US20030100942A1 - Hydrogel for the therapeutic treatment of aneurysms - Google Patents

Hydrogel for the therapeutic treatment of aneurysms Download PDF

Info

Publication number
US20030100942A1
US20030100942A1 US10/263,387 US26338702A US2003100942A1 US 20030100942 A1 US20030100942 A1 US 20030100942A1 US 26338702 A US26338702 A US 26338702A US 2003100942 A1 US2003100942 A1 US 2003100942A1
Authority
US
United States
Prior art keywords
aneurysm
hydrogel
poly
group
gels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/263,387
Inventor
Christopher Ken
J. Derbin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/263,387 priority Critical patent/US20030100942A1/en
Publication of US20030100942A1 publication Critical patent/US20030100942A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • A61K47/38Cellulose; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/18Growth factors; Growth regulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/02Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/32Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. carbomers, poly(meth)acrylates, or polyvinyl pyrrolidone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/34Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/22Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against growth factors ; against growth regulators

Definitions

  • This invention relates generally to treatment of vascular aneurysms, and more particularly concerns the use of hydrogels for use in occluding aneurysms and in controlled drug delivery for treatment of aneurysms.
  • Aneurysms have been traditionally treated with externally placed clips, or internally by detachable vasoocclusive balloons or an embolus generating vasoocclusive device such as one or more vasoocclusive coils.
  • the delivery of such vasoocclusive devices can be accomplished by a variety of means, including via a catheter in which the device is pushed through the catheter by a pusher to deploy the device.
  • the vasoocclusive devices can be produced in such a way that they will pass through the lumen of a catheter in a linear shape and take on a complex shape as originally formed after being deployed into the area of interest, such as an aneurysm.
  • the vasoocclusive devices take the form of spiral wound wires that can take more complex three dimensional shapes as they are inserted into the area to be treated.
  • the wires can be installed in a micro-catheter in a relatively linear configuration and assume a more complex shape as it is forced from the distal end of the catheter.
  • Adhesives that have been introduced to help heal aneurysms include cyanoacrylates, gelatin/resorcinol/formol, mussel adhesive protein and autologous fibrinogen adhesive.
  • Fibrin gels have also been used as sealants and adhesives in surgery, and hydrogels have been used as sealants for bleeding organs, and to create tissue supports for the treatment of vascular disease by the formation of shaped articles to serve a mechanical function.
  • Catheters have commonly been used to introduce such therapeutic agents locally at diseased occluded regions of the vasculature to promote vessel healing.
  • a polymeric paving and sealing material in the form of a monomer solution, prepolymer solution, or as a preformed or partially preformed polymeric product is introduced into the lumen of the blood vessel and positioned at the point of a stenosis.
  • the polymeric material typically can incorporate additional therapeutic agents such as drugs, drug producing cells, cell regeneration factors, and progenitor cells either of the same type as the vascular tissue of the aneurysm, or histologically different to accelerate the healing process.
  • Hydrogels have also been used to form expanding, swelling stents, and as space-fillers for treatment of vascular aneurysms in a manner similar to other types of mechanical, embolus generating vasoocclusive devices.
  • an aneurysm is treated by inserting a stent formed of a hydrogel material into the vessel, and then hydrating and expanding the hydrogel material until the stent occludes the vascular wall, sealing it from the parent vessel.
  • Biodegradable hydrogels have also been used as controlled-release carriers for biologically active materials such as hormones, enzymes, antibiotics, antineoplastic agents, and cell suspensions.
  • vasoocclusive devices and materials and their deployment systems provide valuable treatments for diseased vascular regions.
  • there remain important limitations in the technology presently available since treating an aneurysm with adhesive or occluding the aneurysm with a stent may not be completely effective in healing the vascular damage.
  • an embolus generating vasoocclusive device or space-filling device such as a vasoocclusive coil is used to treat an aneurysm, the ability to treat the aneurysm depends upon whether the embolus generating vasoocclusive device can migrate out of the aneurysm through the neck of the aneurysm.
  • the present invention solves these and other problems by providing, in its broadest aspect, an improved method for treating an aneurysm by delivering a hydrogel carrying growth factors to promote cellular growth across the neck of the aneurysm, to eliminate and heal the aneurysm with the body's own cellular growth.
  • the hydrogel acts as an embolic agent blocking the flow of blood into the aneurysm and eliminating the chance for hemorrhage, and can be used either separately, or in combination with other occlusive, embolus generating devices in treatment of aneurysms.
  • a presently preferred embodiment of the present invention provides for a method for the treatment of aneurysms non-mechanically, through the delivery of human growth factors and/or gene therapy to the site of an aneurysm.
  • the invention utilizes a hydrogel that acts as a carrier for both a radiopaque agent allowing the hydrogel to be visualized under fluoroscopy and a therapeutic agent such as one or more human growth factors.
  • the hydrogel is delivered through a catheter into the aneurysm, where, in one currently preferred embodiment, the hydrogel becomes more viscous upon reaching body temperature, or upon exposure to bodily fluids.
  • the hydrogel is constituted so as to remain a liquid at temperatures below about 37° C., to thereby facilitate the placement and retention of the gel and gel contained agents within the aneurysm.
  • the hydrogel preferably then solidifies to block blood flow into the aneurysm.
  • the delivery of human growth factors to the aneurysm site promotes the growth of a cellular layer across the neck of the aneurysm.
  • the hydrogel may be of a type that dissolves over time or one which remains as a permanent occlusive agent within the aneurysm.
  • Treatment of an aneurysm by sealing it with adhesive, blocking it with a stent, or placement of a vasoocclusive device to occlude it may not be completely effective in healing the vascular damage.
  • a vasoocclusive or space-filling device placed within an aneurysm can also migrate out of the aneurysm through the neck of the aneurysm.
  • the invention accordingly provides for a hydrogel that acts as a carrier for both a radiopaque agent allowing the hydrogel to be visualized under fluoroscopy and a therapeutic agent such as one or more human growth factors.
  • a hydrogel refers to a broad class of polymeric materials that have an affinity for water and typically swell in water, but which do not necessarily dissolve in water.
  • hydrogels are formed by polymerization and crosslinking of a hydrophilic monomer in an aqueous solution to cause the solution to gel.
  • the hydrogel can be constituted to be liquid at a temperature below body temperature and to gel at body temperature so that the gel can be easily introduced into the aneurysm, but rapidly gels in the space to occlude at least a portion of the aneurysm.
  • the hydrogel of the present invention can be one or more hydrogels selected from organic gels and inorganic gels.
  • Organic gels from which the hydrogel of the invention can be selected include, by way of example and not by way of limitation, gels formed from polysaccharides and mucopolysaccharides including, but not limited to hyaluronic acid, dextran, heparin sulfate, chondroitin sulfate, heparin, agar, starch, and alginate; polyaminoacids; proteins that support cell growth and healing, including but not limited to fibronectin, gelatin, collagen, fibrin, pectins, albumin, ovalbumin, and polyamino acids; collagen-hydroxyethyl-methacrylate (HEMA); polyphosphazines; polyphosphoesters; polyethylene glycol; polyethylene oxide; polyvinyl alcohol; polyvinylpyrrolidone; polyethyloxazoline; polyethylene oxide-co-polyprop
  • carboxy alkyl celluloses including but not limited to carboxymethyl cellulose; partially oxidized cellulose; biodegradable polymers including but not limited to polymers and oligomers of glycolide, lactide, polylactic acid, polyesters of ⁇ -hydroxy acids, including lactic acid and glycolic acid, such as the poly( ⁇ -hydroxy) acids including polyglycolic acid, poly-DL-lactic, poly-L-lactic acid, and terpolymers of DL-lactide and glycolide; ⁇ -caprolactone and ⁇ -caprolactone copolymerized with polyesters; polylactones and polycaprolactones including poly( ⁇ -caprolactone), poly( ⁇ -valerolactone) and poly(gamma-butyrolactone); polyanhydrides; polyorthoesters; other hydroxy acids; polydioxanone; and other biologically degradable polymers that are non-toxic or are present as
  • Collagen-hydroxyethyl-methacrylate (HEMA) hydrogel polymer is commonly formed from a gelled and crosslinked hydrophilic monomer solution to form a three dimensional polymeric meshwork anchoring macromolecules.
  • Crosslinking of the hydrophilic monomer solution can be accomplished by free radical polymerization of hydrophilic monomers, such as hydroxyethyl-methacrylate (HEMA).
  • Hydrogel polymers formed by free radical polymerization of monomer solutions require crosslinking to form the three dimensional network to gel the aqueous solution.
  • HEMA monomer solutions typically can be crosslinked to gel by dimethacrylate, although other crosslinking agents, such as ethylene glycol dimethacrylate or methylmethacrylate, can also be used during polymerization to modify the hydrogel.
  • crosslinking agents such as ethylene glycol dimethacrylate or methylmethacrylate
  • hydrophilic monomers may also be suitable for purposes of the invention.
  • Inorganic gels from which the hydrogel of the invention can be selected include, by way of example and not by way of limitation, silica, alumina, and ferric oxide.
  • an adhesive can be introduced via a catheter to initially help seal the neck of an aneurysm, and can be selected from the group consisting of cyanoacrylates, gelatin/resorcinol/formol, mussel adhesive protein and autologous fibrinogen adhesive. It should thus be apparent that the hydrogel of the invention can be of a type that dissolves over time or one that remains as a permanent occlusive agent within the aneurysm.
  • the radiopaque material that is incorporated into the hydrogel of the invention is preferably fine particles of a selected radiopaque metal, such as gold, platinum, tantalum or the like.
  • the therapeutic agent incorporated into the hydrogel of the invention is preferably one or more human growth modulating factors such as interleukins, transformation growth factor b, gene therapy agents, congeners of platelet derived growth factor, and monoclonal antibodies directed against growth factors, drugs, drug producing cells, cell regeneration factors, progenitor cells of the same type as those from the aneurysm, and progenitor cells that are histologically different from those of the aneurysm, to accelerate the healing process.
  • the therapeutic agent can be administered in the form of fine particles mixed with the polymer so that it gels within the aneurysm to concentrate the effect of the therapeutic agent within the aneurysm.
  • a catheter is typically positioned in a parent vessel of the aneurysm, and the hydrogel of the invention is delivered through the catheter into the aneurysm, where the hydrogel becomes more viscous upon reaching body temperature, or upon exposure to bodily fluids.
  • the hydrogel can be imaged by common fluoroscopic techniques to allow the physician to monitor the treatment of the aneurysm.
  • the hydrogel preferably further crosslinks to solidify to block blood flow into the aneurysm, and the one or more therapeutic agents carried by the hydrogel gradually diffuse and disperse from the hydrogel into the aneurysm, to promote the growth of a cellular layer across the neck of the aneurysm.

Abstract

The hydrogel for the treatment of aneurysms acts as a carrier for both a radiopaque agent allowing the hydrogel to be visualized under fluoroscopy and a therapeutic agent such as one or more human growth factors. The hydrogel is delivered through a catheter into the aneurysm, where the hydrogel becomes more viscous upon reaching body temperature, or upon exposure to bodily fluids, to block blood flow into the aneurysm. In addition to stopping blood flow into the aneurysm, the delivery of human growth factors to the aneurysm site promotes the growth of a cellular layer across the neck of the aneurysm. The hydrogel may be of a type that dissolves over time or one which remains as a permanent occlusive agent within the aneurysm.

