wettability and reduced adsorption of protein
US5519082A (en) * 1994-04-13 1996-05-21 Shin-Etsu Chemical Co., Ltd. Curable silicone rubber composition and method for preparing silicone rubber
US5556919A (en) * 1994-09-30 1996-09-17 Nippon Zeon Co., Ltd. Rubber composition comprising nitrile group-containing highly saturated copolymer rubber and ethylenically saturated copolymer rubber
US5486551A (en) * 1995-01-03 1996-01-23 Dow Corning Corporation Method for preparing a finely divided, free flowing organosiloxane elastomer base exhibiting reduced compression set following curing
US5447783A (en) * 1995-01-26 1995-09-05 E. I. Du Pont De Nemours And Company Vapor-permeable, water resistant multicomponent film structure
US5610213A (en) * 1995-06-30 1997-03-11 General Electric Company Heat cured rubbers
US5623028A (en) * 1995-12-01 1997-04-22 General Electric Company Heat cured rubbers
US5811482A (en) * 1996-07-17 1998-09-22 Osi Specialties, Inc. Non-migrating hydrophilic silicone finish for hydrophobic substrates such as nonwovens
US6211284B1 (en) * 1998-06-30 2001-04-03 Dow Corning Toray Silicone Co. Highly storage-stable organopolysiloxane composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090113637A1 (en) * 2006-06-07 2009-05-07 Kimmai Thi Nguyen Treating textiles with silicone polyether-amide block copolymers
US7896929B2 (en) 2006-06-07 2011-03-01 Dow Corning Corporation Treating textiles with silicone polyether-amide block copolymers
US20100319149A1 (en) * 2007-06-26 2010-12-23 Live-Right, Llc Infant toothbrush

Also Published As

Publication number Publication date
EP0924239B1 (en) 2004-11-24
US6630415B2 (en) 2003-10-07
DE69827751T2 (en) 2005-12-01
DE69827751D1 (en) 2004-12-30
US20020061406A1 (en) 2002-05-23
EP0924239A1 (en) 1999-06-23
JPH11240954A (en) 1999-09-07

Similar Documents

Publication Publication Date Title
US6630415B2 (en) Durable hydrophilic coating for textiles
EP1377443B1 (en) Condrapable hydrophobic nonwoven web and method of making same
KR0136575B1 (en) Cardable hydrophobic polypropylene fiber, material and method for preparation thereof
US5540984A (en) Coated polymeric fabric having durable wettability and reduced adsorption of protein
JPH06228864A (en) Woven fabric of polymer with improved wettability
KR100350199B1 (en) Mixed Surfactant Systems Used in Durable Fabric Coatings
EP0894889B1 (en) Non-migrating hydrophilic silicone finish for hydrophobic substrates such as nonwovens
EP0833978B1 (en) Modified polymeric material having improved wettability
KR100958605B1 (en) Water permeability imparting agent and fiber having the agent applied thereto
JP3314775B2 (en) Durable hydrophilic fiber and fiber molding using the same
JP4468575B2 (en) Durable water permeability-imparting agent and its fiber
US20240110316A1 (en) Hydrophobic cellulosic fiber
JPH03180580A (en) Water repellent fiber
DE69729861T2 (en) Non-migrating hydrophilic silicone equipment for hydrophobic substrates such as nonwovens
JP2988892B2 (en) Non-migrating hydrophilic silicone finish for hydrophobic substrates such as nonwovens and articles using the same
CA2262496C (en) Method and composition for treating substrates for wettability
MXPA97006169A (en) Hydrofilic silicone finish, non-migratory, for hydrophobic substrates, such as those non-teji

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: JPMORGAN CHASE BANK, N.A. AS ADMINISTRATIVE AGENT,

Free format text: SECURITY AGREEMENT;ASSIGNORS:MOMENTIVE PERFORMANCE MATERIALS HOLDINGS INC.;MOMENTIVE PERFORMANCE MATERIALS GMBH & CO. KG;MOMENTIVE PERFORMANCE MATERIALS JAPAN HOLDINGS GK;REEL/FRAME:019511/0166

Effective date: 20070228

AS Assignment

Owner name: MOMENTIVE PERFORMANCE MATERIALS INC., NEW YORK

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:054387/0001

Effective date: 20201102

Owner name: MOMENTIVE PERFORMANCE MATERIALS GMBH & CO KG, GERMANY

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:054387/0001

Effective date: 20201102

Owner name: MOMENTIVE PERFORMANCE MATERIALS JAPAN HOLDINGS GK, JAPAN

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:054387/0001

Effective date: 20201102