US20030069602A1 - Multi-point tissue tension distribution device, a brow and face lift variation, and a method of tissue approximation using the device - Google Patents

Multi-point tissue tension distribution device, a brow and face lift variation, and a method of tissue approximation using the device Download PDF

Info

Publication number
US20030069602A1
US20030069602A1 US10/299,119 US29911902A US2003069602A1 US 20030069602 A1 US20030069602 A1 US 20030069602A1 US 29911902 A US29911902 A US 29911902A US 2003069602 A1 US2003069602 A1 US 2003069602A1
Authority
US
United States
Prior art keywords
tissue
post
backing
attachment points
variation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/299,119
Inventor
Daniel Jacobs
Robert Elson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/574,603 external-priority patent/US6645226B1/en
Application filed by Individual filed Critical Individual
Priority to US10/299,119 priority Critical patent/US20030069602A1/en
Publication of US20030069602A1 publication Critical patent/US20030069602A1/en
Priority to US10/418,541 priority patent/US7510566B2/en
Priority to US10/418,325 priority patent/US20040010275A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/08Wound clamps or clips, i.e. not or only partly penetrating the tissue ; Devices for bringing together the edges of a wound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/064Surgical staples, i.e. penetrating the tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/11Surgical instruments, devices or methods, e.g. tourniquets for performing anastomosis; Buttons for anastomosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/11Surgical instruments, devices or methods, e.g. tourniquets for performing anastomosis; Buttons for anastomosis
    • A61B17/1128Surgical instruments, devices or methods, e.g. tourniquets for performing anastomosis; Buttons for anastomosis of nerves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/11Surgical instruments, devices or methods, e.g. tourniquets for performing anastomosis; Buttons for anastomosis
    • A61B17/1146Surgical instruments, devices or methods, e.g. tourniquets for performing anastomosis; Buttons for anastomosis of tendons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00004(bio)absorbable, (bio)resorbable, resorptive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B2017/0496Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials for tensioning sutures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/064Surgical staples, i.e. penetrating the tissue
    • A61B2017/0641Surgical staples, i.e. penetrating the tissue having at least three legs as part of one single body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/064Surgical staples, i.e. penetrating the tissue
    • A61B2017/0647Surgical staples, i.e. penetrating the tissue having one single leg, e.g. tacks
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/064Surgical staples, i.e. penetrating the tissue
    • A61B2017/0647Surgical staples, i.e. penetrating the tissue having one single leg, e.g. tacks
    • A61B2017/0648Surgical staples, i.e. penetrating the tissue having one single leg, e.g. tacks threaded, e.g. tacks with a screw thread
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/11Surgical instruments, devices or methods, e.g. tourniquets for performing anastomosis; Buttons for anastomosis
    • A61B2017/1107Surgical instruments, devices or methods, e.g. tourniquets for performing anastomosis; Buttons for anastomosis for blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/02Devices for expanding tissue, e.g. skin tissue

Definitions

  • This invention is in the field of surgery. More particularly, it relates to a tissue approximation device.
  • approximately we mean to include variously the specific movement of two regions of tissue towards each other, the movement of one or more selected tissue regions or areas, the maintenance and/or fixation of one or more selected tissue regions in a selected position, and the maintenance and/or fixation of a selected area of tissue against shape variation due to tissue “springiness.”
  • stabilization we will also refer to these functions as “stabilization” of a tissue region.
  • the inventive device may be used to facilitate wound healing by holding soft tissue together under improved distribution of tension and with minimal disruption of the wound interface and its nutrient supplies.
  • the device has multiple sites for grasping said tissue using tines or prongs or other generally sharp, projecting points, extending from and preferably affixed to a single, supportive backing.
  • Various processes of using the inventive device are also a portion of the invention.
  • the inventive device is preferably used for the approximation, mobilization, or fixation of tissue.
  • these terms are meant variously to include the specific movement of two regions of tissue towards each other, the movement of one or more selected tissue regions or areas, the maintenance of one or more selected tissue regions in a selected position, and the maintenance of a selected area of tissue against shape variation due to tissue “springiness.”
  • a variety of approximation procedures may be achieved, variously from the movement of two tissue areas towards each other at a common wound margin to the maintenance of an area of tissue in a specific position during or after a surgical procedure, e.g. brow lifts or ACL regions.
  • our inventive device allows healing of soft tissue due to its maintenance of tissue position.
  • the surgically induced healing of soft tissue wounds involves two phases, the mechanical phase of wound closure followed by the biochemical phase which involves protein bridging and scarring.
  • the mechanical phase the edges of soft tissue are held in contact by essentially two components: 1) The physical properties and device-tissue interactions of the materials holding the tissue edges in contact, e.g. sutures or staples; and 2) An early deposition of proteinaceous material that has adhesive characteristics, e.g. fibrin glue.
  • Collagen is the primary constituent of connective tissue and ultimately determines the pliability and tensile strength of the healing wound. Tensile strength is gradually recovered; 60% of ultimate wound strength is achieved after approximately 3 months. However, this process is successful only if the previous mechanical phase has proceeded normally.
  • the devices minimally improve the biomechanics of wound closure, and do not adequately approximate the deeper layers of the closure, i.e. fascia or dermis. Externally placed attachment points that puncture the skin lateral to the wound also interfere with long-term cosmesis and provide a possible conduit for infecting microorganisms.
  • U.S. Pat. No. 5,176,692 to Wilk et al. discloses a device for hernia repair that utilizes mesh with pin-like projections to cover hernia defects. This device, however, is used in a laparoscopic hernia repair in conjunction with an inflatable balloon. Closure devices for deeper tissues are described in U.S. Pat. No. 4,610,250 to Green; U.S. Pat. No. 5,584,859 to Brozt et al.; and U.S. Pat. No. 4,259,959 to Walker. However, these devices either work in conjunction with sutures, are made of materials that do not suggest biodegradability, or are designed in such a way as not to impart uniform tension on the closure, increasing the risk of wound separation and failure of wound healing.
  • the present invention is a biodegradable tissue approximation device.
  • the device includes a plurality of attachment points, e.g. tines, prongs, or other generally sharp or blunt parts, connected to a backing that can be manipulated to close wounds, join soft tissue or bone, or create anastomoses.
  • This multi-point tension distribution system (MTDS) device may be placed with minimal tissue trauma.
  • the present invention typically incorporates the deeper layers of tissue within the closure, and the multiple attachment points distribute the resulting tension, often uniformly. Approximation from the internal aspect of the wound minimizes the potential for dead space in the closure, thus decreasing the risk of sub-optimal healing. Moreover, because the device is absorbed, a second procedure is not typically needed to remove the device.
  • the present invention improves the mechanical phase of healing by facilitating wound closure and/or the coaptation of tissues prior to initiation of the biochemical phase of wound healing. Placement of the device maximizes the chance for a good cosmetic result and is not heavily dependent on surgeon skill. Closure time is also shortened, decreasing overall cost and risk of operative complications.
  • the present invention is a device that improves the mechanical phase of wound healing.
  • tissue edges are stabilized by a plurality of attachment points that extend from and are affixed to a supportive backing.
  • the density, shape, length, and orientation of attachment points on the backing may be varied to suit the procedure, type of tissue being approximated, and/or area of the body involved.
  • the flexibility of the backing is also variable and dependent on the materials used and dimensions of the backing.
  • the forces or tension placed upon the tissues by the inventive device are mirrored in the backing of the device. Said another way, the shape of the tines relay any forces to the backing of the device.
  • the backing is generally in shear along its length.
  • the device is biodegradable, and the attachment points uniformly distribute tension over the contact area between the device and tissue.
  • the device may be used to close wounds and create vascular anastomoses.
  • the device may also be manipulated to approximate soft tissue and soft tissue to bone.
  • the device may be used to mobilize, move, or stabilize a selected region or area of tissue, as noted above.
  • a further application may include approximation of soft tissue in brow lift and other craniofacial and maxillofacial surgical procedures.
  • Such a device may be optimized to distribute loads over the device while the device remains attached to the patient's cranium.
  • the brow lift device may further include multiple variations of the device and is preferably biodegradable and absorbable by the patient.
  • the device may also be made from biological materials.
  • a device variation may be installed into a patient by first creating an incision in the patient's scalp. This incision is preferably a predetermined length corresponding to the length of scalp or tissue desired to be lifted. At one end of the incision, preferably the end farthest away from the scalp or tissue to be lifted, the doctor or surgeon would drill a hole into the cranium.
  • the device may be inserted under the scalp or tissue which is then set on the device via attachment points affixed to the device surface. The surgeon may then lift the scalp or tissue via the device, which may then be secured to the cranium by inserting an anchoring post into the drilled hole. Alternatively, after the incision is made and the hole drilled in the cranium, the device may first be inserted into the hole via the post. The surgeon may then lift the scalp or tissue into position over the device and then set the lifted tissue onto the attachment points.
  • One particularly useful tool may comprise a manipulatable handle having opposing grasping arms.
  • the grasping arms may be used to secure and handle the device via the anchoring post.
  • the tool may include a slidable block which may be angularyl disposed relative to the handle so that the block may press down and secure a portion of the scalp or tissue to be lifted.
  • the block is preferably disposed angularly such that the angle of the block is similar to the angle of the attachment points affixed to the brow lift device. Angling the block may allow the tissue to be optimally set against the attachment points and may provide the least resistance to piercing the scalp or tissue.
  • the tool may omit the slidable block completely and the tissue may be set against the attachment points by other methods such as simply pressing against the tissue by hand.
  • FIGS. 1 A- 1 D are plan, perspective views of various MTDS devices.
  • FIGS. 2 A- 2 E are side views of various attachment point shapes and orientations.
  • FIGS. 3 A- 3 D and 3 F- 3 G are side views of various attachment points.
  • FIG. 3E is a side view of a two-sided MTDS device.
  • FIG. 3H is a plan, reverse perspective view of nubs on the inferior surface of a MTDS device.
  • FIG. 4A is a side, cross-sectional view of attachment points that run through the width of a backing.
  • FIG. 4B is a side view of attachment points on a strip of backing material.
  • FIG. 4C is a plan, perspective view of the embodiment in 4 B on a backing.
  • FIG. 4D is a plan, perspective view of attachment points on a solid backing.
  • FIG. 5A is a plan, perspective view of attachment points canted in one direction.
  • FIGS. 5 B- 5 D are plan, perspective views of attachment points with various orientations on a backing.
  • FIG. 5E is a side view of attachment points becoming progressively shorter the closer they are to the center of the device.
  • FIG. 5F is a side view of attachment points becoming progressively shorter the farther they are from the center of the device.
  • FIGS. 6 A- 6 B are schematic views of a skin wound and wound repair using the MTDS device.
  • FIG. 7 is a schematic view of an abdominal wound closure using MTDS devices.
  • FIGS. 8 A- 8 B are schematic views of an abdominal hernia and hernia repair using the MTDS device.
  • FIGS. 8 C- 8 D are side and schematic views, respectively, of a MTDS device with attachment points on the edges of the backing and a central area without attachment points.
  • FIGS. 9 A- 9 B are schematic views of a ruptured tendon and tendon to bone repair using the MTDS device.
  • FIG. 10A is an axial view of a cross-section of a vessel repaired with the MTDS device.
  • FIGS. 10 B- 10 C are side, schematic views of vessel free ends and a vascular anastomosis using the MTDS device.
  • FIGS. 11 A and 11 B- 11 C are schematic, side, and cross-sectional side views, respectively, of a transected tendon and a tendon to tendon repair using the MTDS device.
  • FIG. 11D is an axial, cross-sectional view of the MTDS tendon to tendon repair.
  • FIG. 11E is a side view of a vascular anastomosis using the MTDS device on the external surface of a vessel.
  • FIGS. 11 F- 11 G are side, schematic views, and FIG. 11H is an axial view of the ends of a tubular structure being joined by externally placing strips of a MTDS device on approximated tissue.
  • FIG. 11I is an axial view of a hinge in the backing of a device.
  • FIGS. 11 J- 11 K are axial views of decreased backing material that are areas of enhanced device flexibility.
  • FIGS. 11 L- 11 M are side views of a spring or coil-like MTDS device being used to approximate tissue.
  • FIG. 12A is a schematic view of the MTDS device being used in a brow-lift procedure.
  • FIG. 12B is a plan, perspective view of the MTDS device used in a brow-lift.
  • FIG. 13A is a front view of a variation of a MTDS device having an integral post or anchor used in a brow-lift.
  • FIGS. 13 B- 13 C are a top view and a side view, respectively, of the device of FIG. 13A showing the attachment points and integral post.
  • FIG. 13D is a perspective view of the device of FIG. 13A.
  • FIG. 13E is a view of cross-section 13 E- 13 E from FIG. 13B showing the cavities in the post.
  • FIGS. 14 A- 14 D show a top view of a patient's cranium during insertion of the device of FIG. 13A.
  • FIG. 15 is a cross-sectional side view of the insertion and securing procedure of the MTDS device from FIG. 14C.
  • FIGS. 16 A- 16 D are various views of an exemplary attachment point from FIG. 13A.
  • FIG. 17A is a view from perspective 17 A- 17 A from FIG. 13C of the post having a partial collar.