Description

    RELATED APPLICATIONS
  • This is a continuation of Ser. No. 09/641,985, filed Aug. 17, 2000, which is a continuation of Ser. No. 09/071,250 filed May 1, 1998, now U.S. Pat. No. 6,113,629.[0001]
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0002]
  • This invention relates generally to treatment of vascular aneurysms, and more particularly concerns the use of hydrogels for use in occluding aneurysms and in controlled drug delivery for treatment of aneurysms. [0003]
  • 2. Description of Related Art [0004]
  • Aneurysms have been traditionally treated with externally placed clips, or internally by detachable vasoocclusive balloons or an embolus generating vasoocclusive device such as one or more vasoocclusive coils. The delivery of such vasoocclusive devices can be accomplished by a variety of means, including via a catheter in which the device is pushed through the catheter by a pusher to deploy the device. The vasoocclusive devices can be produced in such a way that they will pass through the lumen of a catheter in a linear shape and take on a complex shape as originally formed after being deployed into the area of interest, such as an aneurysm. In current techniques, the vasoocclusive devices take the form of spiral wound wires that can take more complex three dimensional shapes as they are inserted into the area to be treated. By using materials that are highly flexible, or even super-elastic and relatively small in diameter, the wires can be installed in a micro-catheter in a relatively linear configuration and assume a more complex shape as it is forced from the distal end of the catheter. [0005]
  • Adhesives that have been introduced to help heal aneurysms include cyanoacrylates, gelatin/resorcinol/formol, mussel adhesive protein and autologous fibrinogen adhesive. Fibrin gels have also been used as sealants and adhesives in surgery, and hydrogels have been used as sealants for bleeding organs, and to create tissue supports for the treatment of vascular disease by the formation of shaped articles to serve a mechanical function. Catheters have commonly been used to introduce such therapeutic agents locally at diseased occluded regions of the vasculature to promote vessel healing. Typically a polymeric paving and sealing material in the form of a monomer solution, prepolymer solution, or as a preformed or partially preformed polymeric product, is introduced into the lumen of the blood vessel and positioned at the point of a stenosis. The polymeric material typically can incorporate additional therapeutic agents such as drugs, drug producing cells, cell regeneration factors, and progenitor cells either of the same type as the vascular tissue of the aneurysm, or histologically different to accelerate the healing process. [0006]
  • Hydrogels have also been used to form expanding, swelling stents, and as space-fillers for treatment of vascular aneurysms in a manner similar to other types of mechanical, embolus generating vasoocclusive devices. In one such procedure, an aneurysm is treated by inserting a stent formed of a hydrogel material into the vessel, and then hydrating and expanding the hydrogel material until the stent occludes the vascular wall, sealing it from the parent vessel. Biodegradable hydrogels have also been used as controlled-release carriers for biologically active materials such as hormones, enzymes, antibiotics, antineoplastic agents, and cell suspensions. [0007]
  • From the above, it can be seen that vasoocclusive devices and materials and their deployment systems provide valuable treatments for diseased vascular regions. However, there remain important limitations in the technology presently available, since treating an aneurysm with adhesive or occluding the aneurysm with a stent may not be completely effective in healing the vascular damage. Furthermore, when an embolus generating vasoocclusive device or space-filling device such as a vasoocclusive coil is used to treat an aneurysm, the ability to treat the aneurysm depends upon whether the embolus generating vasoocclusive device can migrate out of the aneurysm through the neck of the aneurysm. It would therefore be desirable to provide a method for sealing off the neck of an aneurysm or all of the aneurysm, either in addition to or as an alternative to the introduction of a vasoocclusive device in the aneurysm, in order to prevent the danger of migration of an embolus generating device out of the aneurysm, to avoid the danger to a patient from the bursting of the aneurysm, and to promote healing of the diseased vasculature, in a manner that can be visualized under fluoroscopy. The present invention meets these and other needs. [0008]
  • SUMMARY OF THE INVENTION
  • The present invention solves these and other problems by providing, in its broadest aspect, an improved method for treating an aneurysm by delivering a hydrogel carrying growth factors to promote cellular growth across the neck of the aneurysm, to eliminate and heal the aneurysm with the body's own cellular growth. In addition to delivering the growth factor, the hydrogel acts as an embolic agent blocking the flow of blood into the aneurysm and eliminating the chance for hemorrhage, and can be used either separately, or in combination with other occlusive, embolus generating devices in treatment of aneurysms. [0009]
  • Briefly, and in general terms, a presently preferred embodiment of the present invention provides for a method for the treatment of aneurysms non-mechanically, through the delivery of human growth factors and/or gene therapy to the site of an aneurysm. The invention utilizes a hydrogel that acts as a carrier for both a radiopaque agent allowing the hydrogel to be visualized under fluoroscopy and a therapeutic agent such as one or more human growth factors. The hydrogel is delivered through a catheter into the aneurysm, where, in one currently preferred embodiment, the hydrogel becomes more viscous upon reaching body temperature, or upon exposure to bodily fluids. In our presently preferred embodiment, the hydrogel is constituted so as to remain a liquid at temperatures below about 37° C., to thereby facilitate the placement and retention of the gel and gel contained agents within the aneurysm. The hydrogel preferably then solidifies to block blood flow into the aneurysm. In addition to stopping blood flow into the aneurysm, the delivery of human growth factors to the aneurysm site promotes the growth of a cellular layer across the neck of the aneurysm. The hydrogel may be of a type that dissolves over time or one which remains as a permanent occlusive agent within the aneurysm. [0010]
  • These and other aspects and advantages of the invention will become apparent from the following detailed description.[0011]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Treatment of an aneurysm by sealing it with adhesive, blocking it with a stent, or placement of a vasoocclusive device to occlude it may not be completely effective in healing the vascular damage. A vasoocclusive or space-filling device placed within an aneurysm can also migrate out of the aneurysm through the neck of the aneurysm. [0012]
  • The invention accordingly provides for a hydrogel that acts as a carrier for both a radiopaque agent allowing the hydrogel to be visualized under fluoroscopy and a therapeutic agent such as one or more human growth factors. As used in this application, the term “hydrogel” refers to a broad class of polymeric materials that have an affinity for water and typically swell in water, but which do not necessarily dissolve in water. In general, hydrogels are formed by polymerization and crosslinking of a hydrophilic monomer in an aqueous solution to cause the solution to gel. In a presently preferred embodiment, the hydrogel can be constituted to be liquid at a temperature below body temperature and to gel at body temperature so that the gel can be easily introduced into the aneurysm, but rapidly gels in the space to occlude at least a portion of the aneurysm. [0013]
  • The hydrogel of the present invention can be one or more hydrogels selected from organic gels and inorganic gels. Organic gels from which the hydrogel of the invention can be selected include, by way of example and not by way of limitation, gels formed from polysaccharides and mucopolysaccharides including, but not limited to hyaluronic acid, dextran, heparin sulfate, chondroitin sulfate, heparin, agar, starch, and alginate; polyaminoacids; proteins that support cell growth and healing, including but not limited to fibronectin, gelatin, collagen, fibrin, pectins, albumin, ovalbumin, and polyamino acids; collagen-hydroxyethyl-methacrylate (HEMA); polyphosphazines; polyphosphoesters; polyethylene glycol; polyethylene oxide; polyvinyl alcohol; polyvinylpyrrolidone; polyethyloxazoline; polyethylene oxide-co-polypropyleneoxide block copolymers; PGA-PEG-PGA block copolymers; PGA-PEG diblock copolymers; acrylates, including but not limited to diacrylates, oligoacrylates, methacrylates, dimethacrylates and oligomethoacrylates; PEGoligoglycolylacrylates, such as described in U.S. Pat. No. 5,626,863, which is incorporated by reference herein; carboxy alkyl celluloses, including but not limited to carboxymethyl cellulose; partially oxidized cellulose; biodegradable polymers including but not limited to polymers and oligomers of glycolide, lactide, polylactic acid, polyesters of α-hydroxy acids, including lactic acid and glycolic acid, such as the poly(α-hydroxy) acids including polyglycolic acid, poly-DL-lactic, poly-L-lactic acid, and terpolymers of DL-lactide and glycolide; ε-caprolactone and ε-caprolactone copolymerized with polyesters; polylactones and polycaprolactones including poly(ε-caprolactone), poly(δ-valerolactone) and poly(gamma-butyrolactone); polyanhydrides; polyorthoesters; other hydroxy acids; polydioxanone; and other biologically degradable polymers that are non-toxic or are present as metabolites in the body; as well as non-degradable polymers such as styrene and acrolein. [0014]
  • Collagen-hydroxyethyl-methacrylate (HEMA) hydrogel polymer is commonly formed from a gelled and crosslinked hydrophilic monomer solution to form a three dimensional polymeric meshwork anchoring macromolecules. Crosslinking of the hydrophilic monomer solution can be accomplished by free radical polymerization of hydrophilic monomers, such as hydroxyethyl-methacrylate (HEMA). Hydrogel polymers formed by free radical polymerization of monomer solutions require crosslinking to form the three dimensional network to gel the aqueous solution. HEMA monomer solutions typically can be crosslinked to gel by dimethacrylate, although other crosslinking agents, such as ethylene glycol dimethacrylate or methylmethacrylate, can also be used during polymerization to modify the hydrogel. A wide variety of other hydrophilic monomers may also be suitable for purposes of the invention. [0015]
  • Inorganic gels from which the hydrogel of the invention can be selected include, by way of example and not by way of limitation, silica, alumina, and ferric oxide. In addition, an adhesive can be introduced via a catheter to initially help seal the neck of an aneurysm, and can be selected from the group consisting of cyanoacrylates, gelatin/resorcinol/formol, mussel adhesive protein and autologous fibrinogen adhesive. It should thus be apparent that the hydrogel of the invention can be of a type that dissolves over time or one that remains as a permanent occlusive agent within the aneurysm. [0016]
  • The radiopaque material that is incorporated into the hydrogel of the invention is preferably fine particles of a selected radiopaque metal, such as gold, platinum, tantalum or the like. The therapeutic agent incorporated into the hydrogel of the invention is preferably one or more human growth modulating factors such as interleukins, transformation growth factor b, gene therapy agents, congeners of platelet derived growth factor, and monoclonal antibodies directed against growth factors, drugs, drug producing cells, cell regeneration factors, progenitor cells of the same type as those from the aneurysm, and progenitor cells that are histologically different from those of the aneurysm, to accelerate the healing process. The therapeutic agent can be administered in the form of fine particles mixed with the polymer so that it gels within the aneurysm to concentrate the effect of the therapeutic agent within the aneurysm. [0017]
  • According to the method of the invention, a catheter is typically positioned in a parent vessel of the aneurysm, and the hydrogel of the invention is delivered through the catheter into the aneurysm, where the hydrogel becomes more viscous upon reaching body temperature, or upon exposure to bodily fluids. During introduction of the hydrogel into the aneurysm, the hydrogel can be imaged by common fluoroscopic techniques to allow the physician to monitor the treatment of the aneurysm. Once introduced into the aneurysm, the hydrogel preferably further crosslinks to solidify to block blood flow into the aneurysm, and the one or more therapeutic agents carried by the hydrogel gradually diffuse and disperse from the hydrogel into the aneurysm, to promote the growth of a cellular layer across the neck of the aneurysm. [0018]
  • It will be apparent from the foregoing that while particular forms of the invention have been illustrated and described, various modifications can be made without departing from the spirit and scope of the invention. Accordingly, it is not intended that the invention be limited, except as by the appended claims. [0019]

Claims (9)

What is claimed is:
1. A method for treating an aneurysm, the aneurysm having a dome portion and a neck opening into a parent vessel, the method comprising the steps of:
introducing an occlusive, embolus generating device into the aneurysm; and
delivering a hydrogel into the dome portion of the aneurysm and adjacent to the neck of the aneurysm, the hydrogel containing a radiopaque material and a growth factor that is released from the hydrogel in the aneurysm to promote cellular growth across the neck of the aneurysm.
2. The method of claim 1, wherein said hydrogel is selected from the group consisting of organic gels and inorganic gels.
3. The method of claim 1, wherein said hydrogel is selected from the group consisting of biodegradable polymers and non-degradable polymers.
4. The method of claim 1, wherein said hydrogel is selected from the group consisting of gels formed from polysaccharides, mucopolysaccharides, polyaminoacids, proteins that support cell growth and healing, polyphosphazines, polyphosphoesters, polyethylene glycol, polyethylene oxide, polyvinyl alcohol, polyvinylpyrrolidone, polyethyloxazoline, polyethylene oxide-co-polypropyleneoxide block copolymers, PGA-PEG-PGA block copolymers, PGA-PEG diblock copolymers, acrylates, carboxy alkyl celluloses, partially oxidized cellulose, polymers and oligomers of glycolide and lactide, polylactic acid, polyesters of α-hydroxy acids, polylactones, polycaprolactones, polyanhydrides, polyorthoesters, polydioxanone, styrene, acrolein and combinations thereof.
5. The method of claim 1, wherein said hydrogel is selected from the group consisting of gels formed from hyaluronic acid, dextran, heparin sulfate, chondroitin sulfate, heparin, agar, starch, alginate, fibronectin, gelatin, collagen, fibrin, pectins, albumin, ovalbumin, collagen-hydroxyethyl-methacrylate (HEMA); diacrylates, oligoacrylates, methacrylates, dimethacrylates, oligomethoacrylates, PEG-oligoglycolylacrylates, carboxymethyl cellulose, polyesters of lactic acid, polyesters of glycolic acid, poly(α-hydroxy) acids including polyglycolic acid, poly-DL-lactic, poly-L-lactic acid, and terpolymers of DL-lactide and glycolide, ε-caprolactone, ε-caprolactone copolymerized with polyesters, poly(ε-caprolactone), poly(δ-valerolactone), poly(gamma-butyrolactone), and combinations thereof.
6. The method of claim 1, wherein said hydrogel is selected from the group consisting of gels formed from silica, alumina, ferric oxide, and combinations thereof.
7. The method of claim 1, wherein said radiopaque material is selected from the group consisting of fine particles of gold, platinum, tantalum and combinations thereof.
8. The method of claim 1, wherein said growth factor is selected from the group consisting of interleukins, transformation growth factor b, congeners of platelet derived growth factor, and monoclonal antibodies directed against growth factors, drugs, drug producing cells, cell regeneration factors, progenitor cells of the same type as those from the aneurysm, and progenitor cells that are histologically different from those of the aneurysm.
9. The method of claim 1, wherein said hydrogel is constituted to be a liquid at a temperature below body temperature and gels at body temperature.
US10/263,387 1998-05-01 2002-10-02 Hydrogel for the therapeutic treatment of aneurysms Abandoned US20030100942A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/263,387 US20030100942A1 (en) 1998-05-01 2002-10-02 Hydrogel for the therapeutic treatment of aneurysms

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/071,250 US6113629A (en) 1998-05-01 1998-05-01 Hydrogel for the therapeutic treatment of aneurysms
US64198500A 2000-08-17 2000-08-17
US10/263,387 US20030100942A1 (en) 1998-05-01 2002-10-02 Hydrogel for the therapeutic treatment of aneurysms

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US64198500A Continuation 1998-05-01 2000-08-17

Publications (1)

Publication Number Publication Date
US20030100942A1 true US20030100942A1 (en) 2003-05-29

Family

ID=22100190

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/071,250 Expired - Lifetime US6113629A (en) 1998-05-01 1998-05-01 Hydrogel for the therapeutic treatment of aneurysms
US10/263,387 Abandoned US20030100942A1 (en) 1998-05-01 2002-10-02 Hydrogel for the therapeutic treatment of aneurysms

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/071,250 Expired - Lifetime US6113629A (en) 1998-05-01 1998-05-01 Hydrogel for the therapeutic treatment of aneurysms

Country Status (7)

Country Link
US (2) US6113629A (en)
EP (1) EP1100541B1 (en)
JP (1) JP5507028B2 (en)
AU (1) AU3673499A (en)
DE (1) DE69927823T2 (en)
ES (1) ES2251190T3 (en)
WO (1) WO1999056783A1 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040215172A1 (en) * 2003-04-25 2004-10-28 Jack Chu In situ blood vessel and aneurysm treatment
US20080317818A1 (en) * 2005-09-09 2008-12-25 May Griffith Interpenetrating Networks, and Related Methods and Compositions
US20090324722A1 (en) * 2004-09-22 2009-12-31 Elisseeff Jennifer H Cartilage filling device
CN103113579A (en) * 2013-02-21 2013-05-22 华东理工大学 Polyglutamic acid derivative as well as hydrogel and preparation method of polyglutamic acid derivative
US9259228B2 (en) 2006-06-15 2016-02-16 Microvention, Inc. Embolization device constructed from expansile polymer
WO2016055650A1 (en) * 2014-10-10 2016-04-14 Dublin City University A gallium-based glass composition
US9351993B2 (en) 2012-06-14 2016-05-31 Microvention, Inc. Polymeric treatment compositions
US9381278B2 (en) 2012-04-18 2016-07-05 Microvention, Inc. Embolic devices
US9456823B2 (en) 2011-04-18 2016-10-04 Terumo Corporation Embolic devices
US9486221B2 (en) 2007-12-21 2016-11-08 Microvision, Inc. Hydrogel filaments for biomedical uses
US9655989B2 (en) 2012-10-15 2017-05-23 Microvention, Inc. Polymeric treatment compositions
US9993252B2 (en) 2009-10-26 2018-06-12 Microvention, Inc. Embolization device constructed from expansile polymer
US10092663B2 (en) 2014-04-29 2018-10-09 Terumo Corporation Polymers
US10124090B2 (en) 2014-04-03 2018-11-13 Terumo Corporation Embolic devices
US10226533B2 (en) 2014-04-29 2019-03-12 Microvention, Inc. Polymer filaments including pharmaceutical agents and delivering same
US10368874B2 (en) 2016-08-26 2019-08-06 Microvention, Inc. Embolic compositions
US10576182B2 (en) 2017-10-09 2020-03-03 Microvention, Inc. Radioactive liquid embolic
US10639396B2 (en) 2015-06-11 2020-05-05 Microvention, Inc. Polymers