  • FIG. 17B is a variation of FIG. 17A of the post having a full collar.
  • FIG. 17C is a variation of FIG. 17A of the post having several tabs.
  • FIGS. 18 A- 18 C show back, front, and side views of a post variation missing a distal cavity.
  • FIG. 19A is a perspective view of the post from FIG. 18B showing the proximal cavity within the post.
  • FIG. 19B is a view of cross-section 19 B- 19 B from FIG. 18B showing the proximal cavity.
  • FIG. 20 is a perspective view of a post variation having a beveled latching mechanism.
  • FIG. 21 is a perspective view of another post variation having an integral beveled latching mechanism.
  • FIG. 22A is a side view of a post variation having a rounded hook.
  • FIG. 22B is a side view of a post variation having an angled post.
  • FIG. 22C is a side view of the supportive backing defining a hole to receive a separate fastening device.
  • FIGS. 22 D- 22 E are side views of a radially expandable post variation.
  • FIG. 23A is a cross-sectional view of atypical hole in a patient's cranium for receiving a post.
  • FIG. 23B is a cross-sectional view of an angled hole variation for receiving a post.
  • FIG. 23C is a cross-sectional view of a possible keyed hole variation for receiving a post.
  • FIGS. 24 A- 24 C are top, side, and perspective views of an alternative variation of the MTDS device.
  • FIG. 24D is a view of cross-section 24 D- 24 D from FIG. 24A.
  • FIGS. 25 A- 25 C are top, side, and back views of another variation of the MTDS device which may receive separatable attachment points.
  • FIGS. 26 A- 26 C are top, side, and back views of a variation of the MTDS device having dual tabs on the post.
  • FIGS. 27 A- 27 C are top, side, and back views of a variation of the MTDS device having a latching mechanism on the post.
  • FIGS. 28 A- 28 C are top, side, and perspective views of a variation of the MTDS device having another latching mechanism on the post.
  • FIG. 28D is a view of cross-section 28 D- 28 D from FIG. 28A.
  • FIGS. 29 A- 29 C are edge, back, and side views of a variation of the MTDS device having two adjacent posts.
  • FIGS. 30 A- 30 C are edge, back, and side views of another variation of the MTDS device having two aligned posts.
  • FIG. 31A is a top view of a variation of the insertion tool showing the channel.
  • FIG. 31B is a view of cross-section 31 B- 31 B from FIG. 31A showing an MTDS device and a side view of the support block.
  • FIG. 31C is a close-up view of the MTDS device and support block from FIG. 31B.
  • FIG. 31D is a perspective view from the bottom showing the insertion tool of FIG. 31A.
  • FIG. 31E is a perspective view from the top showing the insertion tool of FIG. 31A.
  • FIG. 32A is a top view of the insertion tool from FIG. 31A showing the block assembly.
  • FIG. 32B is a view of cross-section 32 B- 32 B from FIG. 32A showing the MTDS device and a side view of the block assembly.
  • FIG. 32C is a close-up view of the MTDS device and block assembly from FIG. 32B.
  • FIG. 32D is a perspective view from the bottom showing the insertion tool of FIG. 32A.
  • FIG. 32E is a perspective view from the top showing the insertion tool of FIG. 32A.
  • Our inventive device may be used when working with bone anchors or a variety of soft tissues.
  • the device is of the general configurations shown in FIGS. 1 A- 1 B and comprises a plurality of attachment points ( 102 ) emanating from and preferably affixed to a supportive backing ( 100 ) that is a generally a porous material that may have the structure of a mesh, net, or lattice.
  • the degree of flexibility of the backing is determined by the material of construction, the shape and dimensions of the device, the type and properties of the approximated tissue, and the area of the body into which the device is placed.
  • a tightly curved or mobile part of the body e.g., a joint
  • a more flexible backing will require a more flexible backing, as would a tendon or nerve repair due to the amount of bending the device needs for the attachment.
  • the thickness of the backing may determine the flexibility of the device.
  • the backing may be pre-fabricated into different shapes as shown by the sharp corners ( 104 ) and rounded corners ( 106 ) in FIGS. 1 C and ID.
  • the fabricated cross-sectional shape and dimensions of the mesh elements may vary to promote flexibility in regions of the backing.
  • the cross-sectional shape of the mesh elements may be chosen to minimize local compressive stress between the backing and surface it rests upon, or have rounded and filleted edges to be less obtrusive to local circulation.
  • the plurality of attachment points distribute tension over the contact area between the device and the tissue. The tension or forces are generally also distributed in the tissue and in the backing parallel to the interfaces between the tissue and the device.
  • biodegradable polymers are preferably used to construct the backing and attachment points.
  • Polymers synthesized from monomers comprising esters, anhydrides, orthoesters, and amides are particularly suitable for biodegradation.
  • biodegradable polymers are polyglycolide, polylactide, poly- ⁇ -caprolactone, polydiaxanone, polyglyconate, polylactide-co-glycolide, and block and random copolymers of these polymers. Copolymers of glycolic, lactic, and other ⁇ -hydroxy acids are highly desirable.
  • an inventive device may be made of two or more types of polymers or copolymers (or molecular weights of the same polymer or copolymer).
  • the backing material might be produced from a more flexible polymer and the points or tines of a stiffer material. The inflammatory response to these polymers is minimal, and they have been safely used in suture materials, stents, drug delivery devices, orthopedic fixation devices, and intestinal anastomotic rings.
  • the attachment points will refer both to points which are either sharp, i.e. able to separate tissue in a chosen use, or blunt, i.e. not able to separate tissue in that use.
  • the attachment points may also be referred to as “barbs” when those points have the retaining point shown in several of the Figures discussed below.
  • the tines, prongs or barbs penetrate into soft tissue and for a short distance.
  • the attachment points preferably do not traumatize tissue in any major way, e.g., by penetration through a selected area of tissue to meet another device on the opposite side of the tissue. For instance, the attachment points generally do not penetrate the subject soft tissue more than 0.100′′.
  • the attachment points may be considered to interlock with modulation in the adjacent soft tissue rather than penetrate as by a pin or bolt.
  • the shape of the attachment points or barbs may be varied depending, e.g., on the area of the body involved and the type of tissue requiring closure or reapproximation.
  • the tines may be canted or erect, but in a preferred variation, the general structure of the tines is of a rose thorn shape.
  • the tines ( 200 ) have a wide base ( 202 ) that supports a projection ( 204 ) from the backing ( 206 ) against the degree of tension required to close a wound or approximate tissue.
  • the attachment points may be erect tines (FIG. 2B- 208 ), canted tines (FIG.
  • FIGS. 3 A- 3 D the tip of the attachment points may be varied as shown in FIGS. 3 A- 3 D.
  • the tips may be barbed ( 300 in FIG. 3A), arrowhead (double-barb) ( 302 in FIG. 3B), or cheese grater ( 304 in FIG. 3D).
  • a side view of the cheese grater tips is shown in FIG. 3D.
  • a faceted tip ( 303 in FIG. 3F) is shown. The faceted tip is especially desirable where the force to penetrate tissue is normal to the tissue surface.
  • connection of the prong to the backing may be rounded or filleted, or the backing built-up around the prong, to reduce structural stress concentrations.
  • the backing or connecting structure may branch out away from the center, with each branch in turn branching to grapple tissue in a distributed fashion. All edges of the device may be smooth except where sharpness is needed at the tip of the prong to pierce into the tissue. Once the prongs pierce into the tissue, the tissue may become supported against the backing to minimize additional piercing or irritation by the prong tip.
  • the device may be molded, stamped, machined, woven, bent, welded or otherwise fabricated to create the desired features and functional properties.
  • the MTDS device may also have attachment points both on its front side ( 305 ) and on a back side ( 307 ). As shown in FIGS. 3B and 3E, the front and back sides have attachment points.
  • the attachment points on the front side ( 309 ) generally approximate tissue.
  • the attachment points on the back side ( 307 ) are auxiliary attachment points that may comprise forms such as round nubs ( 306 ) or pointed nubs ( 308 ).
  • the auxiliary attachment points may be used to secure or promote stable implantation of the device. Soft tissue may be gently pressed into open regions of the backing thereby helping to fix the device in place against both underlying and overlying tissue after the modulation or interlocking of skin.
  • 3H shows a reverse view of the nubs ( 310 ) on the back-side of the device ( 312 ).
  • the attachment points on a two-sided device are not limited to the combinations disclosed above, but may comprise any combination of the previously mentioned attachment point shapes and orientations.
  • the attachment points ( 400 ) may be placed through a plurality of openings in the backing ( 402 ) and secured to the backing by a flange ( 404 ) or hub.
  • the points ( 406 ) may also connect to strips ( 408 ) of the same material as the attachment points which are then secured to a backing ( 410 ).
  • the backing may also be comprised of a solid material ( 412 ) instead of a porous material.
  • the extent of porosity, or total surface area may be used to control the absorption rate of the device, and may also be used to optimize the strength-to-mass properties of the device, increasing the section modulus of structural cross-sections per unit mass.
  • the backing structure may comprise partial folds, waves or grooves to help hold tissue against both surfaces of the backing. Regions of the backing may function as suction cups to help hold tissue to the backing.
  • attachment points on the backing may be modified depending on the type of wound closure.
  • Attachment points may be bent or curve gradually, with the tip directed at an optimal angle relative to the backing to aid device penetration and stability within the tissue, and to reduce tissue irritation after device installation.
  • Attachment points may be canted in one direction ( 500 ), such as toward the center of the device as shown in FIG. 5A.
  • the attachment points may also be variously oriented, such as toward center ( 502 ) and erect ( 504 ), or toward center ( 502 ) and away from center ( 506 ). It is within the scope of this invention to have attachment points extending in any relative direction or orientation on the backing. Or, as shown in FIG.
  • the backing is divided into a first area ( 508 ) and a second area ( 510 ). Attachment points in the first area ( 512 ) and second area ( 514 ) are canted toward each other.
  • the inventive device may also be sectioned into a plurality of areas, with each section being variously oriented to another section.
  • attachment points of various lengths emanate from a single backing.
  • the attachment points ( 515 ) are progressively shorter the closer they are to the center of the device ( 516 ).
  • the attachment points ( 515 ) may also become progressively shorter the farther they are from the center of the device as shown in FIG. 5F.
  • the variations shown in FIGS. 5B and 5C have regions of attachment points canted toward the center ( 502 ) and with other regions of attachment points with erect points ( 504 in FIG. 5 B) or canted away from the other end ( 506 in FIG. 5C) of the device. These variations are more difficult to dislodge when situated in an area of the body having both to-and-fro movement, e.g., the inside of an elbow or back of the knee, or during placement of the device.
  • FIGS. 6 A- 6 B Portions of simple wound closures are shown in FIGS. 6 A- 6 B. These wound closures involve placing the MTDS device ( 600 ) at the bottom of the wound, usually at the level of the sub-dermis ( 602 ). The edges of the wound ( 604 ) are approximated and then secured by fixation, e.g., by pressing, to the multiple attachment points ( 606 ).
  • An example of the MTDS device placement in a laparotomy closure is shown in FIG. 7. The increased length of this incision requires placement of multiple devices ( 700 ).
  • a unique application of this device occurs in hernia repair in which case the biomaterials are not absorbable but rather are more likely to be PTFE and POPU (“Gore-Tex”), polypropylene, or other permanent implant material.
  • a MTDS device may be used to close the hernia defect by joining the edges of the separated fascia ( 804 ) as seen in FIGS. 8A and 8B.
  • the device may also be modified to aid repair of a difficult hernia resulting from such circumstances as operating on an obese patient or large hernia, or having a wide fascial debridement where the fascial edges cannot be brought together.
  • the attachment points ( 800 ) are secured to the ends of the backing ( 806 ) and are still used to adhere the device to tissue, but the points are spaced so that the central area of the backing is a flat surface without points ( 802 ) that covers the defect.
  • the device in FIG. 8D is preferably used in an incisional hernia repair.
  • the MTDS device may also be constructed to reattach soft tissue such as tendons and ligaments to bone, as well as other soft tissue such as cartilage and the free ends of vessels or nerves.
  • the inventive device functions similar to a clamp.
  • Backings with attachment points ( 900 ) are sides of a clamp that has a first end ( 901 ) and a second end ( 904 ). The first end ( 901 ) grasps tissue and the second end ( 904 ) is an anchor for tissue.
  • a ruptured tendon ( 906 ) may be fixed to the attachment points ( 908 ) of the first end of the clamp ( 901 ) and approximated to bone ( 902 ) with an anchor such as a pin or nail at the second end of the clamp ( 904 ), as seen in FIG. 9B.
  • an anchor such as a pin or nail at the second end of the clamp ( 904 ), as seen in FIG. 9B.
  • the biochemical phase of the wound healing process will begin, eventually forming a natural union between tendon and bone.
  • Ligament and cartilage to bone unions using the MTDS device would undergo the same mechanical and biochemical processes.
  • Vascular anastomoses may also be constructed with the MTDS device.
  • the backing has a tubular shape ( 1000 ) with attachment points ( 1001 ) on the outside surface ( 1002 ).
  • the outside surface ( 1002 ) has a first end ( 1003 ) and a second end ( 1005 ) that opposes the first end ( 1003 ).