Families Citing this family (297)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8172897B2 (en) 1997-04-15 2012-05-08 Advanced Cardiovascular Systems, Inc. Polymer and metal composite implantable medical devices
US6240616B1 (en) 1997-04-15 2001-06-05 Advanced Cardiovascular Systems, Inc. Method of manufacturing a medicated porous metal prosthesis
US10028851B2 (en) 1997-04-15 2018-07-24 Advanced Cardiovascular Systems, Inc. Coatings for controlling erosion of a substrate of an implantable medical device
US6270464B1 (en) * 1998-06-22 2001-08-07 Artemis Medical, Inc. Biopsy localization method and device
US6113629A (en) * 1998-05-01 2000-09-05 Micrus Corporation Hydrogel for the therapeutic treatment of aneurysms
US6165193A (en) * 1998-07-06 2000-12-26 Microvention, Inc. Vascular embolization with an expansible implant
US6818018B1 (en) * 1998-08-14 2004-11-16 Incept Llc In situ polymerizable hydrogels
US7128073B1 (en) * 1998-11-06 2006-10-31 Ev3 Endovascular, Inc. Method and device for left atrial appendage occlusion
US20020065546A1 (en) * 1998-12-31 2002-05-30 Machan Lindsay S. Stent grafts with bioactive coatings
US20050171594A1 (en) * 1998-12-31 2005-08-04 Angiotech International Ag Stent grafts with bioactive coatings
US6719805B1 (en) * 1999-06-09 2004-04-13 C. R. Bard, Inc. Devices and methods for treating tissue
US6312421B1 (en) * 1999-07-23 2001-11-06 Neurovasx, Inc. Aneurysm embolization material and device
US6759054B2 (en) 1999-09-03 2004-07-06 Advanced Cardiovascular Systems, Inc. Ethylene vinyl alcohol composition and coating
US7682647B2 (en) * 1999-09-03 2010-03-23 Advanced Cardiovascular Systems, Inc. Thermal treatment of a drug eluting implantable medical device
US20040029952A1 (en) * 1999-09-03 2004-02-12 Yung-Ming Chen Ethylene vinyl alcohol composition and coating
US6790228B2 (en) 1999-12-23 2004-09-14 Advanced Cardiovascular Systems, Inc. Coating for implantable devices and a method of forming the same
US20070032853A1 (en) 2002-03-27 2007-02-08 Hossainy Syed F 40-O-(2-hydroxy)ethyl-rapamycin coated stent
US7807211B2 (en) 1999-09-03 2010-10-05 Advanced Cardiovascular Systems, Inc. Thermal treatment of an implantable medical device
US6602261B2 (en) 1999-10-04 2003-08-05 Microvention, Inc. Filamentous embolic device with expansile elements
US6238403B1 (en) 1999-10-04 2001-05-29 Microvention, Inc. Filamentous embolic device with expansible elements
US6908624B2 (en) * 1999-12-23 2005-06-21 Advanced Cardiovascular Systems, Inc. Coating for implantable devices and a method of forming the same
JP4474010B2 (en) * 2000-03-15 2010-06-02 アークレイ株式会社 Specimen with solid component separation ability
US6719778B1 (en) 2000-03-24 2004-04-13 Endovascular Technologies, Inc. Methods for treatment of aneurysms
US6527801B1 (en) 2000-04-13 2003-03-04 Advanced Cardiovascular Systems, Inc. Biodegradable drug delivery material for stent
US7875283B2 (en) 2000-04-13 2011-01-25 Advanced Cardiovascular Systems, Inc. Biodegradable polymers for use with implantable medical devices
US8109994B2 (en) 2003-01-10 2012-02-07 Abbott Cardiovascular Systems, Inc. Biodegradable drug delivery material for stent
US7682648B1 (en) 2000-05-31 2010-03-23 Advanced Cardiovascular Systems, Inc. Methods for forming polymeric coatings on stents
US6660247B1 (en) 2000-06-23 2003-12-09 Battelle Memorial Institute Multiple stimulus reversible hydrogels
US6451373B1 (en) * 2000-08-04 2002-09-17 Advanced Cardiovascular Systems, Inc. Method of forming a therapeutic coating onto a surface of an implantable prosthesis
US8313504B2 (en) 2000-09-18 2012-11-20 Cordis Corporation Foam matrix embolization device
US6723108B1 (en) * 2000-09-18 2004-04-20 Cordis Neurovascular, Inc Foam matrix embolization device
US6953560B1 (en) 2000-09-28 2005-10-11 Advanced Cardiovascular Systems, Inc. Barriers for polymer-coated implantable medical devices and methods for making the same
US7807210B1 (en) 2000-10-31 2010-10-05 Advanced Cardiovascular Systems, Inc. Hemocompatible polymers on hydrophobic porous polymers
US6770721B1 (en) * 2000-11-02 2004-08-03 Surface Logix, Inc. Polymer gel contact masks and methods and molds for making same
US6824559B2 (en) 2000-12-22 2004-11-30 Advanced Cardiovascular Systems, Inc. Ethylene-carboxyl copolymers as drug delivery matrices
US7504125B1 (en) 2001-04-27 2009-03-17 Advanced Cardiovascular Systems, Inc. System and method for coating implantable devices
US6780424B2 (en) * 2001-03-30 2004-08-24 Charles David Claude Controlled morphologies in polymer drug for release of drugs from polymer films
US6712845B2 (en) 2001-04-24 2004-03-30 Advanced Cardiovascular Systems, Inc. Coating for a stent and a method of forming the same
US20030004533A1 (en) * 2001-05-04 2003-01-02 Concentric Medical Bioactive polymer vaso-occlusive device
US20020193813A1 (en) * 2001-05-04 2002-12-19 Concentric Medical Hydrogel filament vaso-occlusive device
US20030004568A1 (en) * 2001-05-04 2003-01-02 Concentric Medical Coated combination vaso-occlusive device
US6656506B1 (en) 2001-05-09 2003-12-02 Advanced Cardiovascular Systems, Inc. Microparticle coated medical device
WO2002090540A1 (en) * 2001-05-10 2002-11-14 The Salk Institute For Biological Studies Ethylene insensitive plants
KR100444944B1 (en) * 2001-05-24 2004-08-18 선바이오(주) Polyethylene glycol hydrogel for bioadhesive
CA2449055C (en) 2001-05-29 2010-03-02 Microvention, Inc. Method of manufacturing expansile filamentous embolization devices
US6743462B1 (en) 2001-05-31 2004-06-01 Advanced Cardiovascular Systems, Inc. Apparatus and method for coating implantable devices
US6695920B1 (en) 2001-06-27 2004-02-24 Advanced Cardiovascular Systems, Inc. Mandrel for supporting a stent and a method of using the mandrel to coat a stent
US7175873B1 (en) 2001-06-27 2007-02-13 Advanced Cardiovascular Systems, Inc. Rate limiting barriers for implantable devices and methods for fabrication thereof
US7247313B2 (en) * 2001-06-27 2007-07-24 Advanced Cardiovascular Systems, Inc. Polyacrylates coatings for implantable medical devices
US8741378B1 (en) 2001-06-27 2014-06-03 Advanced Cardiovascular Systems, Inc. Methods of coating an implantable device
US7246321B2 (en) * 2001-07-13 2007-07-17 Anoto Ab Editing data
US20030014075A1 (en) * 2001-07-16 2003-01-16 Microvention, Inc. Methods, materials and apparatus for deterring or preventing endoleaks following endovascular graft implanation
US7572288B2 (en) * 2001-07-20 2009-08-11 Microvention, Inc. Aneurysm treatment device and method of use
US8715312B2 (en) * 2001-07-20 2014-05-06 Microvention, Inc. Aneurysm treatment device and method of use
US8252040B2 (en) * 2001-07-20 2012-08-28 Microvention, Inc. Aneurysm treatment device and method of use
US7682669B1 (en) 2001-07-30 2010-03-23 Advanced Cardiovascular Systems, Inc. Methods for covalently immobilizing anti-thrombogenic material into a coating on a medical device
US6592608B2 (en) * 2001-12-07 2003-07-15 Biopsy Sciences, Llc Bioabsorbable sealant
US8303651B1 (en) 2001-09-07 2012-11-06 Advanced Cardiovascular Systems, Inc. Polymeric coating for reducing the rate of release of a therapeutic substance from a stent
US7285304B1 (en) 2003-06-25 2007-10-23 Advanced Cardiovascular Systems, Inc. Fluid treatment of a polymeric coating on an implantable medical device
US7989018B2 (en) 2001-09-17 2011-08-02 Advanced Cardiovascular Systems, Inc. Fluid treatment of a polymeric coating on an implantable medical device
US6863683B2 (en) 2001-09-19 2005-03-08 Abbott Laboratoris Vascular Entities Limited Cold-molding process for loading a stent onto a stent delivery system
US6753071B1 (en) 2001-09-27 2004-06-22 Advanced Cardiovascular Systems, Inc. Rate-reducing membrane for release of an agent
US7223282B1 (en) 2001-09-27 2007-05-29 Advanced Cardiovascular Systems, Inc. Remote activation of an implantable device
US20030093111A1 (en) * 2001-10-26 2003-05-15 Concentric Medical Device for vaso-occlusion and interventional therapy
US7585516B2 (en) * 2001-11-12 2009-09-08 Advanced Cardiovascular Systems, Inc. Coatings for drug delivery devices
US20060292206A1 (en) 2001-11-26 2006-12-28 Kim Steven W Devices and methods for treatment of vascular aneurysms
KR100515035B1 (en) * 2001-12-27 2005-09-15 한국과학기술원 Biodegradable Temperature-Sensitive Star-shaped Block Copolymer for Drug Delivery System
US6709514B1 (en) 2001-12-28 2004-03-23 Advanced Cardiovascular Systems, Inc. Rotary coating apparatus for coating implantable medical devices
US20030171773A1 (en) * 2002-03-06 2003-09-11 Carrison Harold F. Methods for aneurysm repair
US7022334B1 (en) 2002-03-20 2006-04-04 Advanced Cardiovascular Systems, Inc. Therapeutic composition and a method of coating implantable medical devices
US7919075B1 (en) 2002-03-20 2011-04-05 Advanced Cardiovascular Systems, Inc. Coatings for implantable medical devices
US6953465B2 (en) * 2002-03-25 2005-10-11 Concentric Medical, Inc. Containers and methods for delivering vaso-occluding filaments and particles
US7422568B2 (en) * 2002-04-01 2008-09-09 The Johns Hopkins University Device, systems and methods for localized heating of a vessel and/or in combination with MR/NMR imaging of the vessel and surrounding tissue
US20030199887A1 (en) * 2002-04-23 2003-10-23 David Ferrera Filamentous embolization device and method of use
SE522473C2 (en) 2002-06-20 2004-02-10 Alfa Laval Corp Ab A method and apparatus for purifying crankcase gas
US8506617B1 (en) 2002-06-21 2013-08-13 Advanced Cardiovascular Systems, Inc. Micronized peptide coated stent
US7217426B1 (en) 2002-06-21 2007-05-15 Advanced Cardiovascular Systems, Inc. Coatings containing polycationic peptides for cardiovascular therapy
US7056523B1 (en) 2002-06-21 2006-06-06 Advanced Cardiovascular Systems, Inc. Implantable medical devices incorporating chemically conjugated polymers and oligomers of L-arginine
US7033602B1 (en) 2002-06-21 2006-04-25 Advanced Cardiovascular Systems, Inc. Polycationic peptide coatings and methods of coating implantable medical devices
US7794743B2 (en) 2002-06-21 2010-09-14 Advanced Cardiovascular Systems, Inc. Polycationic peptide coatings and methods of making the same
US7294329B1 (en) * 2002-07-18 2007-11-13 Advanced Cardiovascular Systems, Inc. Poly(vinyl acetal) coatings for implantable medical devices
US7622146B2 (en) * 2002-07-18 2009-11-24 Advanced Cardiovascular Systems, Inc. Rate limiting barriers for implantable devices and methods for fabrication thereof
US8273100B2 (en) 2002-07-31 2012-09-25 Microvention, Inc. Three element coaxial vaso-occlusive device
US7598224B2 (en) * 2002-08-20 2009-10-06 Biosurface Engineering Technologies, Inc. Dual chain synthetic heparin-binding growth factor analogs
US8227411B2 (en) * 2002-08-20 2012-07-24 BioSurface Engineering Technologies, Incle FGF growth factor analogs
US7363074B1 (en) * 2002-08-20 2008-04-22 Advanced Cardiovascular Systems, Inc. Coatings comprising self-assembled molecular structures and a method of delivering a drug using the same
US20040044391A1 (en) * 2002-08-29 2004-03-04 Stephen Porter Device for closure of a vascular defect and method of treating the same
US20040054104A1 (en) * 2002-09-05 2004-03-18 Pacetti Stephen D. Coatings for drug delivery devices comprising modified poly(ethylene-co-vinyl alcohol)
US7732535B2 (en) * 2002-09-05 2010-06-08 Advanced Cardiovascular Systems, Inc. Coating for controlled release of drugs from implantable medical devices
US20040054413A1 (en) 2002-09-16 2004-03-18 Howmedica Osteonics Corp. Radiovisible hydrogel intervertebral disc nucleus
US7201935B1 (en) 2002-09-17 2007-04-10 Advanced Cardiovascular Systems, Inc. Plasma-generated coatings for medical devices and methods for fabricating thereof
US7438722B1 (en) 2002-09-20 2008-10-21 Advanced Cardiovascular Systems, Inc. Method for treatment of restenosis
US8673333B2 (en) * 2002-09-25 2014-03-18 The Johns Hopkins University Cross-linked polymer matrices, and methods of making and using same
US7232573B1 (en) * 2002-09-26 2007-06-19 Advanced Cardiovascular Systems, Inc. Stent coatings containing self-assembled monolayers
US8202530B2 (en) * 2002-09-27 2012-06-19 Advanced Cardiovascular Systems, Inc. Biocompatible coatings for stents
US8337937B2 (en) * 2002-09-30 2012-12-25 Abbott Cardiovascular Systems Inc. Stent spin coating method
US7404979B1 (en) * 2002-09-30 2008-07-29 Advanced Cardiovascular Systems Inc. Spin coating apparatus and a method for coating implantable devices
US7087263B2 (en) * 2002-10-09 2006-08-08 Advanced Cardiovascular Systems, Inc. Rare limiting barriers for implantable medical devices
US7481821B2 (en) 2002-11-12 2009-01-27 Thomas J. Fogarty Embolization device and a method of using the same
US6896965B1 (en) 2002-11-12 2005-05-24 Advanced Cardiovascular Systems, Inc. Rate limiting barriers for implantable devices
US8034361B2 (en) * 2002-11-12 2011-10-11 Advanced Cardiovascular Systems, Inc. Stent coatings incorporating nanoparticles
US7022372B1 (en) 2002-11-12 2006-04-04 Advanced Cardiovascular Systems, Inc. Compositions for coating implantable medical devices
US20040111112A1 (en) * 2002-11-20 2004-06-10 Hoffmann Gerard Von Method and apparatus for retaining embolic material
US6982004B1 (en) * 2002-11-26 2006-01-03 Advanced Cardiovascular Systems, Inc. Electrostatic loading of drugs on implantable medical devices
US7211150B1 (en) 2002-12-09 2007-05-01 Advanced Cardiovascular Systems, Inc. Apparatus and method for coating and drying multiple stents
US7776926B1 (en) 2002-12-11 2010-08-17 Advanced Cardiovascular Systems, Inc. Biocompatible coating for implantable medical devices
US7758880B2 (en) * 2002-12-11 2010-07-20 Advanced Cardiovascular Systems, Inc. Biocompatible polyacrylate compositions for medical applications
US7074276B1 (en) 2002-12-12 2006-07-11 Advanced Cardiovascular Systems, Inc. Clamp mandrel fixture and a method of using the same to minimize coating defects
US8435550B2 (en) 2002-12-16 2013-05-07 Abbot Cardiovascular Systems Inc. Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device
US7758881B2 (en) 2004-06-30 2010-07-20 Advanced Cardiovascular Systems, Inc. Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device
US20060002968A1 (en) 2004-06-30 2006-01-05 Gordon Stewart Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders
AU2003300022A1 (en) * 2002-12-30 2004-07-29 Angiotech International Ag Silk-containing stent graft
US20040153025A1 (en) * 2003-02-03 2004-08-05 Seifert Paul S. Systems and methods of de-endothelialization
JP2004261218A (en) * 2003-02-07 2004-09-24 Yasuhiko Tabata Blood vessel blocking composition
US20040260382A1 (en) 2003-02-12 2004-12-23 Fogarty Thomas J. Intravascular implants and methods of using the same
US7255891B1 (en) * 2003-02-26 2007-08-14 Advanced Cardiovascular Systems, Inc. Method for coating implantable medical devices
US6926919B1 (en) 2003-02-26 2005-08-09 Advanced Cardiovascular Systems, Inc. Method for fabricating a coating for a medical device
US7563483B2 (en) 2003-02-26 2009-07-21 Advanced Cardiovascular Systems Inc. Methods for fabricating a coating for implantable medical devices
US8715771B2 (en) * 2003-02-26 2014-05-06 Abbott Cardiovascular Systems Inc. Coated stent and method of making the same
US7288609B1 (en) * 2003-03-04 2007-10-30 Advanced Cardiovascular Systems, Inc. Coatings for drug delivery devices based on poly (orthoesters)
MXPA05010002A (en) * 2003-03-24 2006-03-10 Biosphere Medical Inc Temporary embolization using inverse thermosensitive polymers.
US8048407B2 (en) * 2003-04-24 2011-11-01 Brent Vernon In situ gelling self-reactive materials for embolization
US8791171B2 (en) 2003-05-01 2014-07-29 Abbott Cardiovascular Systems Inc. Biodegradable coatings for implantable medical devices
US7563454B1 (en) * 2003-05-01 2009-07-21 Advanced Cardiovascular Systems, Inc. Coatings for implantable medical devices
US7279174B2 (en) 2003-05-08 2007-10-09 Advanced Cardiovascular Systems, Inc. Stent coatings comprising hydrophilic additives
US7323209B1 (en) * 2003-05-15 2008-01-29 Advanced Cardiovascular Systems, Inc. Apparatus and method for coating stents
CA2525792C (en) 2003-05-15 2015-10-13 Biomerix Corporation Reticulated elastomeric matrices, their manufacture and use in implantable devices
US20050118344A1 (en) 2003-12-01 2005-06-02 Pacetti Stephen D. Temperature controlled crimping
US7645504B1 (en) 2003-06-26 2010-01-12 Advanced Cardiovascular Systems, Inc. Coatings for implantable medical devices comprising hydrophobic and hydrophilic polymers
US7875285B1 (en) 2003-07-15 2011-01-25 Advanced Cardiovascular Systems, Inc. Medicated coatings for implantable medical devices having controlled rate of release
US20050015110A1 (en) 2003-07-18 2005-01-20 Fogarty Thomas J. Embolization device and a method of using the same
US7056591B1 (en) * 2003-07-30 2006-06-06 Advanced Cardiovascular Systems, Inc. Hydrophobic biologically absorbable coatings for drug delivery devices and methods for fabricating the same
US7169404B2 (en) * 2003-07-30 2007-01-30 Advanced Cardiovasular Systems, Inc. Biologically absorbable coatings for implantable devices and methods for fabricating the same
US7785512B1 (en) 2003-07-31 2010-08-31 Advanced Cardiovascular Systems, Inc. Method and system of controlled temperature mixing and molding of polymers with active agents for implantable medical devices
US7431959B1 (en) * 2003-07-31 2008-10-07 Advanced Cardiovascular Systems Inc. Method and system for irradiation of a drug eluting implantable medical device
US7645474B1 (en) 2003-07-31 2010-01-12 Advanced Cardiovascular Systems, Inc. Method and system of purifying polymers for use with implantable medical devices
WO2005013810A2 (en) * 2003-08-07 2005-02-17 University Of Florida Biodegradable embolic agents
US7441513B1 (en) 2003-09-26 2008-10-28 Advanced Cardiovascular Systems, Inc. Plasma-generated coating apparatus for medical devices and a method of coating deposition
US7198675B2 (en) 2003-09-30 2007-04-03 Advanced Cardiovascular Systems Stent mandrel fixture and method for selectively coating surfaces of a stent
US7318932B2 (en) * 2003-09-30 2008-01-15 Advanced Cardiovascular Systems, Inc. Coatings for drug delivery devices comprising hydrolitically stable adducts of poly(ethylene-co-vinyl alcohol) and methods for fabricating the same
US7704544B2 (en) * 2003-10-07 2010-04-27 Advanced Cardiovascular Systems, Inc. System and method for coating a tubular implantable medical device
CA2543255C (en) * 2003-10-22 2014-08-12 Encelle, Inc. Methods and compositions for regenerating connective tissue
US7700086B2 (en) * 2003-11-06 2010-04-20 Pluromed, Inc. Internal clamp for surgical procedures
US7329413B1 (en) 2003-11-06 2008-02-12 Advanced Cardiovascular Systems, Inc. Coatings for drug delivery devices having gradient of hydration and methods for fabricating thereof
WO2005044142A2 (en) * 2003-11-10 2005-05-19 Angiotech International Ag Intravascular devices and fibrosis-inducing agents
US7261946B2 (en) * 2003-11-14 2007-08-28 Advanced Cardiovascular Systems, Inc. Block copolymers of acrylates and methacrylates with fluoroalkenes
US9114198B2 (en) 2003-11-19 2015-08-25 Advanced Cardiovascular Systems, Inc. Biologically beneficial coatings for implantable devices containing fluorinated polymers and methods for fabricating the same
US8192752B2 (en) 2003-11-21 2012-06-05 Advanced Cardiovascular Systems, Inc. Coatings for implantable devices including biologically erodable polyesters and methods for fabricating the same