  • the free ends of a vessel(s) ( 1004 ) are placed over the device, creating an anastomosis ( 1006 ) that is secured by attachment points fixed into the wall of the vessels ( 1008 ).
  • the attachment points are preferably pointing towards the anastomosis ( 1006 ), with the attachment points on the first end ( 1003 ) being canted toward the second end ( 1005 ) and vice-versa.
  • An axial view of the relationship of the attachment points ( 1010 ) to the vessel wall ( 1012 ) is shown in FIG. 10A.
  • FIGS. 11A and 11B Vessels and other soft tissue such as nerves, cartilage, tendons, and ligaments may also be joined as seen in FIGS. 11A and 11B.
  • Two ends of tissue ( 1100 ) are brought and held together by the backing and attachment point construct ( 1102 ) being wrapped around the circumference of the tissue ( 1104 ).
  • the attachment points ( 1106 ) are on the inside surface of the backing ( 1107 ) and secure the union at a central region ( 1108 ) as seen in FIG. 11C.
  • An axial, cross-sectional view of the relationship between the attachment points ( 1110 ) and tissue ( 1112 ) is shown in FIG. 11D.
  • FIG. 11E shows the device with attachment points ( 1101 ) on the inside surface of the backing ( 1103 ) being wrapped around vessel ends to create an anastomosis ( 1105 ).
  • edges ( 1113 ) of tubular structures ( 1115 ) can also be joined by externally placing 2 or more strips of backing of a MTDS device ( 1114 ) on approximated tissue as shown in the side views of FIGS. 11 F- 11 G, and the axial view in FIG. 11H.
  • the attachment points ( 1117 ) also point toward the area of tissue approximation ( 1116 ).
  • FIGS. 11 I- 11 M are additional variations of the invention which vary the mechanisms used to improve device flexibility.
  • the backing has areas of comparatively higher flexibility than other areas of the backing.
  • the backing is equipped with hinges ( 1118 ) that allow bending of the backing ( 1120 ) around tubular soft tissue structures ( 1115 ).
  • the amount of material in the areas of the device that fold ( 1122 ) is reduced as shown in FIGS. 11 J- 11 K.
  • FIGS. 11 L- 11 M Another variation is seen in FIGS. 11 L- 11 M where attachment points ( 1124 ) of a device extend from a backing in the form of a coil or spring ( 1126 ). The edges of soft tissue are approximated when the coil or a spring is reduced ( 1128 ).
  • the device may also be used in soft-tissue remodeling, such as a brow-lift, shown in FIG. 12A.
  • the anterior scalp flap ( 1202 ) may be raised over the attachment points ( 1204 ) to lift the brow ( 1206 ).
  • the ends of both the anterior flap ( 1202 ) and posterior flap ( 1208 ) may then be trimmed and fixed onto the attachment points ( 1204 ) to close the wound.
  • the device may be secured to the skull ( 1210 ) by a screw ( 1212 ).
  • the inventive device in this example may have a first end ( 1214 ) and a second end ( 1216 ), the first end having a first area ( 1215 ) and the second end having a second area ( 1217 ).
  • the first area ( 1215 ) and second area ( 1217 ) may have extending attachment points ( 1204 ) or one or more openings ( 1218 ) to accommodate a screw(s) ( 1212 ).
  • the second area attachment points are canted toward the first end of the device as shown in FIG. 12B.
  • FIGS. 13 A- 13 C show an alternative variation of the device which may be used in a brow-lift or similar surgical procedure.
  • This device may generally be inserted under a patient's scalp while securely interlocking a small portion of the scalp to the device preferably via a plurality of attachment points. It may also be designed generally to lay against the cranium in a low profile while secured to the cranium to provide a brow lift.
  • This variation comprises supportive backing ( 1300 ), which is shown substantially as an equilateral triangle, or in a delta shape.
  • Backing ( 1300 ) may be any of a wide variety of triangular shapes, e.g., isosceles, etc.
  • Post ( 1304 ) which functions to distribute planar loads equally radiating from a small area, e.g., post ( 1304 ).
  • Post ( 1304 ) is functionally for the maintenance of the device in place; other sections of the surgical procedure used to support the device in a specific part in the body.
  • Post ( 1304 ) is placed on the side of the body opposite to the tines.
  • FIG. 13A shows a front side view of supportive backing ( 1300 ).
  • This variation may incorporate sharp corners at the triangle vertices, but preferably has radiused or rounded corners ( 1322 ) to aid in reducing abrasion and cutting in adjacent tissue.
  • Anchoring post ( 1304 ) may be located at one of the vertices of backing ( 1300 ).
  • This anchoring post ( 1300 ) is shown in this variation as being substantially perpendicular to a plane of backing ( 1300 ), but may be other shapes as discussed below.
  • this device may be made of any of the materials discussed herein, and is preferably comprised of a biodegradable or bioabsorbable material but is obviously not limited by material type.
  • the device may be comprised of certain biological materials as well, e.g., collagen, hydroxyapatite from both natural and synthetic sources, bone graft, or any combination or polymerized version of these materials.
  • FIG. 13D shows more clearly a perspective view of a preferred variation of the device shown in FIGS. 13 A- 13 C.
  • supportive backing ( 1300 ) may comprise a triangular form having a first end ( 1324 ) and a second end ( 1326 ).
  • This variation may typically be comprised of a front side, as shown in FIG. 13A, and a back side, as shown in FIG. 13B.
  • This region may comprise anchoring post ( 1304 ) as seen in FIGS. 13 A- 13 C, and this anchoring post ( 1304 ) may be a variety of shapes, e.g., a hook or an angled post, etc., but is preferably a perpendicular post having a proximal and a distal end.
  • post ( 1304 ) is preferably integral with backing ( 1300 ) so as to be formed from a single piece. This allows the device to be formed entirely into a single integral device by various manufacturing methods, e.g., injection or die molding.
  • Post ( 1304 ) may also be a separate structure fixedly attached to backing ( 1360 ) by any variety of fastening methods, e.g., mechanical fasteners or adhesives.
  • the distal end of post ( 1304 ) may be chamfered ( 1318 ), as shown in FIGS. 13 A and 13 C; this would provide a degree of tolerance to enable the surgeon to easily locate and insert post ( 1304 ) into a receiving hole without sacrificing device integrity.
  • Post ( 1304 ) may preferably further comprise a locking device proximal of chamfer ( 1318 ).
  • This locking device may utilize a variety of locking mechanisms but is shown in this variation as front tab ( 1310 ) and partial collar (or rear tab) ( 1312 ).
  • the locking mechanism is preferably integral with post ( 1304 ) and may have a diameter which is greater than a diameter of post ( 1304 ).
  • partial collar ( 1312 ) is preferably elastically deformable, but may also be plastically deformable.
  • the locking device may alternatively be a locking key mechanism or any conventional locking mechanism. However, the locking mechanism may be omitted entirely because the device bases much of its stability, once inserted into a patient's cranium, upon the downward forces applied by the overlying tissue. Thus, much of the forces acting on the device apply bending loads on post ( 1304 ) rather than axially-oriented tensile loads.
  • post ( 1304 ) may incorporate a distal channel or cavity ( 1306 ) which may extend partially into the post from the distal end or entirely through the post.
  • This distal cavity ( 1306 ) may have a diameter which is smaller than the diameter of post ( 1304 ) and may be aligned along an axis defined by post ( 1304 ) or may extend at an angle within post ( 1304 ).
  • the cross-section 13 E- 13 E of FIG. 13B is shown in FIG. 13E and shows more clearly the orientation of distal cavity ( 1306 ) within post ( 1304 ) for this variation.
  • Distal cavity ( 1306 ) may aid in reducing the amount of material used in the manufacture of the device, and is particularly useful in imparting a desirable degree of flexibility to post ( 1304 ) which may facilitate the insertion of post ( 1304 ) into the cranium.
  • Post ( 1304 ) may further define another hole, proximal cavity ( 1308 ), which may be used for tooling purposes as well as further adding to the flexibility of post ( 1304 ).
  • Proximal cavity may extend from chamfered proximal end ( 1320 ), which may also aid in tooling and helping to prevent tissue abrasion.
  • Proximal cavity ( 1308 ) may be non-concentrically located relevant to distal cavity ( 1306 ) and as shown in FIG. 13E, may extend partially into post ( 1304 ) or may be a through-hole extending entirely through to the distal end of post ( 1304 ).
  • proximal cavity ( 1308 ) may not necessarily be required, it may be utilized in a variety of ways.
  • proximal cavity ( 1308 ) may be used for aligning the device for tooling during manufacture, or it may also be used as a location to allow a user or surgeon to manipulate the device using tools for placement of the device within a patient.
  • This proximal cavity ( 1308 ) may have a diameter, e.g., about 1 mm, which is smaller than a diameter of post ( 1304 ).
  • the device may also comprise protrusions, tabs, or “ears” ( 1316 ), as seen in FIGS. 13 A- 13 D.
  • These protrusions ( 1316 ) are preferably integral with backing ( 1300 ) and may generally be located anywhere on backing ( 1300 ), but is preferably located near first end ( 1324 ), and more preferably near post ( 1304 ).
  • FIG. 13B shows protrusions ( 1316 ) located on either side of post ( 1304 ) and may provide a surface for manipulating the device by the doctor or surgeon either during placement into the patient or during removal.
  • FIGS. 13A and 13C show the front and side views, respectively, of attachment points ( 1302 ).
  • attachments points ( 1302 ) also called “tines” or “prongs” are preferably integrally affixed to backing ( 1300 ) but may also be separately attachable. They are preferably located on the back side of backing ( 1300 ), i.e., the side opposite of post ( 1304 ), and are preferably angled towards first end ( 1324 ).
  • individual attachment points ( 1302 ) maybe of varying sizes and angles depending upon the desired securing effect. Attachment points ( 1302 ) are discussed in greater detail above.
  • individual attachment points ( 1302 ) may vary in density, but are optimally spaced relative to one another. Factors for optimizing attachment point relative placement may comprise the ease of securing tissue to attachment points ( 1302 ) and the distribution of loads generated by the attached tissue over each of attachment points ( 1302 ). For instance, if attachment points ( 1302 ) were located too closely to one another, piercing the tissue would be difficult because of the distribution of stresses on the tissue to be pierced by attachment points ( 1302 ).
  • Another example may include having an increasing number of attachment points ( 1302 ) placed on backing ( 1300 ) the farther they are located from post ( 1304 ) or front end ( 1324 ), where the greatest number of attachment points are located in the direction of tensile loads on the device.
  • the spacing between individual points ( 1302 ) may be functional in that the number, density, and placement of points ( 1302 ) are optimized to evenly distribute the loads, e.g., shearing forces and bending moments, generated by the attached scalp in a brow-lift procedure.
  • attachment points ( 1302 ) are preferably configured to penetrate partially through the soft tissue. For instance, the sharpness of attachment points ( 1302 ) are such that they allow easy penetration through the periosteum.
  • FIGS. 13B and 13D show supportive backing ( 1300 ) which may also comprise through-hole ( 1314 ) that is defined within backing ( 1300 ).
  • Through-hole ( 1314 ) may generally be any shaped hole but is shown in this variation as being slotted.
  • Through-hole ( 1314 ) serves several functions which may include reducing the amount of material used in manufacturing the device, it may also add desirably to the flexibility of backing ( 1300 ).
  • through-hole ( 1314 ) may be configured as an alignment aid for tooling purposes. In addition to aligning, through-hole ( 1314 ) may also serve as a surface for a tool to grasp during device placement or removal.
  • Flexibility is preferable because it enables backing ( 1300 ) to bend and conform more closely to the shape of the patient's cranium against which the device is placed.
  • the degree of flexibility of backing ( 1300 ) may be tuned to a predetermined degree depending upon several factors, e.g., the configuration and size of through-hole ( 1314 ). Although shown as a slot, backing ( 1300 ) may define virtually any through-hole shape which serves the functions discussed above, i.e., increasing backing ( 1300 ) flexibility and aiding in tool alignment.
  • FIGS. 14 A- 14 D illustrate a preferable method of installing the device of FIG. 13A.
  • the top of a patient's head is shown having a hairline ( 1402 ).
  • the doctor or surgeon may initially make an incision ( 1404 ) in scalp ( 1414 ) preferably along a sagittal plane defined by cranium ( 1400 ).
  • the incision ( 1404 ) may typically be done in the patient's hairline, if possible, to minimize any visible scarring which may result.
  • the length of incision ( 1404 ) is typically determined by the length or amount of scalp the patient may desire or the surgeon may determine necessary to be lifted for a successful brow-lift procedure. This incision length may generally range from about 1 to 2 cm but may be more or less depending on the desired results.
  • a hole ( 1410 ) may be drilled within cranium ( 1400 ) at the incision second end ( 1408 ).
  • Hole ( 1410 ) drilled into cranium ( 1400 ) may typically be about 4.0 mm in diameter and may be made by a conventional surgical drill (not shown). As shown in FIG.
  • an MTDS device 1412 may be inserted between cranium ( 1400 ) and scalp ( 1414 ) at the incision first end ( 1406 ) such that post ( 1304 ) faces towards cranium ( 1400 ) and attachment points ( 1302 ) face the underside of scalp ( 1414 ), i.e., subperiosteal.
  • FIG. 14C shows an outline of device ( 1412 ) placed at incision first end ( 1406 ) and beneath scalp ( 1414 ). Once device ( 1412 ) has been inserted, the portion of the scalp tissue to be raised ( 1416 ) is set on device ( 1412 ) via attachment points ( 1302 ).
  • FIG. 15 shows a cross-sectional view of FIG. 14C where the tissue to be raised ( 1416 ) has been set on attachment points ( 1302 ).
  • tissue ( 1416 ) is set, a force ( 1500 ) may be applied to device ( 1412 ) preferably via post ( 1304 ).
  • Force ( 1500 ) then draws the device ( 1412 ) and tissue ( 1416 ) towards hole ( 1410 ) which is configured to receive post ( 1304 ).
  • force ( 1500 ) may be removed, thereby leaving the brow desirably lifted.
  • attachment points ( 1302 ) and post ( 1304 ) undergo shear and bending loads from the lifted tissue ( 1416 ) pulling on the device ( 1412 ).
  • these loads may decrease rapidly and approach zero as scalp ( 1414 ) heals.
  • This decrease in loading may take up to about six weeks, but device ( 1412 ) may stay in place beneath scalp ( 1414 ) for up to several years, with sufficient strength for about six weeks, to prevent scalp ( 1414 ) from moving excessively during the healing process and thereafter being absorbed by the body, thereby removing the necessity for a second procedure to remove device ( 1412 ).
  • FIGS. 16 A- 16 D show a preferred variation for an attachment point on a brow lift device.
  • FIG. 16A shows a top view of a single attachment point ( 1600 ) having a swept face ( 1606 ).
  • FIG. 16B is a side view of attachment point ( 1600 ) comprising distal pointed end ( 1602 ) and proximal base end ( 1604 ).
  • this variation is preferable because it is able to readily pierce tissue through the periosteum and simultaneously secure the tissue solidly by resisting any bending moments.
  • swept face ( 1606 ) may be specifically faceted so that face ( 1606 ) is preferably oriented to be essentially perpendicular to the plane of the tissue or scalp being penetrated, even though the tine axis defined by attachment point ( 1600 ) may not be perpendicular to the plane of the tissue or scalp.
  • Attachment points of this variation may optionally be manufactured individually and separately from the supportive backing and then individually attached via backing attachment ( 1608 ) to the backing by a variety of fastening methods, e.g., friction fitting, adhesives,.etc.
  • Optional backing attachment ( 1608 ) is seen in FIG. 16B, and more clearly in the back view of FIG. 16C.
  • FIG. 16D shows the variation more clearly in a perspective view.
  • Attachment point ( 1600 ) may be manufactured separately and attached, but it is preferably made integral with the MTDS device. Integrating the attachment point(s) ( 1600 ) with the backing not only provides uniformity in material type but also eliminates contact interfaces, which in turn may provide superior material strength and resistance to bending.
  • attachment points ( 1600 ) are preferably manufactured or attached so that they are all substantially canted in parallel towards the post. However, the attachment points are faceted such that the tips of attachment points ( 1600 ) are effectively perpendicular to the tissue to be penetrated. Attachment points ( 1600 ) may also be manufactured or assembled so that they point in different predetermined directions, depending on the desired application. Furthermore, attachment points ( 1600 ) may optionally be made of varying sizes, as discussed in further detail above.
  • FIG. 17A shows perspective 17 A- 17 A from FIG. 13C of the distal end of post ( 1304 ).
  • partial collar ( 1312 ) and front tab ( 1310 ) preferably comprises integral extensions or protrusions which act as a locking device.
  • Both partial collar ( 1312 ) and front tab ( 1310 ) may be plastically deformable but is preferably elastically deformable.
  • the protrusions provide opposing forces upon insertion into the skull to produce a friction fit which secures the device in the patient.
  • Partial collar ( 1312 ) may essentially circumscribe any predetermined percentage of the cirumference of post ( 1304 ), provided that a sufficient fit is produced.
  • post ( 1304 ) may alternatively use locking mechanisms comprising barbs and sub-cortical wings. Moreover, post ( 1304 ) may also be threaded so as to be rotated, or screwed, into a threaded mating hole located within the patient's cranium.
  • FIG. 17B shows an alternative locking configuration from FIG. 17A.
  • partial collar ( 1312 ) is replaced by full collar ( 1700 ), which is preferably integral with post ( 1304 ) and may also be plastically or elastically deformable.
  • FIG. 17C A further variation for a locking configuration is shown in FIG. 17C, in which first, second, and third tabs ( 1702 ), ( 1704 ), ( 1706 ), respectively, replaces partial collar ( 1312 ).
  • tabs ( 1702 ), ( 1704 ), ( 1706 ) are preferably integral and elastically deformable, although they may also be plastically deformable.
  • any locking configuration may be utilized by a doctor or surgeon depending upon the desired fit of post ( 1304 ).
  • FIG. 18A shows a back view of a variation of the cavity from FIG. 13B.
  • post ( 1800 ) is similar in most respects to the post shown in FIG. 13B.
  • Post ( 1800 ) is illustrated extending from backing ( 1806 ), which is partially shown merely for clarity, with front tab ( 1802 ) and partial collar ( 1804 ).
  • FIG. 18A shows a single axial cavity ( 1900 ) disposed within and extending from a proximal end of post ( 1800 ).
  • FIG. 19 A shows a perspective view of post ( 1800 ) from FIGS. 18 A- 18 C where axial cavity ( 1900 ) is axially disposed within post ( 1800 ) and extends partially through.
  • Cavity ( 1900 ) may extend through post ( 1800 ) perpendicularly to backing ( 1806 ) and concentrically along an axis defined by post ( 1800 ), but it may also extend off-axis and at an angle, as shown in FIG. 13E.
  • cavity ( 1900 ) may also extend entirely through post ( 1800 ) as a through-hole.
  • FIG. 19B shows the cross-section 19 B- 19 B taken from FIG. 18B clearly showing cavity ( 1900 ) extending partially into post ( 1800 ).
  • Latched post ( 2000 ) is shown having beveled latch ( 2002 ) pivotally disposed between post members ( 2006 ).
  • Latched post ( 2000 ) is shown extending from backing ( 2004 ) of which only a portion is shown for clarity.
  • Beveled latch ( 2002 ) is preferably integrally attached at a proximal end so that latch distal end ( 2010 ) is free to move.
  • Beveled latch ( 2002 ) is also preferably beveled to provide a gripping surface once the device is secured in the patient.
  • latch ( 2002 ) may be configured so that latch distal end ( 2010 ) may be biased to extend angularly away from post members ( 2006 ).
  • latch distal end ( 2010 ) may be urged towards post members ( 2006 ) to facilitate insertion by depressing lever ( 2008 ), located at the proximal end of latch ( 2008 ).
  • lever ( 2008 ) may then be released, thus allowing latch distal end ( 2010 ) to protrude angularly against the interior of the hole in the patient's cranium thereby providing a locking action.
  • angled latch post ( 2100 ) is preferably an angled latch ( 2102 ) having a beveled surface and being integral with backing ( 2104 ) of which only a portion is shown for clarity.
  • Angled latch ( 2102 ) may be integral with backing ( 2104 ) at the latch proximal end ( 2110 ) and disposed in-between post members ( 2106 ).
  • Angled latch ( 2102 ) may further be biased so that the latch distal end ( 2112 ) is angled away from backing ( 2104 ) and protrudes from in-between post members ( 2106 ).
  • latch distal end ( 2112 ) may similarly be urged towards post members ( 2106 ) to likewise facilitate insertion.
  • This movement or urging may be accomplished by depressing latch extension ( 2108 ), which may be integrally attached to both backing ( 2104 ) and angled latch ( 2102 ). Because latch extension ( 2108 ) may be attached in apposition to angled latch ( 2102 ), depressing it would thereby move latch distal end ( 2112 ) accordingly.
  • FIGS. 22 A- 22 B show alternative variations of the post which may include any of the features discussed herein.
  • FIG. 22A shows rounded post ( 2202 ) having a radiused distal end.
  • FIG. 22B shows angled post ( 2204 ) which defines a predetermined angle, ⁇ , between a plane of backing ( 2200 ) and a longitudinal axis defined by angled post ( 2204 ).
  • FIG. 22C shows another variation where a post is not used at all. Rather, a hole may be provided which has a diameter sufficient to receive a separate fastener. In this variation, the fastener may be used to secure backing ( 2200 ) to the patient's cranium through hole ( 2206 ).
  • Fasteners may comprise any conventional fasteners, e.g., pins, nails, screws, and so forth.
  • the hole ( 2206 ) may be omitted entirely and the backing ( 2200 ) may be secured to the cranial surface via an adhesive, e.g., cyanoacrylate.
  • an adhesive e.g., cyanoacrylate.
  • Such an adhesive is preferably biocompatible and provides sufficient bonding strength to support the tissue or scalp when lifted.
  • FIGS. 22 D- 22 E show an alternative variation where the post comprises radially expandable extensions.
  • Expandable post ( 2208 ) is preferably integral with backing ( 2200 ) to provide a uniform device.
  • FIG. 22D shows expandable post ( 2208 ) having a first diameter, d 1 .
  • This device may be inserted into the patient's cranium and positioned in a desired location and configuration. Once positioned, the diameter may be expanded by inserting expander device ( 2212 ), or using a tool configured to expand radially, which pushes against the inner surfaces of expandable post ( 2208 ).
  • the resulting expanded configuration is shown in FIG. 22E where expanded post ( 2210 ) has a second diameter, d 2 , which is larger than first diameter d 1 and thus aids in securing the device in place.
  • FIG. 23A shows a cross-sectional view of a typical drilled hole ( 2304 ) in cranium ( 2300 ) which extends down into the cranial bone ( 2302 ).
  • FIG. 23B shows another variation having angled hole ( 2306 ) which may be used to receive any of the post variations discussed herein.
  • FIG. 23C shows keyed hole ( 2308 ). This variation shows keyed hole ( 2308 ) having two concentric grooves within the hole; however, any number of grooves or variations thereof may be incorporated depending upon the desired hole profile and the tightness of the fit of the post within the hole.
  • FIGS. 24 A- 24 D show a variation on the brow lift device backing.
  • FIGS. 24 A- 24 B show a top and side view of a device which is similar in many aspects to the device as shown in FIGS. 13 A- 13 C.
  • the device comprises supportive backing ( 2400 ), post ( 2406 ), proximal cavity ( 2408 ), and attachment points ( 2402 ).
  • this variation also comprises an additional leading attachment point ( 2404 ).
  • This leading attachment point ( 2404 ) may be incorporated as a redundancy to ensure tissue adhesion should the other attachment points ( 2402 ) slip or tear from the scalp tissue.
  • FIG. 24C shows a perspective view of the device with leading attachment point ( 2404 ).
  • FIG. 24D shows a view of cross-section 24 D- 24 D from FIG. 24A. Proximal cavity ( 2408 ) is clearly seen to extend partially into post ( 2406 ); but post ( 2406 ) may incorporate other cavities and configurations as discussed above.
  • FIGS. 25A shows a top view of supportive backing ( 2500 ).
  • the device may comprise post ( 2504 ), proximal cavity ( 2508 ), and through-hole ( 2510 ), which may be slotted or may comprise any other shape.
  • the device may also comprise distal cavity ( 2506 ); however, this variation may have separatable attachment points which may be held in attachment point locations ( 2502 ). This variation may allow a doctor or surgeon to attach variously shaped attachment points in a variety of orientations relative to one another depending upon the desired result.
  • this variation may allow one to selectively attach attachment points at desired attachment point locations ( 2502 ). Any number of attachments points may be utilized; however, it is preferable that at least three attachment points or tines spaced relatively apart be used to optimize the holding capacity of the device to the tissue.
  • FIG. 26A shows a top view of an alternative variation for supportive backing ( 2600 ) which is configured to be flexible and hold multiple attachment points ( 2602 ).
  • This particular variation may be configured to reduce the amount of material used and simultaneously increase the flexibility to allow backing ( 2600 ) to conform to the patient's cranium. Flexibility may be achieved via the use of through-holes ( 2608 ) and slot ( 2610 ) which are seen in FIGS. 26A and 26C.
  • This variation also may incorporate post ( 2604 ) which may comprise anchoring tabs ( 2606 ), as seen in the side view of FIG. 26B, to aid in securing the device to the cranium.
  • FIG. 27A shows a top view of another alternative variation for supportive backing ( 2600 ) which is similar in most aspects to the device shown in FIG. 26A.
  • this variation incorporates latched post ( 2700 ).
  • Post ( 2700 ) may utilize a latching mechanism similar to the latched posts illustrated in FIGS. 20 - 21 .
  • This particular post comprises latch ( 2702 ) which is shown as having a hooked distal end.
  • FIGS. 28 A- 28 C shows top, side, and perspective views of a further variation for supportive backing ( 2600 ).
  • This variation illustrates latched post ( 2800 ) having beveled latch ( 2802 ) which may be similar to the latching device shown in FIG. 21.
  • FIG. 28D shows a view of cross-section 28 D- 28 D taken from FIG. 28A.
  • the latched post ( 2800 ) and the configuration of latch ( 2800 ) may be seen where latch ( 2802 ) is preferably integral with backing ( 2600 ).