US7560492B1 (en) * 2003-11-25 2009-07-14 Advanced Cardiovascular Systems, Inc. Polysulfone block copolymers as drug-eluting coating material
US7807722B2 (en) 2003-11-26 2010-10-05 Advanced Cardiovascular Systems, Inc. Biobeneficial coating compositions and methods of making and using thereof
US20080109057A1 (en) * 2003-12-10 2008-05-08 Calabria Marie F Multiple point detacher system
US20070104752A1 (en) * 2003-12-10 2007-05-10 Lee Jeffrey A Aneurysm embolization material and device
US7435788B2 (en) 2003-12-19 2008-10-14 Advanced Cardiovascular Systems, Inc. Biobeneficial polyamide/polyethylene glycol polymers for use with drug eluting stents
US7763077B2 (en) 2003-12-24 2010-07-27 Biomerix Corporation Repair of spinal annular defects and annulo-nucleoplasty regeneration
US8309112B2 (en) * 2003-12-24 2012-11-13 Advanced Cardiovascular Systems, Inc. Coatings for implantable medical devices comprising hydrophilic substances and methods for fabricating the same
US20050165480A1 (en) * 2004-01-23 2005-07-28 Maybelle Jordan Endovascular treatment devices and methods
JP4895826B2 (en) 2004-02-20 2012-03-14 バイオサーフェス エンジニアリング テクノロジーズ,インク. Bone morphogenetic protein-2 positive modulator
US8685431B2 (en) 2004-03-16 2014-04-01 Advanced Cardiovascular Systems, Inc. Biologically absorbable coatings for implantable devices based on copolymers having ester bonds and methods for fabricating the same
US8551512B2 (en) 2004-03-22 2013-10-08 Advanced Cardiovascular Systems, Inc. Polyethylene glycol/poly(butylene terephthalate) copolymer coated devices including EVEROLIMUS
US20050214339A1 (en) 2004-03-29 2005-09-29 Yiwen Tang Biologically degradable compositions for medical applications
US8778014B1 (en) 2004-03-31 2014-07-15 Advanced Cardiovascular Systems, Inc. Coatings for preventing balloon damage to polymer coated stents
US8293890B2 (en) 2004-04-30 2012-10-23 Advanced Cardiovascular Systems, Inc. Hyaluronic acid based copolymers
US7820732B2 (en) 2004-04-30 2010-10-26 Advanced Cardiovascular Systems, Inc. Methods for modulating thermal and mechanical properties of coatings on implantable devices
US20050267510A1 (en) * 2004-05-26 2005-12-01 Nasser Razack Device for the endovascular treatment of intracranial aneurysms
US9561309B2 (en) 2004-05-27 2017-02-07 Advanced Cardiovascular Systems, Inc. Antifouling heparin coatings
US7563780B1 (en) 2004-06-18 2009-07-21 Advanced Cardiovascular Systems, Inc. Heparin prodrugs and drug delivery stents formed therefrom
US8568469B1 (en) 2004-06-28 2013-10-29 Advanced Cardiovascular Systems, Inc. Stent locking element and a method of securing a stent on a delivery system
US8241554B1 (en) 2004-06-29 2012-08-14 Advanced Cardiovascular Systems, Inc. Method of forming a stent pattern on a tube
US20050287184A1 (en) 2004-06-29 2005-12-29 Hossainy Syed F A Drug-delivery stent formulations for restenosis and vulnerable plaque
US7731890B2 (en) 2006-06-15 2010-06-08 Advanced Cardiovascular Systems, Inc. Methods of fabricating stents with enhanced fracture toughness
US8747879B2 (en) 2006-04-28 2014-06-10 Advanced Cardiovascular Systems, Inc. Method of fabricating an implantable medical device to reduce chance of late inflammatory response
US8747878B2 (en) 2006-04-28 2014-06-10 Advanced Cardiovascular Systems, Inc. Method of fabricating an implantable medical device by controlling crystalline structure
US8778256B1 (en) 2004-09-30 2014-07-15 Advanced Cardiovascular Systems, Inc. Deformation of a polymer tube in the fabrication of a medical article
US7971333B2 (en) 2006-05-30 2011-07-05 Advanced Cardiovascular Systems, Inc. Manufacturing process for polymetric stents
US8357391B2 (en) 2004-07-30 2013-01-22 Advanced Cardiovascular Systems, Inc. Coatings for implantable devices comprising poly (hydroxy-alkanoates) and diacid linkages
US7494665B1 (en) 2004-07-30 2009-02-24 Advanced Cardiovascular Systems, Inc. Polymers containing siloxane monomers
US9283099B2 (en) 2004-08-25 2016-03-15 Advanced Cardiovascular Systems, Inc. Stent-catheter assembly with a releasable connection for stent retention
US7648727B2 (en) 2004-08-26 2010-01-19 Advanced Cardiovascular Systems, Inc. Methods for manufacturing a coated stent-balloon assembly
US7244443B2 (en) 2004-08-31 2007-07-17 Advanced Cardiovascular Systems, Inc. Polymers of fluorinated monomers and hydrophilic monomers
US7229471B2 (en) 2004-09-10 2007-06-12 Advanced Cardiovascular Systems, Inc. Compositions containing fast-leaching plasticizers for improved performance of medical devices
US8110211B2 (en) 2004-09-22 2012-02-07 Advanced Cardiovascular Systems, Inc. Medicated coatings for implantable medical devices including polyacrylates
US8043553B1 (en) 2004-09-30 2011-10-25 Advanced Cardiovascular Systems, Inc. Controlled deformation of a polymer tube with a restraining surface in fabricating a medical article
US7875233B2 (en) 2004-09-30 2011-01-25 Advanced Cardiovascular Systems, Inc. Method of fabricating a biaxially oriented implantable medical device
US8173062B1 (en) 2004-09-30 2012-05-08 Advanced Cardiovascular Systems, Inc. Controlled deformation of a polymer tube in fabricating a medical article
US8603634B2 (en) 2004-10-27 2013-12-10 Abbott Cardiovascular Systems Inc. End-capped poly(ester amide) copolymers
US7390497B2 (en) 2004-10-29 2008-06-24 Advanced Cardiovascular Systems, Inc. Poly(ester amide) filler blends for modulation of coating properties
US20060106421A1 (en) * 2004-11-16 2006-05-18 Clifford Teoh Expansible neck bridge
US20060116713A1 (en) * 2004-11-26 2006-06-01 Ivan Sepetka Aneurysm treatment devices and methods
US8771294B2 (en) * 2004-11-26 2014-07-08 Biomerix Corporation Aneurysm treatment devices and methods
US7588642B1 (en) 2004-11-29 2009-09-15 Advanced Cardiovascular Systems, Inc. Abluminal stent coating apparatus and method using a brush assembly
US8609123B2 (en) 2004-11-29 2013-12-17 Advanced Cardiovascular Systems, Inc. Derivatized poly(ester amide) as a biobeneficial coating
US7892592B1 (en) 2004-11-30 2011-02-22 Advanced Cardiovascular Systems, Inc. Coating abluminal surfaces of stents and other implantable medical devices
US7604818B2 (en) 2004-12-22 2009-10-20 Advanced Cardiovascular Systems, Inc. Polymers of fluorinated monomers and hydrocarbon monomers
US7419504B2 (en) 2004-12-27 2008-09-02 Advanced Cardiovascular Systems, Inc. Poly(ester amide) block copolymers
US8007775B2 (en) 2004-12-30 2011-08-30 Advanced Cardiovascular Systems, Inc. Polymers containing poly(hydroxyalkanoates) and agents for use with medical articles and methods of fabricating the same
US20060178696A1 (en) * 2005-02-04 2006-08-10 Porter Stephen C Macroporous materials for use in aneurysms
US7381048B2 (en) 2005-04-12 2008-06-03 Advanced Cardiovascular Systems, Inc. Stents with profiles for gripping a balloon catheter and molds for fabricating stents
US7795467B1 (en) 2005-04-26 2010-09-14 Advanced Cardiovascular Systems, Inc. Bioabsorbable, biobeneficial polyurethanes for use in medical devices
US8778375B2 (en) 2005-04-29 2014-07-15 Advanced Cardiovascular Systems, Inc. Amorphous poly(D,L-lactide) coating
US7823533B2 (en) 2005-06-30 2010-11-02 Advanced Cardiovascular Systems, Inc. Stent fixture and method for reducing coating defects
US20070001346A1 (en) * 2005-06-30 2007-01-04 Murty Vyakarnam Active embolization device
US8021676B2 (en) 2005-07-08 2011-09-20 Advanced Cardiovascular Systems, Inc. Functionalized chemically inert polymers for coatings
US7785647B2 (en) 2005-07-25 2010-08-31 Advanced Cardiovascular Systems, Inc. Methods of providing antioxidants to a drug containing product
US7735449B1 (en) 2005-07-28 2010-06-15 Advanced Cardiovascular Systems, Inc. Stent fixture having rounded support structures and method for use thereof
US7658880B2 (en) 2005-07-29 2010-02-09 Advanced Cardiovascular Systems, Inc. Polymeric stent polishing method and apparatus
US20070031467A1 (en) 2005-08-04 2007-02-08 Abrahams John M Composition and method for vascular embolization
US9248034B2 (en) 2005-08-23 2016-02-02 Advanced Cardiovascular Systems, Inc. Controlled disintegrating implantable medical devices
US7976891B1 (en) 2005-12-16 2011-07-12 Advanced Cardiovascular Systems, Inc. Abluminal stent coating apparatus and method of using focused acoustic energy
US7867547B2 (en) 2005-12-19 2011-01-11 Advanced Cardiovascular Systems, Inc. Selectively coating luminal surfaces of stents
US20070156230A1 (en) 2006-01-04 2007-07-05 Dugan Stephen R Stents with radiopaque markers
US7951185B1 (en) 2006-01-06 2011-05-31 Advanced Cardiovascular Systems, Inc. Delivery of a stent at an elevated temperature
US20070183987A1 (en) * 2006-02-08 2007-08-09 Jensen Steven D Peroxide Gel Compositions
US9295619B2 (en) 2006-02-08 2016-03-29 Cao Group, Inc. Dental treatment compositions and conformable dental treatment trays using the same
US20070196428A1 (en) 2006-02-17 2007-08-23 Thierry Glauser Nitric oxide generating medical devices
US7713637B2 (en) 2006-03-03 2010-05-11 Advanced Cardiovascular Systems, Inc. Coating containing PEGylated hyaluronic acid and a PEGylated non-hyaluronic acid polymer
US7964210B2 (en) 2006-03-31 2011-06-21 Abbott Cardiovascular Systems Inc. Degradable polymeric implantable medical devices with a continuous phase and discrete phase
US20070239194A1 (en) * 2006-04-05 2007-10-11 Boston Scientific Scimed, Inc. Vaso-occlusive devices having expandable fibers
US8304012B2 (en) 2006-05-04 2012-11-06 Advanced Cardiovascular Systems, Inc. Method for drying a stent
US8003156B2 (en) 2006-05-04 2011-08-23 Advanced Cardiovascular Systems, Inc. Rotatable support elements for stents
US7985441B1 (en) 2006-05-04 2011-07-26 Yiwen Tang Purification of polymers for coating applications
US7761968B2 (en) 2006-05-25 2010-07-27 Advanced Cardiovascular Systems, Inc. Method of crimping a polymeric stent
US7775178B2 (en) 2006-05-26 2010-08-17 Advanced Cardiovascular Systems, Inc. Stent coating apparatus and method
US7951194B2 (en) 2006-05-26 2011-05-31 Abbott Cardiovascular Sysetms Inc. Bioabsorbable stent with radiopaque coating
US20130325104A1 (en) 2006-05-26 2013-12-05 Abbott Cardiovascular Systems Inc. Stents With Radiopaque Markers
US20070282434A1 (en) * 2006-05-30 2007-12-06 Yunbing Wang Copolymer-bioceramic composite implantable medical devices
US7842737B2 (en) 2006-09-29 2010-11-30 Abbott Cardiovascular Systems Inc. Polymer blend-bioceramic composite implantable medical devices
US8343530B2 (en) 2006-05-30 2013-01-01 Abbott Cardiovascular Systems Inc. Polymer-and polymer blend-bioceramic composite implantable medical devices
US7959940B2 (en) 2006-05-30 2011-06-14 Advanced Cardiovascular Systems, Inc. Polymer-bioceramic composite implantable medical devices
US8568764B2 (en) 2006-05-31 2013-10-29 Advanced Cardiovascular Systems, Inc. Methods of forming coating layers for medical devices utilizing flash vaporization
US9561351B2 (en) 2006-05-31 2017-02-07 Advanced Cardiovascular Systems, Inc. Drug delivery spiral coil construct
US8486135B2 (en) 2006-06-01 2013-07-16 Abbott Cardiovascular Systems Inc. Implantable medical devices fabricated from branched polymers
US8034287B2 (en) 2006-06-01 2011-10-11 Abbott Cardiovascular Systems Inc. Radiation sterilization of medical devices
US8703167B2 (en) 2006-06-05 2014-04-22 Advanced Cardiovascular Systems, Inc. Coatings for implantable medical devices for controlled release of a hydrophilic drug and a hydrophobic drug
US8778376B2 (en) 2006-06-09 2014-07-15 Advanced Cardiovascular Systems, Inc. Copolymer comprising elastin pentapeptide block and hydrophilic block, and medical device and method of treating
US8603530B2 (en) 2006-06-14 2013-12-10 Abbott Cardiovascular Systems Inc. Nanoshell therapy
US8114150B2 (en) 2006-06-14 2012-02-14 Advanced Cardiovascular Systems, Inc. RGD peptide attached to bioabsorbable stents
US8048448B2 (en) 2006-06-15 2011-11-01 Abbott Cardiovascular Systems Inc. Nanoshells for drug delivery
US8535372B1 (en) 2006-06-16 2013-09-17 Abbott Cardiovascular Systems Inc. Bioabsorbable stent with prohealing layer
US8333000B2 (en) 2006-06-19 2012-12-18 Advanced Cardiovascular Systems, Inc. Methods for improving stent retention on a balloon catheter
CA2692240C (en) 2006-06-22 2018-03-13 Biosurface Engineering Technologies, Inc. Composition and method for delivery of bmp-2 amplifier/co-activator for enhancement of osteogenesis
US8017237B2 (en) 2006-06-23 2011-09-13 Abbott Cardiovascular Systems, Inc. Nanoshells on polymers
US9072820B2 (en) 2006-06-26 2015-07-07 Advanced Cardiovascular Systems, Inc. Polymer composite stent with polymer particles
US8128688B2 (en) 2006-06-27 2012-03-06 Abbott Cardiovascular Systems Inc. Carbon coating on an implantable device
US7794776B1 (en) 2006-06-29 2010-09-14 Abbott Cardiovascular Systems Inc. Modification of polymer stents with radiation
US7740791B2 (en) 2006-06-30 2010-06-22 Advanced Cardiovascular Systems, Inc. Method of fabricating a stent with features by blow molding
US9028859B2 (en) 2006-07-07 2015-05-12 Advanced Cardiovascular Systems, Inc. Phase-separated block copolymer coatings for implantable medical devices
US7823263B2 (en) 2006-07-11 2010-11-02 Abbott Cardiovascular Systems Inc. Method of removing stent islands from a stent
US7757543B2 (en) 2006-07-13 2010-07-20 Advanced Cardiovascular Systems, Inc. Radio frequency identification monitoring of stents
US7998404B2 (en) 2006-07-13 2011-08-16 Advanced Cardiovascular Systems, Inc. Reduced temperature sterilization of stents
US8685430B1 (en) 2006-07-14 2014-04-01 Abbott Cardiovascular Systems Inc. Tailored aliphatic polyesters for stent coatings
US7794495B2 (en) 2006-07-17 2010-09-14 Advanced Cardiovascular Systems, Inc. Controlled degradation of stents
US7886419B2 (en) 2006-07-18 2011-02-15 Advanced Cardiovascular Systems, Inc. Stent crimping apparatus and method
US8016879B2 (en) 2006-08-01 2011-09-13 Abbott Cardiovascular Systems Inc. Drug delivery after biodegradation of the stent scaffolding
US8703169B1 (en) 2006-08-15 2014-04-22 Abbott Cardiovascular Systems Inc. Implantable device having a coating comprising carrageenan and a biostable polymer
US9173733B1 (en) 2006-08-21 2015-11-03 Abbott Cardiovascular Systems Inc. Tracheobronchial implantable medical device and methods of use
US7923022B2 (en) 2006-09-13 2011-04-12 Advanced Cardiovascular Systems, Inc. Degradable polymeric implantable medical devices with continuous phase and discrete phase
US8597673B2 (en) 2006-12-13 2013-12-03 Advanced Cardiovascular Systems, Inc. Coating of fast absorption or dissolution
US8099849B2 (en) 2006-12-13 2012-01-24 Abbott Cardiovascular Systems Inc. Optimizing fracture toughness of polymeric stent
US8262723B2 (en) 2007-04-09 2012-09-11 Abbott Cardiovascular Systems Inc. Implantable medical devices fabricated from polymer blends with star-block copolymers
US8221861B2 (en) * 2007-05-04 2012-07-17 Personics Holdings Inc. Earguard sealing system II: single-chamber systems
US8147769B1 (en) 2007-05-16 2012-04-03 Abbott Cardiovascular Systems Inc. Stent and delivery system with reduced chemical degradation
ES2319042B1 (en) * 2007-05-25 2010-02-12 Universidad Del Pais Vasco BIOCOMPATIBLE MICROGELS AND ITS APPLICATIONS.
US9056155B1 (en) 2007-05-29 2015-06-16 Abbott Cardiovascular Systems Inc. Coatings having an elastic primer layer
US7829008B2 (en) 2007-05-30 2010-11-09 Abbott Cardiovascular Systems Inc. Fabricating a stent from a blow molded tube
US7959857B2 (en) 2007-06-01 2011-06-14 Abbott Cardiovascular Systems Inc. Radiation sterilization of medical devices
US8293260B2 (en) 2007-06-05 2012-10-23 Abbott Cardiovascular Systems Inc. Elastomeric copolymer coatings containing poly (tetramethyl carbonate) for implantable medical devices
US8202528B2 (en) 2007-06-05 2012-06-19 Abbott Cardiovascular Systems Inc. Implantable medical devices with elastomeric block copolymer coatings
US8425591B1 (en) 2007-06-11 2013-04-23 Abbott Cardiovascular Systems Inc. Methods of forming polymer-bioceramic composite medical devices with bioceramic particles
US8048441B2 (en) 2007-06-25 2011-11-01 Abbott Cardiovascular Systems, Inc. Nanobead releasing medical devices
US8109904B1 (en) 2007-06-25 2012-02-07 Abbott Cardiovascular Systems Inc. Drug delivery medical devices
JP5734650B2 (en) 2007-06-25 2015-06-17 マイクロベンション インコーポレイテッド Self-expanding prosthesis
US7901452B2 (en) 2007-06-27 2011-03-08 Abbott Cardiovascular Systems Inc. Method to fabricate a stent having selected morphology to reduce restenosis
US7955381B1 (en) 2007-06-29 2011-06-07 Advanced Cardiovascular Systems, Inc. Polymer-bioceramic composite implantable medical device with different types of bioceramic particles
US20090068122A1 (en) * 2007-09-06 2009-03-12 Shira Pilch Dentifrice Compositions for Treating Xerostomia
US20090088723A1 (en) * 2007-09-28 2009-04-02 Accessclosure, Inc. Apparatus and methods for treating pseudoaneurysms
WO2009062167A1 (en) * 2007-11-09 2009-05-14 Personics Holdings Inc. Electroactive polymer systems
US8142870B2 (en) * 2007-12-13 2012-03-27 Personics Holdings Inc. Energy responsive conformal device
US8211489B2 (en) * 2007-12-19 2012-07-03 Abbott Cardiovascular Systems, Inc. Methods for applying an application material to an implantable device
US8361538B2 (en) 2007-12-19 2013-01-29 Abbott Laboratories Methods for applying an application material to an implantable device
US20090227976A1 (en) * 2008-03-05 2009-09-10 Calabria Marie F Multiple biocompatible polymeric strand aneurysm embolization system and method
WO2009132141A1 (en) * 2008-04-22 2009-10-29 Coherex Medical, Inc. Device, system and method for aneurysm embolization
JP2013505791A (en) 2009-09-24 2013-02-21 マイクロベンション インコーポレイテッド Injectable hydrogel fiber for medical use
EP2498763A4 (en) 2009-11-09 2015-10-07 Spotlight Technology Partners Llc Polysaccharide based hydrogels
AU2010314994B2 (en) 2009-11-09 2016-10-06 Spotlight Technology Partners Llc Fragmented hydrogels
US8808353B2 (en) 2010-01-30 2014-08-19 Abbott Cardiovascular Systems Inc. Crush recoverable polymer scaffolds having a low crossing profile
US8568471B2 (en) 2010-01-30 2013-10-29 Abbott Cardiovascular Systems Inc. Crush recoverable polymer scaffolds
US8685433B2 (en) 2010-03-31 2014-04-01 Abbott Cardiovascular Systems Inc. Absorbable coating for implantable device
US20120143243A1 (en) * 2010-12-03 2012-06-07 Boston Scientific Scimed, Inc. Closure devices
JP2014522263A (en) 2011-05-11 2014-09-04 マイクロベンション インコーポレイテッド Device for occluding a lumen
US10137280B2 (en) * 2011-06-30 2018-11-27 Incube Labs, Llc System and method for treatment of hemorrhagic stroke
US8726483B2 (en) 2011-07-29 2014-05-20 Abbott Cardiovascular Systems Inc. Methods for uniform crimping and deployment of a polymer scaffold
EP2793963B1 (en) 2011-12-23 2015-11-18 Pioneer Surgical Technology, Inc. Continuous matrix with osteoconductive particles dispersed therein, method of forming thereof, and method of regenerating bone therewith
US20160030629A1 (en) * 2012-12-07 2016-02-04 Kansas State University Research Foundation Peptide-albumin hydrogel properties and its applications
US9999527B2 (en) 2015-02-11 2018-06-19 Abbott Cardiovascular Systems Inc. Scaffolds having radiopaque markers
US9700443B2 (en) 2015-06-12 2017-07-11 Abbott Cardiovascular Systems Inc. Methods for attaching a radiopaque marker to a scaffold
WO2017046369A1 (en) * 2015-09-16 2017-03-23 Centre National De La Recherche Scientifique (Cnrs) Gelling compositions for treating malignant tumours and/or preventing tumour recurrence
US11739166B2 (en) 2020-07-02 2023-08-29 Davol Inc. Reactive polysaccharide-based hemostatic agent