  • FIG. 29C shows a variation also having attachment points ( 2902 ) and through-hole ( 2906 ).
  • this variation may comprise a configuration where two posts ( 2904 ) are attached to backing ( 2900 ).
  • Posts ( 2904 ) are preferably attached integrally to backing ( 2900 ) and may be orientated, as seen in FIG. 29A, such that posts ( 2904 ) are aligned along an x-axis.
  • the addition of a second post along the x-axis may aid in increasing the device resistance to rotation about the posts ( 2904 ) once it is inserted into the cranium. This added rotational stability may then allow the device to be inserted at various angles within the cranium relative to the tissue to be lifted depending upon the desired results.
  • FIG. 30A A further alternative backing having multiple posts is shown in FIG. 30A. Also seen in this variation are attachment points ( 3002 ) attached to backing ( 3000 ) and through-hole ( 3006 ) defined within backing ( 3000 ). However, this variation comprises two posts ( 3004 ), which are preferably integral with backing ( 3000 ), aligned along a y-axis. The additional post along the y-axis may aid greatly in also increasing the device resistance to rotation about posts ( 2904 ). This variation likewise may allow the device to be inserted at various angles within the cranium depending upon the desired results and the angle of desired lift. Furthermore, this particular variation may be desirable where cranial physiology would prevent two adjacent posts from being secured into the cranium.
  • FIG. 31A This variation shows a top view of such a tool which may serve several functions.
  • This tool comprises manipulation handle ( 3100 ), by which a doctor or surgeon manipulates, for example, the device of FIGS. 13 A- 13 C.
  • FIG. 31B cross-section 31 B- 31 B from FIG. 31A, handle ( 3100 ) may be hinged by any conventional methods but shown here as bolt hinge ( 3104 ).
  • grasping members ( 3102 ) At a distal end of handle ( 3100 ) are grasping members ( 3102 ). These grasping members ( 3102 ) may generally be designed to have opposing members which may be urged together or apart, i.e., to close or open; as handle ( 3100 ) is urged about hinge ( 3104 ).
  • handle ( 3100 ) may also comprise a locking mechanism which may hold handle ( 3100 ) and grasping members ( 3102 ) in a desired position.
  • Grasping members ( 3102 ) are preferably designed or configured to securely hold the supportive backing ( 1300 ) relatively planar with grasping members ( 3102 ) such that attachment points ( 1302 ) face away from the patient during insertion. It is further preferable that grasping members ( 3102 ) securely hold the MTDS device via anchoring post ( 1304 ) to allow easy handling and insertion.
  • grasping members ( 3102 ) are preferably angled relative to a plane defined by handle ( 3100 ) at a predetermined angle, ⁇ , to further allow easy insertion of the device.
  • FIG. 31C shows a close-up cross-sectional view of the distal end of the insertion tool.
  • support block ( 3106 ) is preferably configured to attach to handle ( 3100 ) at hinge ( 3104 ) yet still allow rotational movement of the tool about hinge ( 3104 ).
  • Support block ( 3106 ) also preferably defines channel ( 3110 ) through a top surface of support block ( 3106 ), as shown in FIGS. 31 A- 31 C. Channel ( 3110 ) may run substantially parallel relative to a symmetrical axis defined by the insertion tool.
  • Support block ( 3106 ) may be supported by support post ( 3108 ) which may help in preventing rotation of support block ( 3106 ) about hinge ( 3104 ) as well as maintaining a position of the block relative to handle ( 3100 ).
  • channel ( 3110 ) in support block ( 3106 ) is preferably angled relative to the plane defined by handle ( 3100 ). While grasping members ( 3162 ) are angled at an angle, a, relative to handle ( 3100 ), channel ( 3110 ) may be angled relative to grasping members ( 3102 ) at a desired angle, ⁇ . This angle ⁇ is preferably similar to the angle formed by attachment points ( 1302 ) relative to supportive backing ( 1300 ). Angling channel ( 3110 ) may allow a mating block, described below in further detail, to run along channel ( 3110 ) and press against the tissue to be lifted against attachment points ( 1302 ). A block pressing against tissue to be set on attachment points ( 1302 ) allows for optimal piercing of the tissue if the force applied by the block is in the same or similar angle or direction as attachment points ( 1302 ).
  • FIGS. 31D and 31E show a bottom and a top perspective view, respectively, of the insertion tool from FIG. 31A grasping an device.
  • FIG. 32A the same insertion tool from FIG. 31A is shown with the addition of depressible block ( 3200 ) mated with support block ( 3106 ).
  • Depressible block ( 3200 ) may be mated with support block ( 3106 ) via channel ( 3110 ), into which mating slide ( 3204 ) may be inserted.
  • Slide ( 3204 ) may be an integral extension of depressible block ( 3200 ) and is preferably configured to allow a degree of tolerance relative to channel ( 3110 ) so that depressible block ( 3200 ) may slide freely or when urged via channel ( 3110 ) and mating slide ( 3204 ), as shown by the arrow in FIG. 32B.
  • FIG. 32B also shows a cross-section 32 B- 32 B from FIG. 32A.
  • Depressible block ( 3200 ) further illustrates depression region ( 3202 ), which may be a slight indentation defined in the surface facing away from the patient during insertion. Depression region ( 3202 ) may serve as a locator for the optimal region the physician may depress to force depressible block ( 3200 ) and contact surface ( 3206 ) downward against the tissue and attachment points ( 1302 ) in order to set, or pierce, the tissue.
  • FIG. 32C shows a close-up cross-sectional view of the distal end of the insertion tool with depression block ( 3200 ) inserted.
  • Contact surface ( 3206 ) is the surface which ultimately presses the tissue against attachment points ( 1302 ) and is preferably relatively parallel with the plane defined by grasping members ( 3102 ) and supportive backing ( 1300 ) to present the greatest surface area pressing against the tissue.
  • Depressible block ( 3200 ) is further preferably configured to slide or run along the same angle, ⁇ , at which support block ( 3106 ) is set to provide a planar contact surface ( 3206 ) to press against the tissue at an optimal angle, which may be at the same or similar angle as attachment points ( 1302 ), as discussed above.
  • FIGS. 32D and 32E show a bottom and a top perspective view, respectively, of the insertion tool from FIG. 32A with depressible block ( 3200 ) set in channel ( 3110 ).
  • depressible block ( 3200 ) the tool may also be used without a block for depressing the tissue or scalp against the attachment points ( 1302 ). Rather, affixing or setting the tissue may also be done by hand, i.e., simply depressing the tissue with the hand and fingers against attachment points ( 1302 ).

Abstract

A tissue approximation device and processes for using the device are provided. The device is an implantable, biodegradable construct (except for hernia repairs) that has attachment points emanating from a supportive backing. The device improves the mechanical phase of wound healing and evenly distributes tension over the contact area between the device and tissue. Processes for using the device include wound closure, vascular anastomoses, soft tissue attachment and soft tissue to bone attachment. Several variations are particularly applicable to facilitating tissue approximation in surgical cosmetic applications, particularly brow lifts. Generally, scalp tissue to be lifted may be set on a brow lift device via attachment points, and the device may then be secured to a patient's cranium. Variations of the device are described along with a method of installing the brow lift device. Also described is a tool particularly useful for installing a brow lift device.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This is a continuation of U.S. patent application Ser. No. 09/788,118, filed Feb. 16, 2001, which is a continuation-in-part of U.S. patent application Ser. No. 09/574,603, filed May 19, 2000, each of which is incorporated herein by reference in its entirety.[0001]
  • FIELD OF THE INVENTION
  • This invention is in the field of surgery. More particularly, it relates to a tissue approximation device. By “approximation” we mean to include variously the specific movement of two regions of tissue towards each other, the movement of one or more selected tissue regions or areas, the maintenance and/or fixation of one or more selected tissue regions in a selected position, and the maintenance and/or fixation of a selected area of tissue against shape variation due to tissue “springiness.” We will also refer to these functions as “stabilization” of a tissue region. For instance, the inventive device may be used to facilitate wound healing by holding soft tissue together under improved distribution of tension and with minimal disruption of the wound interface and its nutrient supplies. Generally, the device has multiple sites for grasping said tissue using tines or prongs or other generally sharp, projecting points, extending from and preferably affixed to a single, supportive backing. Various processes of using the inventive device are also a portion of the invention. [0002]
  • BACKGROUND OF THE INVENTION
  • The inventive device is preferably used for the approximation, mobilization, or fixation of tissue. As noted above, these terms are meant variously to include the specific movement of two regions of tissue towards each other, the movement of one or more selected tissue regions or areas, the maintenance of one or more selected tissue regions in a selected position, and the maintenance of a selected area of tissue against shape variation due to tissue “springiness.” Using our inventive device, a variety of approximation procedures may be achieved, variously from the movement of two tissue areas towards each other at a common wound margin to the maintenance of an area of tissue in a specific position during or after a surgical procedure, e.g. brow lifts or ACL regions. [0003]
  • For instance, our inventive device allows healing of soft tissue due to its maintenance of tissue position. The surgically induced healing of soft tissue wounds involves two phases, the mechanical phase of wound closure followed by the biochemical phase which involves protein bridging and scarring. In the mechanical phase, the edges of soft tissue are held in contact by essentially two components: 1) The physical properties and device-tissue interactions of the materials holding the tissue edges in contact, e.g. sutures or staples; and 2) An early deposition of proteinaceous material that has adhesive characteristics, e.g. fibrin glue. [0004]
  • Only in the biochemical phase, which occurs after the mechanical phase, do tissue components replace the mechanical components adhering the wound surfaces. During the biochemical phase, the inflammatory cascade generates signals which induce fibroblasts to migrate into the wound and synthesize collagen fibers. [0005]
  • Collagen is the primary constituent of connective tissue and ultimately determines the pliability and tensile strength of the healing wound. Tensile strength is gradually recovered; 60% of ultimate wound strength is achieved after approximately 3 months. However, this process is successful only if the previous mechanical phase has proceeded normally. [0006]
  • The surgeon's goal is to optimize the strength and often the cosmetic appearance of a wound closure or tissue coaptation. For this to happen, tissue is mechanically approximated until the wound has healed enough to withstand stress without artificial support. Optimal healing requires the application of appropriate tissue tension on the closure to eliminate dead space but not create ischemia within the tissue. Both of these circumstances increase the risk of wound infection and wound dehiscence. [0007]
  • Although the biomaterial composition of sutures has progressed considerably, the sophistication of manual suture placement in wounds has advanced relatively little since the original use of fabrics several thousand years ago to tie wound edges together. The wide tolerance ranges for suture placement, tension, and configurations, both amongst different surgeons and for different implementations by the same surgeon, result in a significant component of sub-optimal technique. Yet, the technique used for wound closure forms the foundation for all subsequent events in the healing process. It is during this mechanical phase that tissue tension is high, edema and inflammation are intense, wound edge ischemia is greatest, and that one can already observe the complication of wound failure [0008]
  • Soft tissue is well known for its inability to hold tension. Even when optimally placed, sutures gradually tear through soft tissue, producing gaps in wounds and possibly leading to the eventual failure or sub-optimization of wound healing. Furthermore, since sutures require the implementation of high levels of tension to counteract the forces acting to separate tissues, they may strangulate the blood supply of the tissues through which they are placed, thus inhibiting the delivery of wound nutrients and oxygen necessary for healing. [0009]
  • There have been many attempts to construct wound closure devices that decrease closure time and improve cosmesis. U.S. Pat. Nos. 2,421,193 and 2,472,009 to Gardner; U.S. Pat. No. 4,430,998 to Harvey et al.; U.S. Pat. No. 4,535,772 to Sheehan; U.S. Pat. No. 4,865,026 to Barrett; U.S. Pat. No. 5,179,964 to Cook; and U.S. Pat. No. 5,531,760 to Alwafaie suggest such devices. However, these devices are not useful in surgical or deeper wounds. They only approximate the skin surface, joining skin edges variously through external approaches, using adhesives or nonabsorbable attachment points that penetrate tissue. The devices minimally improve the biomechanics of wound closure, and do not adequately approximate the deeper layers of the closure, i.e. fascia or dermis. Externally placed attachment points that puncture the skin lateral to the wound also interfere with long-term cosmesis and provide a possible conduit for infecting microorganisms. [0010]
  • U.S. Pat. No. 5,176,692 to Wilk et al., discloses a device for hernia repair that utilizes mesh with pin-like projections to cover hernia defects. This device, however, is used in a laparoscopic hernia repair in conjunction with an inflatable balloon. Closure devices for deeper tissues are described in U.S. Pat. No. 4,610,250 to Green; U.S. Pat. No. 5,584,859 to Brozt et al.; and U.S. Pat. No. 4,259,959 to Walker. However, these devices either work in conjunction with sutures, are made of materials that do not suggest biodegradability, or are designed in such a way as not to impart uniform tension on the closure, increasing the risk of wound separation and failure of wound healing. [0011]
  • The present invention is a biodegradable tissue approximation device. The device includes a plurality of attachment points, e.g. tines, prongs, or other generally sharp or blunt parts, connected to a backing that can be manipulated to close wounds, join soft tissue or bone, or create anastomoses. This multi-point tension distribution system (MTDS) device may be placed with minimal tissue trauma. The present invention typically incorporates the deeper layers of tissue within the closure, and the multiple attachment points distribute the resulting tension, often uniformly. Approximation from the internal aspect of the wound minimizes the potential for dead space in the closure, thus decreasing the risk of sub-optimal healing. Moreover, because the device is absorbed, a second procedure is not typically needed to remove the device. [0012]
  • Thus, the present invention improves the mechanical phase of healing by facilitating wound closure and/or the coaptation of tissues prior to initiation of the biochemical phase of wound healing. Placement of the device maximizes the chance for a good cosmetic result and is not heavily dependent on surgeon skill. Closure time is also shortened, decreasing overall cost and risk of operative complications. [0013]
  • SUMMARY OF THE INVENTION
  • The present invention is a device that improves the mechanical phase of wound healing. In the preferred embodiment, tissue edges are stabilized by a plurality of attachment points that extend from and are affixed to a supportive backing. The density, shape, length, and orientation of attachment points on the backing may be varied to suit the procedure, type of tissue being approximated, and/or area of the body involved. The flexibility of the backing is also variable and dependent on the materials used and dimensions of the backing. In function, the forces or tension placed upon the tissues by the inventive device are mirrored in the backing of the device. Said another way, the shape of the tines relay any forces to the backing of the device. The backing is generally in shear along its length. In the preferred embodiment, the device is biodegradable, and the attachment points uniformly distribute tension over the contact area between the device and tissue. [0014]
  • Processes of using the present invention are also provided. The device may be used to close wounds and create vascular anastomoses. The device may also be manipulated to approximate soft tissue and soft tissue to bone. The device may be used to mobilize, move, or stabilize a selected region or area of tissue, as noted above. [0015]
  • A further application may include approximation of soft tissue in brow lift and other craniofacial and maxillofacial surgical procedures. Such a device may be optimized to distribute loads over the device while the device remains attached to the patient's cranium. The brow lift device may further include multiple variations of the device and is preferably biodegradable and absorbable by the patient. The device may also be made from biological materials. A device variation may be installed into a patient by first creating an incision in the patient's scalp. This incision is preferably a predetermined length corresponding to the length of scalp or tissue desired to be lifted. At one end of the incision, preferably the end farthest away from the scalp or tissue to be lifted, the doctor or surgeon would drill a hole into the cranium. At the opposing end of the incision, the device may be inserted under the scalp or tissue which is then set on the device via attachment points affixed to the device surface. The surgeon may then lift the scalp or tissue via the device, which may then be secured to the cranium by inserting an anchoring post into the drilled hole. Alternatively, after the incision is made and the hole drilled in the cranium, the device may first be inserted into the hole via the post. The surgeon may then lift the scalp or tissue into position over the device and then set the lifted tissue onto the attachment points. [0016]
  • In either case, the procedures may be accomplished by a variety of methods. One particularly useful tool may comprise a manipulatable handle having opposing grasping arms. The grasping arms may be used to secure and handle the device via the anchoring post. The tool may include a slidable block which may be angularyl disposed relative to the handle so that the block may press down and secure a portion of the scalp or tissue to be lifted. The block is preferably disposed angularly such that the angle of the block is similar to the angle of the attachment points affixed to the brow lift device. Angling the block may allow the tissue to be optimally set against the attachment points and may provide the least resistance to piercing the scalp or tissue. Alternatively, the tool may omit the slidable block completely and the tissue may be set against the attachment points by other methods such as simply pressing against the tissue by hand.[0017]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIGS. [0018] 1A-1D are plan, perspective views of various MTDS devices.