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2726982A (en) * 1950-05-24 1955-12-13 Irving L Ochs Hydrous gels
US4339295A (en) * 1978-12-20 1982-07-13 The United States Of America As Represented By The Secretary Of The Department Of Health & Human Services Hydrogel adhesives and sandwiches or laminates using microwave energy
US4565784A (en) * 1981-01-26 1986-01-21 Trustees Of Boston University Hydrogels capable of supporting cell growth
US4795741A (en) * 1987-05-06 1989-01-03 Biomatrix, Inc. Compositions for therapeutic percutaneous embolization and the use thereof
US4878907A (en) * 1986-11-10 1989-11-07 Ube-Nitto Kasei Co., Ltd. Synthetic vascular prosthesis
US5213580A (en) * 1988-08-24 1993-05-25 Endoluminal Therapeutics, Inc. Biodegradable polymeric endoluminal sealing process
US5213720A (en) * 1986-10-16 1993-05-25 Cbs Lens, A California General Partnership Method of fabricating a collagen-hydrogel
US5258042A (en) * 1991-12-16 1993-11-02 Henry Ford Health System Intravascular hydrogel implant
US5328471A (en) * 1990-02-26 1994-07-12 Endoluminal Therapeutics, Inc. Method and apparatus for treatment of focal disease in hollow tubular organs and other tissue lumens
US5410016A (en) * 1990-10-15 1995-04-25 Board Of Regents, The University Of Texas System Photopolymerizable biodegradable hydrogels as tissue contacting materials and controlled-release carriers
US5514379A (en) * 1992-08-07 1996-05-07 The General Hospital Corporation Hydrogel compositions and methods of use
US5575815A (en) * 1988-08-24 1996-11-19 Endoluminal Therapeutics, Inc. Local polymeric gel therapy
US5580568A (en) * 1995-07-27 1996-12-03 Micro Therapeutics, Inc. Cellulose diacetate compositions for use in embolizing blood vessels
US5604200A (en) * 1994-05-02 1997-02-18 Taylor-Mccord; Darlene Wound therapeutic mixture containing medical grade hyaluronic acid and tissue culture grade plasma-fibronectin in a delivery system that creates a moist environment which simulates in utero healing
US5624685A (en) * 1991-10-16 1997-04-29 Terumo Kabushiki Kaisha High polymer gel and vascular lesion embolizing material comprising the same
US5626863A (en) * 1992-02-28 1997-05-06 Board Of Regents, The University Of Texas System Photopolymerizable biodegradable hydrogels as tissue contacting materials and controlled-release carriers
US5634946A (en) * 1988-08-24 1997-06-03 Focal, Inc. Polymeric endoluminal paving process
US5634936A (en) * 1995-02-06 1997-06-03 Scimed Life Systems, Inc. Device for closing a septal defect
US5665063A (en) * 1994-06-24 1997-09-09 Focal, Inc. Methods for application of intraluminal photopolymerized gels
US5667767A (en) * 1995-07-27 1997-09-16 Micro Therapeutics, Inc. Compositions for use in embolizing blood vessels
US5674287A (en) * 1988-08-24 1997-10-07 Endoluminal Therapeutics, Inc. Biodegradable polymeric endoluminal sealing process, apparatus and polymeric product for use therein
US5725568A (en) * 1995-06-27 1998-03-10 Scimed Life Systems, Inc. Method and device for recanalizing and grafting arteries
US6015424A (en) * 1998-04-28 2000-01-18 Microvention, Inc. Apparatus and method for vascular embolization
US6113629A (en) * 1998-05-01 2000-09-05 Micrus Corporation Hydrogel for the therapeutic treatment of aneurysms