  • FIGS. [0019] 2A-2E are side views of various attachment point shapes and orientations.
  • FIGS. [0020] 3A-3D and 3F-3G are side views of various attachment points.
  • FIG. 3E is a side view of a two-sided MTDS device. [0021]
  • FIG. 3H is a plan, reverse perspective view of nubs on the inferior surface of a MTDS device. [0022]
  • FIG. 4A is a side, cross-sectional view of attachment points that run through the width of a backing. [0023]
  • FIG. 4B is a side view of attachment points on a strip of backing material. [0024]
  • FIG. 4C is a plan, perspective view of the embodiment in [0025] 4B on a backing.
  • FIG. 4D is a plan, perspective view of attachment points on a solid backing. [0026]
  • FIG. 5A is a plan, perspective view of attachment points canted in one direction. [0027]
  • FIGS. [0028] 5B-5D are plan, perspective views of attachment points with various orientations on a backing.
  • FIG. 5E is a side view of attachment points becoming progressively shorter the closer they are to the center of the device. [0029]
  • FIG. 5F is a side view of attachment points becoming progressively shorter the farther they are from the center of the device. [0030]
  • FIGS. [0031] 6A-6B are schematic views of a skin wound and wound repair using the MTDS device.
  • FIG. 7 is a schematic view of an abdominal wound closure using MTDS devices. [0032]
  • FIGS. [0033] 8A-8B are schematic views of an abdominal hernia and hernia repair using the MTDS device.
  • FIGS. [0034] 8C-8D are side and schematic views, respectively, of a MTDS device with attachment points on the edges of the backing and a central area without attachment points.
  • FIGS. [0035] 9A-9B are schematic views of a ruptured tendon and tendon to bone repair using the MTDS device.
  • FIG. 10A is an axial view of a cross-section of a vessel repaired with the MTDS device. [0036]
  • FIGS. [0037] 10B-10C are side, schematic views of vessel free ends and a vascular anastomosis using the MTDS device.
  • FIGS. [0038] 11A and 11B-11C are schematic, side, and cross-sectional side views, respectively, of a transected tendon and a tendon to tendon repair using the MTDS device.
  • FIG. 11D is an axial, cross-sectional view of the MTDS tendon to tendon repair. [0039]
  • FIG. 11E is a side view of a vascular anastomosis using the MTDS device on the external surface of a vessel. [0040]
  • FIGS. [0041] 11F-11G are side, schematic views, and FIG. 11H is an axial view of the ends of a tubular structure being joined by externally placing strips of a MTDS device on approximated tissue.
  • FIG. 11I is an axial view of a hinge in the backing of a device. [0042]
  • FIGS. [0043] 11J-11K are axial views of decreased backing material that are areas of enhanced device flexibility.
  • FIGS. [0044] 11L-11M are side views of a spring or coil-like MTDS device being used to approximate tissue.
  • FIG. 12A is a schematic view of the MTDS device being used in a brow-lift procedure. [0045]
  • FIG. 12B is a plan, perspective view of the MTDS device used in a brow-lift. [0046]
  • FIG. 13A is a front view of a variation of a MTDS device having an integral post or anchor used in a brow-lift. [0047]
  • FIGS. [0048] 13B-13C are a top view and a side view, respectively, of the device of FIG. 13A showing the attachment points and integral post.
  • FIG. 13D is a perspective view of the device of FIG. 13A. [0049]
  • FIG. 13E is a view of [0050] cross-section 13E-13E from FIG. 13B showing the cavities in the post.
  • FIGS. [0051] 14A-14D show a top view of a patient's cranium during insertion of the device of FIG. 13A.
  • FIG. 15 is a cross-sectional side view of the insertion and securing procedure of the MTDS device from FIG. 14C. [0052]
  • FIGS. [0053] 16A-16D are various views of an exemplary attachment point from FIG. 13A.
  • FIG. 17A is a view from [0054] perspective 17A-17A from FIG. 13C of the post having a partial collar.
  • FIG. 17B is a variation of FIG. 17A of the post having a full collar. [0055]
  • FIG. 17C is a variation of FIG. 17A of the post having several tabs. [0056]
  • FIGS. [0057] 18A-18C show back, front, and side views of a post variation missing a distal cavity.
  • FIG. 19A is a perspective view of the post from FIG. 18B showing the proximal cavity within the post. [0058]
  • FIG. 19B is a view of [0059] cross-section 19B-19B from FIG. 18B showing the proximal cavity.
  • FIG. 20 is a perspective view of a post variation having a beveled latching mechanism. [0060]
  • FIG. 21 is a perspective view of another post variation having an integral beveled latching mechanism. [0061]
  • FIG. 22A is a side view of a post variation having a rounded hook. [0062]
  • FIG. 22B is a side view of a post variation having an angled post. [0063]
  • FIG. 22C is a side view of the supportive backing defining a hole to receive a separate fastening device. [0064]
  • FIGS. [0065] 22D-22E are side views of a radially expandable post variation.
  • FIG. 23A is a cross-sectional view of atypical hole in a patient's cranium for receiving a post. [0066]
  • FIG. 23B is a cross-sectional view of an angled hole variation for receiving a post. [0067]
  • FIG. 23C is a cross-sectional view of a possible keyed hole variation for receiving a post. [0068]
  • FIGS. [0069] 24A-24C are top, side, and perspective views of an alternative variation of the MTDS device.
  • FIG. 24D is a view of [0070] cross-section 24D-24D from FIG. 24A.
  • FIGS. [0071] 25A-25C are top, side, and back views of another variation of the MTDS device which may receive separatable attachment points.
  • FIGS. [0072] 26A-26C are top, side, and back views of a variation of the MTDS device having dual tabs on the post.
  • FIGS. [0073] 27A-27C are top, side, and back views of a variation of the MTDS device having a latching mechanism on the post.
  • FIGS. [0074] 28A-28C are top, side, and perspective views of a variation of the MTDS device having another latching mechanism on the post.
  • FIG. 28D is a view of [0075] cross-section 28D-28D from FIG. 28A.
  • FIGS. [0076] 29A-29C are edge, back, and side views of a variation of the MTDS device having two adjacent posts.
  • FIGS. [0077] 30A-30C are edge, back, and side views of another variation of the MTDS device having two aligned posts.
  • FIG. 31A is a top view of a variation of the insertion tool showing the channel. [0078]
  • FIG. 31B is a view of [0079] cross-section 31B-31B from FIG. 31A showing an MTDS device and a side view of the support block.
  • FIG. 31C is a close-up view of the MTDS device and support block from FIG. 31B. [0080]
  • FIG. 31D is a perspective view from the bottom showing the insertion tool of FIG. 31A. [0081]
  • FIG. 31E is a perspective view from the top showing the insertion tool of FIG. 31A. [0082]
  • FIG. 32A is a top view of the insertion tool from FIG. 31A showing the block assembly. [0083]
  • FIG. 32B is a view of [0084] cross-section 32B-32B from FIG. 32A showing the MTDS device and a side view of the block assembly.
  • FIG. 32C is a close-up view of the MTDS device and block assembly from FIG. 32B. [0085]
  • FIG. 32D is a perspective view from the bottom showing the insertion tool of FIG. 32A. [0086]
  • FIG. 32E is a perspective view from the top showing the insertion tool of FIG. 32A.[0087]
  • DETAILED DESCRIPTION OF THE INVENTION
  • Our inventive device may be used when working with bone anchors or a variety of soft tissues. The device is of the general configurations shown in FIGS. [0088] 1A-1B and comprises a plurality of attachment points (102) emanating from and preferably affixed to a supportive backing (100) that is a generally a porous material that may have the structure of a mesh, net, or lattice. The degree of flexibility of the backing is determined by the material of construction, the shape and dimensions of the device, the type and properties of the approximated tissue, and the area of the body into which the device is placed. For example, a tightly curved or mobile part of the body, e.g., a joint, will require a more flexible backing, as would a tendon or nerve repair due to the amount of bending the device needs for the attachment. Also, depending on the type of material used, the thickness of the backing as well as its width and length may determine the flexibility of the device. Furthermore, the backing may be pre-fabricated into different shapes as shown by the sharp corners (104) and rounded corners (106) in FIGS. 1C and ID. The fabricated cross-sectional shape and dimensions of the mesh elements may vary to promote flexibility in regions of the backing. The cross-sectional shape of the mesh elements may be chosen to minimize local compressive stress between the backing and surface it rests upon, or have rounded and filleted edges to be less obtrusive to local circulation. The plurality of attachment points distribute tension over the contact area between the device and the tissue. The tension or forces are generally also distributed in the tissue and in the backing parallel to the interfaces between the tissue and the device.
  • Materials such as biodegradable polymers are preferably used to construct the backing and attachment points. Polymers synthesized from monomers comprising esters, anhydrides, orthoesters, and amides are particularly suitable for biodegradation. Examples of biodegradable polymers are polyglycolide, polylactide, poly-α-caprolactone, polydiaxanone, polyglyconate, polylactide-co-glycolide, and block and random copolymers of these polymers. Copolymers of glycolic, lactic, and other α-hydroxy acids are highly desirable. Although we prefer to use a single polymer or copolymer in a specific device, generally for ease of construction, the invention is not so limited. An example of an inventive device may be made of two or more types of polymers or copolymers (or molecular weights of the same polymer or copolymer). For instance, the backing material might be produced from a more flexible polymer and the points or tines of a stiffer material. The inflammatory response to these polymers is minimal, and they have been safely used in suture materials, stents, drug delivery devices, orthopedic fixation devices, and intestinal anastomotic rings. [0089]
  • Generally, we will refer to the attachment points as “tines” or “prongs”. These tines will refer both to points which are either sharp, i.e. able to separate tissue in a chosen use, or blunt, i.e. not able to separate tissue in that use. The attachment points may also be referred to as “barbs” when those points have the retaining point shown in several of the Figures discussed below. Generally, the tines, prongs or barbs penetrate into soft tissue and for a short distance. The attachment points preferably do not traumatize tissue in any major way, e.g., by penetration through a selected area of tissue to meet another device on the opposite side of the tissue. For instance, the attachment points generally do not penetrate the subject soft tissue more than 0.100″. The attachment points may be considered to interlock with modulation in the adjacent soft tissue rather than penetrate as by a pin or bolt. [0090]
  • As shown in FIGS. [0091] 2A-2E, the shape of the attachment points or barbs may be varied depending, e.g., on the area of the body involved and the type of tissue requiring closure or reapproximation. The tines may be canted or erect, but in a preferred variation, the general structure of the tines is of a rose thorn shape. As shown in FIG. 2A, the tines (200) have a wide base (202) that supports a projection (204) from the backing (206) against the degree of tension required to close a wound or approximate tissue. For example, the attachment points may be erect tines (FIG. 2B-208), canted tines (FIG. 2C-210), canted arrowheads (FIG. 2D-212), canted hooks (FIG. 2E-214), or may have a single straight cross-section (FIG. 3G-311) that is nail-like, that does not vary over the length of the prong, for example, similar in shape to a nail or sharpened pencil. Furthermore, the tip of the attachment points may be varied as shown in FIGS. 3A-3D. The tips may be barbed (300 in FIG. 3A), arrowhead (double-barb) (302 in FIG. 3B), or cheese grater (304 in FIG. 3D). A side view of the cheese grater tips is shown in FIG. 3D. A faceted tip (303 in FIG. 3F) is shown. The faceted tip is especially desirable where the force to penetrate tissue is normal to the tissue surface.
  • The connection of the prong to the backing may be rounded or filleted, or the backing built-up around the prong, to reduce structural stress concentrations. The backing or connecting structure may branch out away from the center, with each branch in turn branching to grapple tissue in a distributed fashion. All edges of the device may be smooth except where sharpness is needed at the tip of the prong to pierce into the tissue. Once the prongs pierce into the tissue, the tissue may become supported against the backing to minimize additional piercing or irritation by the prong tip. The device may be molded, stamped, machined, woven, bent, welded or otherwise fabricated to create the desired features and functional properties. [0092]
  • The MTDS device may also have attachment points both on its front side ([0093] 305) and on a back side (307). As shown in FIGS. 3B and 3E, the front and back sides have attachment points. The attachment points on the front side (309) generally approximate tissue. The attachment points on the back side (307) are auxiliary attachment points that may comprise forms such as round nubs (306) or pointed nubs (308). The auxiliary attachment points may be used to secure or promote stable implantation of the device. Soft tissue may be gently pressed into open regions of the backing thereby helping to fix the device in place against both underlying and overlying tissue after the modulation or interlocking of skin. FIG. 3H shows a reverse view of the nubs (310) on the back-side of the device (312). The attachment points on a two-sided device are not limited to the combinations disclosed above, but may comprise any combination of the previously mentioned attachment point shapes and orientations.
  • Structural variations can also be made to the backing of the device. As shown in FIG. 4A, the attachment points ([0094] 400) may be placed through a plurality of openings in the backing (402) and secured to the backing by a flange (404) or hub. In FIGS. 4B and 4C, the points (406) may also connect to strips (408) of the same material as the attachment points which are then secured to a backing (410). The backing may also be comprised of a solid material (412) instead of a porous material.
  • The extent of porosity, or total surface area may be used to control the absorption rate of the device, and may also be used to optimize the strength-to-mass properties of the device, increasing the section modulus of structural cross-sections per unit mass. The backing structure may comprise partial folds, waves or grooves to help hold tissue against both surfaces of the backing. Regions of the backing may function as suction cups to help hold tissue to the backing. [0095]
  • The density, distribution, length, and orientation of attachment points on the backing may be modified depending on the type of wound closure. Attachment points may be bent or curve gradually, with the tip directed at an optimal angle relative to the backing to aid device penetration and stability within the tissue, and to reduce tissue irritation after device installation. Attachment points may be canted in one direction ([0096] 500), such as toward the center of the device as shown in FIG. 5A. The attachment points may also be variously oriented, such as toward center (502) and erect (504), or toward center (502) and away from center (506). It is within the scope of this invention to have attachment points extending in any relative direction or orientation on the backing. Or, as shown in FIG. 5D, the backing is divided into a first area (508) and a second area (510). Attachment points in the first area (512) and second area (514) are canted toward each other. The inventive device may also be sectioned into a plurality of areas, with each section being variously oriented to another section.
  • In another variation of the invention, attachment points of various lengths emanate from a single backing. For example, in FIG. 5E, the attachment points ([0097] 515) are progressively shorter the closer they are to the center of the device (516). The attachment points (515) may also become progressively shorter the farther they are from the center of the device as shown in FIG. 5F. The variations shown in FIGS. 5B and 5C have regions of attachment points canted toward the center (502) and with other regions of attachment points with erect points (504 in FIG. 5B) or canted away from the other end (506 in FIG. 5C) of the device. These variations are more difficult to dislodge when situated in an area of the body having both to-and-fro movement, e.g., the inside of an elbow or back of the knee, or during placement of the device.
  • Portions of simple wound closures are shown in FIGS. [0098] 6A-6B. These wound closures involve placing the MTDS device (600) at the bottom of the wound, usually at the level of the sub-dermis (602). The edges of the wound (604) are approximated and then secured by fixation, e.g., by pressing, to the multiple attachment points (606). An example of the MTDS device placement in a laparotomy closure is shown in FIG. 7. The increased length of this incision requires placement of multiple devices (700).
  • A unique application of this device occurs in hernia repair in which case the biomaterials are not absorbable but rather are more likely to be PTFE and POPU (“Gore-Tex”), polypropylene, or other permanent implant material. Once the hernia ([0099] 801) is reduced, a MTDS device may be used to close the hernia defect by joining the edges of the separated fascia (804) as seen in FIGS. 8A and 8B. However, the device may also be modified to aid repair of a difficult hernia resulting from such circumstances as operating on an obese patient or large hernia, or having a wide fascial debridement where the fascial edges cannot be brought together. FIGS. 8C and 8D are variations of the inventive device that may be used in these cases. The attachment points (800) are secured to the ends of the backing (806) and are still used to adhere the device to tissue, but the points are spaced so that the central area of the backing is a flat surface without points (802) that covers the defect. The device in FIG. 8D is preferably used in an incisional hernia repair.
  • The MTDS device may also be constructed to reattach soft tissue such as tendons and ligaments to bone, as well as other soft tissue such as cartilage and the free ends of vessels or nerves. In FIG. 9A, the inventive device functions similar to a clamp. Backings with attachment points ([0100] 900) are sides of a clamp that has a first end (901) and a second end (904). The first end (901) grasps tissue and the second end (904) is an anchor for tissue. For example, a ruptured tendon (906) may be fixed to the attachment points (908) of the first end of the clamp (901) and approximated to bone (902) with an anchor such as a pin or nail at the second end of the clamp (904), as seen in FIG. 9B. After mechanical fixation of the tissues, the biochemical phase of the wound healing process will begin, eventually forming a natural union between tendon and bone. Ligament and cartilage to bone unions using the MTDS device would undergo the same mechanical and biochemical processes.
  • Vascular anastomoses may also be constructed with the MTDS device. In FIG. 10B, the backing has a tubular shape ([0101] 1000) with attachment points (1001) on the outside surface (1002). The outside surface (1002) has a first end (1003) and a second end (1005) that opposes the first end (1003). The free ends of a vessel(s) (1004) are placed over the device, creating an anastomosis (1006) that is secured by attachment points fixed into the wall of the vessels (1008). The attachment points are preferably pointing towards the anastomosis (1006), with the attachment points on the first end (1003) being canted toward the second end (1005) and vice-versa. An axial view of the relationship of the attachment points (1010) to the vessel wall (1012) is shown in FIG. 10A.
  • Vessels and other soft tissue such as nerves, cartilage, tendons, and ligaments may also be joined as seen in FIGS. 11A and 11B. Two ends of tissue ([0102] 1100) are brought and held together by the backing and attachment point construct (1102) being wrapped around the circumference of the tissue (1104). The attachment points (1106) are on the inside surface of the backing (1107) and secure the union at a central region (1108) as seen in FIG. 11C. An axial, cross-sectional view of the relationship between the attachment points (1110) and tissue (1112) is shown in FIG. 11D. The resulting form is, i.e., a tubular structure that has an inside surface (1107) with a central region (1108). The attachment points on the inside surface (1106) may be canted toward the central region (1108). FIG. 11E shows the device with attachment points (1101) on the inside surface of the backing (1103) being wrapped around vessel ends to create an anastomosis (1105). Instead of being wrapped around tissue, edges (1113) of tubular structures (1115) can also be joined by externally placing 2 or more strips of backing of a MTDS device (1114) on approximated tissue as shown in the side views of FIGS. 11F-11G, and the axial view in FIG. 11H. The attachment points (1117) also point toward the area of tissue approximation (1116).
  • FIGS. [0103] 11I-11M are additional variations of the invention which vary the mechanisms used to improve device flexibility. In FIGS. 11I-11K, the backing has areas of comparatively higher flexibility than other areas of the backing. In an axial view of the variation in FIG. 11I, the backing is equipped with hinges (1118) that allow bending of the backing (1120) around tubular soft tissue structures (1115). In a second variation, the amount of material in the areas of the device that fold (1122) is reduced as shown in FIGS. 11J-11K. Another variation is seen in FIGS. 11L-11M where attachment points (1124) of a device extend from a backing in the form of a coil or spring (1126). The edges of soft tissue are approximated when the coil or a spring is reduced (1128).
  • Device for Brow and Face Lift Procedures [0104]
  • The device may also be used in soft-tissue remodeling, such as a brow-lift, shown in FIG. 12A. After dissection of the scalp ([0105] 1200), the anterior scalp flap (1202) may be raised over the attachment points (1204) to lift the brow (1206). The ends of both the anterior flap (1202) and posterior flap (1208) may then be trimmed and fixed onto the attachment points (1204) to close the wound. The device may be secured to the skull (1210) by a screw (1212). The inventive device in this example may have a first end (1214) and a second end (1216), the first end having a first area (1215) and the second end having a second area (1217). The first area (1215) and second area (1217) may have extending attachment points (1204) or one or more openings (1218) to accommodate a screw(s) (1212). The second area attachment points are canted toward the first end of the device as shown in FIG. 12B.
  • FIGS. [0106] 13A-13C show an alternative variation of the device which may be used in a brow-lift or similar surgical procedure. This device may generally be inserted under a patient's scalp while securely interlocking a small portion of the scalp to the device preferably via a plurality of attachment points. It may also be designed generally to lay against the cranium in a low profile while secured to the cranium to provide a brow lift. This variation comprises supportive backing (1300), which is shown substantially as an equilateral triangle, or in a delta shape. Backing (1300) may be any of a wide variety of triangular shapes, e.g., isosceles, etc. which functions to distribute planar loads equally radiating from a small area, e.g., post (1304). Various alternative shapes are discussed below in greater detail. Post (1304) is functionally for the maintenance of the device in place; other sections of the surgical procedure used to support the device in a specific part in the body. Post (1304) is placed on the side of the body opposite to the tines.
  • FIG. 13A shows a front side view of supportive backing ([0107] 1300). This variation may incorporate sharp corners at the triangle vertices, but preferably has radiused or rounded corners (1322) to aid in reducing abrasion and cutting in adjacent tissue. Anchoring post (1304) may be located at one of the vertices of backing (1300). This anchoring post (1300) is shown in this variation as being substantially perpendicular to a plane of backing (1300), but may be other shapes as discussed below. Moreover, this device may be made of any of the materials discussed herein, and is preferably comprised of a biodegradable or bioabsorbable material but is obviously not limited by material type. For instance, the device may be comprised of certain biological materials as well, e.g., collagen, hydroxyapatite from both natural and synthetic sources, bone graft, or any combination or polymerized version of these materials. FIG. 13D shows more clearly a perspective view of a preferred variation of the device shown in FIGS. 13A-13C.
  • In this variation, supportive backing ([0108] 1300) may comprise a triangular form having a first end (1324) and a second end (1326). This variation may typically be comprised of a front side, as shown in FIG. 13A, and a back side, as shown in FIG. 13B. On the front side, preferably near a vertex of the triangular shape, is an anchoring region. This region may comprise anchoring post (1304) as seen in FIGS. 13A-13C, and this anchoring post (1304) may be a variety of shapes, e.g., a hook or an angled post, etc., but is preferably a perpendicular post having a proximal and a distal end. Moreover, post (1304) is preferably integral with backing (1300) so as to be formed from a single piece. This allows the device to be formed entirely into a single integral device by various manufacturing methods, e.g., injection or die molding. Post (1304) may also be a separate structure fixedly attached to backing (1360) by any variety of fastening methods, e.g., mechanical fasteners or adhesives. The distal end of post (1304) may be chamfered (1318), as shown in FIGS. 13A and 13C; this would provide a degree of tolerance to enable the surgeon to easily locate and insert post (1304) into a receiving hole without sacrificing device integrity.