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3530200B2 (en) * 1991-07-09 2004-05-24 テルモ株式会社 Vascular embolic agent
US5857998A (en) * 1994-06-30 1999-01-12 Boston Scientific Corporation Stent and therapeutic delivery system
US5702361A (en) 1996-01-31 1997-12-30 Micro Therapeutics, Inc. Method for embolizing blood vessels
IL126657A0 (en) * 1996-05-02 1999-08-17 Schering Corp Method for treating or preventing ischemia-reperfusion injury
WO1997045131A1 (en) * 1996-05-31 1997-12-04 Micro Therapeutics, Inc. Compositions for use in embolizing blood vessels
JP3784112B2 (en) * 1996-08-15 2006-06-07 株式会社カネカメディックス Coiled embolic material
US6159165A (en) * 1997-12-05 2000-12-12 Micrus Corporation Three dimensional spherical micro-coils manufactured from radiopaque nickel-titanium microstrand

Patent Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2726982A (en) * 1950-05-24 1955-12-13 Irving L Ochs Hydrous gels
US4339295A (en) * 1978-12-20 1982-07-13 The United States Of America As Represented By The Secretary Of The Department Of Health & Human Services Hydrogel adhesives and sandwiches or laminates using microwave energy
US4565784A (en) * 1981-01-26 1986-01-21 Trustees Of Boston University Hydrogels capable of supporting cell growth
US5522888A (en) * 1986-10-16 1996-06-04 Cbs Lens, A California General Partnership Collagen-hydrogel for promoting epithelial cell growth and regeneration of the stroma
US5213720A (en) * 1986-10-16 1993-05-25 Cbs Lens, A California General Partnership Method of fabricating a collagen-hydrogel
US4878907A (en) * 1986-11-10 1989-11-07 Ube-Nitto Kasei Co., Ltd. Synthetic vascular prosthesis
US4795741A (en) * 1987-05-06 1989-01-03 Biomatrix, Inc. Compositions for therapeutic percutaneous embolization and the use thereof
US5575815A (en) * 1988-08-24 1996-11-19 Endoluminal Therapeutics, Inc. Local polymeric gel therapy
US5674287A (en) * 1988-08-24 1997-10-07 Endoluminal Therapeutics, Inc. Biodegradable polymeric endoluminal sealing process, apparatus and polymeric product for use therein
US5213580A (en) * 1988-08-24 1993-05-25 Endoluminal Therapeutics, Inc. Biodegradable polymeric endoluminal sealing process
US5634946A (en) * 1988-08-24 1997-06-03 Focal, Inc. Polymeric endoluminal paving process
US5328471A (en) * 1990-02-26 1994-07-12 Endoluminal Therapeutics, Inc. Method and apparatus for treatment of focal disease in hollow tubular organs and other tissue lumens
US5662609A (en) * 1990-02-26 1997-09-02 Endoluminal Therapeutics, Inc. Method and apparatus for treatment of focal disease in hollow tubular organs and other tissue lumens
US5410016A (en) * 1990-10-15 1995-04-25 Board Of Regents, The University Of Texas System Photopolymerizable biodegradable hydrogels as tissue contacting materials and controlled-release carriers
US5624685A (en) * 1991-10-16 1997-04-29 Terumo Kabushiki Kaisha High polymer gel and vascular lesion embolizing material comprising the same
US5258042A (en) * 1991-12-16 1993-11-02 Henry Ford Health System Intravascular hydrogel implant
US5626863A (en) * 1992-02-28 1997-05-06 Board Of Regents, The University Of Texas System Photopolymerizable biodegradable hydrogels as tissue contacting materials and controlled-release carriers
US5514379A (en) * 1992-08-07 1996-05-07 The General Hospital Corporation Hydrogel compositions and methods of use
US5604200A (en) * 1994-05-02 1997-02-18 Taylor-Mccord; Darlene Wound therapeutic mixture containing medical grade hyaluronic acid and tissue culture grade plasma-fibronectin in a delivery system that creates a moist environment which simulates in utero healing
US5665063A (en) * 1994-06-24 1997-09-09 Focal, Inc. Methods for application of intraluminal photopolymerized gels
US5634936A (en) * 1995-02-06 1997-06-03 Scimed Life Systems, Inc. Device for closing a septal defect
US5725568A (en) * 1995-06-27 1998-03-10 Scimed Life Systems, Inc. Method and device for recanalizing and grafting arteries
US5580568A (en) * 1995-07-27 1996-12-03 Micro Therapeutics, Inc. Cellulose diacetate compositions for use in embolizing blood vessels
US5667767A (en) * 1995-07-27 1997-09-16 Micro Therapeutics, Inc. Compositions for use in embolizing blood vessels
US6015424A (en) * 1998-04-28 2000-01-18 Microvention, Inc. Apparatus and method for vascular embolization
US6113629A (en) * 1998-05-01 2000-09-05 Micrus Corporation Hydrogel for the therapeutic treatment of aneurysms