  • Post ([0109] 1304) may preferably further comprise a locking device proximal of chamfer (1318). This locking device may utilize a variety of locking mechanisms but is shown in this variation as front tab (1310) and partial collar (or rear tab) (1312). The locking mechanism is preferably integral with post (1304) and may have a diameter which is greater than a diameter of post (1304). In any case, partial collar (1312) is preferably elastically deformable, but may also be plastically deformable. Such deformability allows front tab (1310) and partial collar (1312) to compress upon insertion into a patient's skull and subsequently be able to spring back upon full insertion to provide a friction-fitted locking or securing feature. The locking device may alternatively be a locking key mechanism or any conventional locking mechanism. However, the locking mechanism may be omitted entirely because the device bases much of its stability, once inserted into a patient's cranium, upon the downward forces applied by the overlying tissue. Thus, much of the forces acting on the device apply bending loads on post (1304) rather than axially-oriented tensile loads.
  • As seen in FIG. 13A, post ([0110] 1304) may incorporate a distal channel or cavity (1306) which may extend partially into the post from the distal end or entirely through the post. This distal cavity (1306) may have a diameter which is smaller than the diameter of post (1304) and may be aligned along an axis defined by post (1304) or may extend at an angle within post (1304). The cross-section 13E-13E of FIG. 13B is shown in FIG. 13E and shows more clearly the orientation of distal cavity (1306) within post (1304) for this variation. Distal cavity (1306) may aid in reducing the amount of material used in the manufacture of the device, and is particularly useful in imparting a desirable degree of flexibility to post (1304) which may facilitate the insertion of post (1304) into the cranium.
  • Post ([0111] 1304) may further define another hole, proximal cavity (1308), which may be used for tooling purposes as well as further adding to the flexibility of post (1304). Proximal cavity may extend from chamfered proximal end (1320), which may also aid in tooling and helping to prevent tissue abrasion. Proximal cavity (1308) may be non-concentrically located relevant to distal cavity (1306) and as shown in FIG. 13E, may extend partially into post (1304) or may be a through-hole extending entirely through to the distal end of post (1304). Although proximal cavity (1308) may not necessarily be required, it may be utilized in a variety of ways. For example, proximal cavity (1308) may be used for aligning the device for tooling during manufacture, or it may also be used as a location to allow a user or surgeon to manipulate the device using tools for placement of the device within a patient. This proximal cavity (1308) may have a diameter, e.g., about 1 mm, which is smaller than a diameter of post (1304).
  • In addition to proximal cavity ([0112] 1308), the device may also comprise protrusions, tabs, or “ears” (1316), as seen in FIGS. 13A-13D. These protrusions (1316) are preferably integral with backing (1300) and may generally be located anywhere on backing (1300), but is preferably located near first end (1324), and more preferably near post (1304). FIG. 13B shows protrusions (1316) located on either side of post (1304) and may provide a surface for manipulating the device by the doctor or surgeon either during placement into the patient or during removal.
  • FIGS. 13A and 13C show the front and side views, respectively, of attachment points ([0113] 1302). As discussed above, attachments points (1302), also called “tines” or “prongs” are preferably integrally affixed to backing (1300) but may also be separately attachable. They are preferably located on the back side of backing (1300), i.e., the side opposite of post (1304), and are preferably angled towards first end (1324). Moreover, individual attachment points (1302) maybe of varying sizes and angles depending upon the desired securing effect. Attachment points (1302) are discussed in greater detail above. In this variation, individual attachment points (1302) may vary in density, but are optimally spaced relative to one another. Factors for optimizing attachment point relative placement may comprise the ease of securing tissue to attachment points (1302) and the distribution of loads generated by the attached tissue over each of attachment points (1302). For instance, if attachment points (1302) were located too closely to one another, piercing the tissue would be difficult because of the distribution of stresses on the tissue to be pierced by attachment points (1302).
  • Another example may include having an increasing number of attachment points ([0114] 1302) placed on backing (1300) the farther they are located from post (1304) or front end (1324), where the greatest number of attachment points are located in the direction of tensile loads on the device. The spacing between individual points (1302) may be functional in that the number, density, and placement of points (1302) are optimized to evenly distribute the loads, e.g., shearing forces and bending moments, generated by the attached scalp in a brow-lift procedure. Moreover, attachment points (1302) are preferably configured to penetrate partially through the soft tissue. For instance, the sharpness of attachment points (1302) are such that they allow easy penetration through the periosteum.
  • FIGS. 13B and 13D show supportive backing ([0115] 1300) which may also comprise through-hole (1314) that is defined within backing (1300). Through-hole (1314) may generally be any shaped hole but is shown in this variation as being slotted. Through-hole (1314) serves several functions which may include reducing the amount of material used in manufacturing the device, it may also add desirably to the flexibility of backing (1300). Additionally, through-hole (1314) may be configured as an alignment aid for tooling purposes. In addition to aligning, through-hole (1314) may also serve as a surface for a tool to grasp during device placement or removal. Flexibility is preferable because it enables backing (1300) to bend and conform more closely to the shape of the patient's cranium against which the device is placed. The degree of flexibility of backing (1300) may be tuned to a predetermined degree depending upon several factors, e.g., the configuration and size of through-hole (1314). Although shown as a slot, backing (1300) may define virtually any through-hole shape which serves the functions discussed above, i.e., increasing backing (1300) flexibility and aiding in tool alignment.
  • Method of Installing and Securing [0116]
  • FIGS. [0117] 14A-14D illustrate a preferable method of installing the device of FIG. 13A. The top of a patient's head is shown having a hairline (1402). As seen in FIG. 14A, the doctor or surgeon may initially make an incision (1404) in scalp (1414) preferably along a sagittal plane defined by cranium (1400). The incision (1404) may typically be done in the patient's hairline, if possible, to minimize any visible scarring which may result. The length of incision (1404) is typically determined by the length or amount of scalp the patient may desire or the surgeon may determine necessary to be lifted for a successful brow-lift procedure. This incision length may generally range from about 1 to 2 cm but may be more or less depending on the desired results.
  • Once incision ([0118] 1404) is made, a hole (1410) may be drilled within cranium (1400) at the incision second end (1408). Hole (1410) drilled into cranium (1400) may typically be about 4.0 mm in diameter and may be made by a conventional surgical drill (not shown). As shown in FIG. 14B, once the incision and hole are made, an MTDS device (1412) may be inserted between cranium (1400) and scalp (1414) at the incision first end (1406) such that post (1304) faces towards cranium (1400) and attachment points (1302) face the underside of scalp (1414), i.e., subperiosteal. FIG. 14C shows an outline of device (1412) placed at incision first end (1406) and beneath scalp (1414). Once device (1412) has been inserted, the portion of the scalp tissue to be raised (1416) is set on device (1412) via attachment points (1302). FIG. 15 shows a cross-sectional view of FIG. 14C where the tissue to be raised (1416) has been set on attachment points (1302). Once tissue (1416) is set, a force (1500) may be applied to device (1412) preferably via post (1304). Force (1500) then draws the device (1412) and tissue (1416) towards hole (1410) which is configured to receive post (1304). As shown in FIG. 14D, once post (1304) is secured within hole (1410), force (1500) may be removed, thereby leaving the brow desirably lifted.
  • Once device ([0119] 1412) has been installed, attachment points (1302) and post (1304) undergo shear and bending loads from the lifted tissue (1416) pulling on the device (1412). However, these loads may decrease rapidly and approach zero as scalp (1414) heals. This decrease in loading may take up to about six weeks, but device (1412) may stay in place beneath scalp (1414) for up to several years, with sufficient strength for about six weeks, to prevent scalp (1414) from moving excessively during the healing process and thereafter being absorbed by the body, thereby removing the necessity for a second procedure to remove device (1412).
  • Variations on Attachment Points [0120]
  • FIGS. [0121] 16A-16D show a preferred variation for an attachment point on a brow lift device. FIG. 16A shows a top view of a single attachment point (1600) having a swept face (1606). FIG. 16B is a side view of attachment point (1600) comprising distal pointed end (1602) and proximal base end (1604). Although any variations of attachment points discussed above may be used on the brow lift device, this variation is preferable because it is able to readily pierce tissue through the periosteum and simultaneously secure the tissue solidly by resisting any bending moments. In particular, swept face (1606) may be specifically faceted so that face (1606) is preferably oriented to be essentially perpendicular to the plane of the tissue or scalp being penetrated, even though the tine axis defined by attachment point (1600) may not be perpendicular to the plane of the tissue or scalp.
  • Attachment points of this variation may optionally be manufactured individually and separately from the supportive backing and then individually attached via backing attachment ([0122] 1608) to the backing by a variety of fastening methods, e.g., friction fitting, adhesives,.etc. Optional backing attachment (1608) is seen in FIG. 16B, and more clearly in the back view of FIG. 16C. FIG. 16D shows the variation more clearly in a perspective view. Attachment point (1600), as mentioned, may be manufactured separately and attached, but it is preferably made integral with the MTDS device. Integrating the attachment point(s) (1600) with the backing not only provides uniformity in material type but also eliminates contact interfaces, which in turn may provide superior material strength and resistance to bending.
  • As discussed above and as shown in FIGS. [0123] 13A-C, attachment points (1600) are preferably manufactured or attached so that they are all substantially canted in parallel towards the post. However, the attachment points are faceted such that the tips of attachment points (1600) are effectively perpendicular to the tissue to be penetrated. Attachment points (1600) may also be manufactured or assembled so that they point in different predetermined directions, depending on the desired application. Furthermore, attachment points (1600) may optionally be made of varying sizes, as discussed in further detail above.
  • Variations on Posts [0124]
  • FIG. 17A shows [0125] perspective 17A-17A from FIG. 13C of the distal end of post (1304). As shown, partial collar (1312) and front tab (1310) preferably comprises integral extensions or protrusions which act as a locking device. Both partial collar (1312) and front tab (1310) may be plastically deformable but is preferably elastically deformable. The protrusions provide opposing forces upon insertion into the skull to produce a friction fit which secures the device in the patient. Partial collar (1312) may essentially circumscribe any predetermined percentage of the cirumference of post (1304), provided that a sufficient fit is produced.
  • Aside from partial collar ([0126] 1312), post (1304) may alternatively use locking mechanisms comprising barbs and sub-cortical wings. Moreover, post (1304) may also be threaded so as to be rotated, or screwed, into a threaded mating hole located within the patient's cranium.
  • FIG. 17B shows an alternative locking configuration from FIG. 17A. Here, partial collar ([0127] 1312) is replaced by full collar (1700), which is preferably integral with post (1304) and may also be plastically or elastically deformable. A further variation for a locking configuration is shown in FIG. 17C, in which first, second, and third tabs (1702), (1704), (1706), respectively, replaces partial collar (1312). Again, tabs (1702), (1704), (1706) are preferably integral and elastically deformable, although they may also be plastically deformable. Essentially any locking configuration may be utilized by a doctor or surgeon depending upon the desired fit of post (1304).
  • Aside from varying locking mechanisms, the flexibility of the post may be varied as well. As mentioned above, cavities may be disposed within the post to increase the post flexibility. FIG. 18A shows a back view of a variation of the cavity from FIG. 13B. As seen in FIGS. 18B and 18C, post ([0128] 1800) is similar in most respects to the post shown in FIG. 13B. Post (1800) is illustrated extending from backing (1806), which is partially shown merely for clarity, with front tab (1802) and partial collar (1804). However, FIG. 18A shows a single axial cavity (1900) disposed within and extending from a proximal end of post (1800). FIG. 19A shows a perspective view of post (1800) from FIGS. 18A-18C where axial cavity (1900) is axially disposed within post (1800) and extends partially through. Cavity (1900) may extend through post (1800) perpendicularly to backing (1806) and concentrically along an axis defined by post (1800), but it may also extend off-axis and at an angle, as shown in FIG. 13E. Furthermore, cavity (1900) may also extend entirely through post (1800) as a through-hole. FIG. 19B shows the cross-section 19B-19B taken from FIG. 18B clearly showing cavity (1900) extending partially into post (1800).
  • Another variation on the post is shown in FIG. 20. Latched post ([0129] 2000) is shown having beveled latch (2002) pivotally disposed between post members (2006). Latched post (2000) is shown extending from backing (2004) of which only a portion is shown for clarity. Beveled latch (2002) is preferably integrally attached at a proximal end so that latch distal end (2010) is free to move. Beveled latch (2002) is also preferably beveled to provide a gripping surface once the device is secured in the patient. Because latch distal end (2010) may be free to move, latch (2002) may be configured so that latch distal end (2010) may be biased to extend angularly away from post members (2006). As post (2000) is inserted into a patient's cranium, latch distal end (2010) may be urged towards post members (2006) to facilitate insertion by depressing lever (2008), located at the proximal end of latch (2008). Once latched post (2000) has been positioned in the patient, lever (2008) may then be released, thus allowing latch distal end (2010) to protrude angularly against the interior of the hole in the patient's cranium thereby providing a locking action.
  • A further variation of the post is shown in FIG. 21. Here, angled latch post ([0130] 2100) is preferably an angled latch (2102) having a beveled surface and being integral with backing (2104) of which only a portion is shown for clarity. Angled latch (2102) may be integral with backing (2104) at