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8597674B2 (en) 2003-04-25 2013-12-03 Medtronic Vascular, Inc. In situ blood vessel and aneurysm treatment
US7396540B2 (en) * 2003-04-25 2008-07-08 Medtronic Vascular, Inc. In situ blood vessel and aneurysm treatment
US20080249511A1 (en) * 2003-04-25 2008-10-09 Medtronic Vascular, Inc. In Situ Blood Vessel and Aneurysm Treatment
US20040215172A1 (en) * 2003-04-25 2004-10-28 Jack Chu In situ blood vessel and aneurysm treatment
US20090324722A1 (en) * 2004-09-22 2009-12-31 Elisseeff Jennifer H Cartilage filling device
US20080317818A1 (en) * 2005-09-09 2008-12-25 May Griffith Interpenetrating Networks, and Related Methods and Compositions
US11160557B2 (en) 2006-06-15 2021-11-02 Microvention, Inc. Embolization device constructed from expansile polymer
US9259228B2 (en) 2006-06-15 2016-02-16 Microvention, Inc. Embolization device constructed from expansile polymer
US11185336B2 (en) 2006-06-15 2021-11-30 Microvention, Inc. Embolization device constructed from expansile polymer
US9451963B2 (en) 2006-06-15 2016-09-27 Microvention, Inc. Embolization device constructed from expansile polymer
US10499925B2 (en) 2006-06-15 2019-12-10 Microvention, Inc. Embolization device constructed from expansile polymer
US9724103B2 (en) 2006-06-15 2017-08-08 Microvention, Inc. Embolization device constructed from expansile polymer
US9877731B2 (en) 2006-06-15 2018-01-30 Microvention, Inc. Embolization device constructed from expansile polymer
US10226258B2 (en) 2006-06-15 2019-03-12 Microvention, Inc. Embolization device constructed from expansile polymer
US10194915B2 (en) 2007-12-21 2019-02-05 Microvention, Inc. Implantation devices including hydrogel filaments
US9486221B2 (en) 2007-12-21 2016-11-08 Microvision, Inc. Hydrogel filaments for biomedical uses
US9993252B2 (en) 2009-10-26 2018-06-12 Microvention, Inc. Embolization device constructed from expansile polymer
US9456823B2 (en) 2011-04-18 2016-10-04 Terumo Corporation Embolic devices
US9381278B2 (en) 2012-04-18 2016-07-05 Microvention, Inc. Embolic devices
US10588923B2 (en) 2012-06-14 2020-03-17 Microvention, Inc. Polymeric treatment compositions
US9351993B2 (en) 2012-06-14 2016-05-31 Microvention, Inc. Polymeric treatment compositions
US11331340B2 (en) 2012-06-14 2022-05-17 Microvention, Inc. Polymeric treatment compositions
US10201562B2 (en) 2012-06-14 2019-02-12 Microvention, Inc. Polymeric treatment compositions
US9937201B2 (en) 2012-06-14 2018-04-10 Microvention, Inc. Polymeric treatment compositions
US11801326B2 (en) 2012-10-15 2023-10-31 Microvention, Inc. Polymeric treatment compositions
US10258716B2 (en) 2012-10-15 2019-04-16 Microvention, Inc. Polymeric treatment compositions
US9655989B2 (en) 2012-10-15 2017-05-23 Microvention, Inc. Polymeric treatment compositions
US10828388B2 (en) 2012-10-15 2020-11-10 Microvention, Inc. Polymeric treatment compositions
CN103113579A (en) * 2013-02-21 2013-05-22 华东理工大学 Polyglutamic acid derivative as well as hydrogel and preparation method of polyglutamic acid derivative
US10124090B2 (en) 2014-04-03 2018-11-13 Terumo Corporation Embolic devices
US10226533B2 (en) 2014-04-29 2019-03-12 Microvention, Inc. Polymer filaments including pharmaceutical agents and delivering same
US10946100B2 (en) 2014-04-29 2021-03-16 Microvention, Inc. Polymers including active agents
US10092663B2 (en) 2014-04-29 2018-10-09 Terumo Corporation Polymers
WO2016055650A1 (en) * 2014-10-10 2016-04-14 Dublin City University A gallium-based glass composition
US10149861B2 (en) 2014-10-10 2018-12-11 Dublin City University Gallium-based glass composition
US10639396B2 (en) 2015-06-11 2020-05-05 Microvention, Inc. Polymers
US11759547B2 (en) 2015-06-11 2023-09-19 Microvention, Inc. Polymers
US11051826B2 (en) 2016-08-26 2021-07-06 Microvention, Inc. Embolic compositions
US10368874B2 (en) 2016-08-26 2019-08-06 Microvention, Inc. Embolic compositions
US11911041B2 (en) 2016-08-26 2024-02-27 Microvention, Inc. Embolic compositions
US10576182B2 (en) 2017-10-09 2020-03-03 Microvention, Inc. Radioactive liquid embolic

Also Published As

Publication number Publication date
US6113629A (en) 2000-09-05
EP1100541B1 (en) 2005-10-19
WO1999056783A1 (en) 1999-11-11
JP2002531379A (en) 2002-09-24
ES2251190T3 (en) 2006-04-16
AU3673499A (en) 1999-11-23
DE69927823T2 (en) 2006-06-14
EP1100541A1 (en) 2001-05-23
DE69927823D1 (en) 2006-03-02
JP5507028B2 (en) 2014-05-28

Similar Documents

Publication Publication Date Title
US6113629A (en) Hydrogel for the therapeutic treatment of aneurysms
US6423085B1 (en) Biodegradable polymer coils for intraluminal implants
JP5456974B2 (en) Compositions, systems and methods for treating vascular disorders
JP4856339B2 (en) Vascular embolization material comprising hydrogel and treatment method using the same
JP4990625B2 (en) Embolization composition
US8409139B2 (en) Stretch resistant therapeutic device
US20040111112A1 (en) Method and apparatus for retaining embolic material
US20050090861A1 (en) Vaso-occlusive devices with in-situ stiffening elements
JP2007510650A (en) Embolization composition comprising polymer particles and radiopaque material
CA2323151C (en) Biodegradable polymer/protein based coils for intralumenal implants
CA2485204A1 (en) Device and method for treatment of a vascular defect
CA2502905A1 (en) Embolic device made of nanofibers
US20050090856A1 (en) Vasco-occlusive devices with bioactive elements
US20060259130A1 (en) Device for blocing blood vessel

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION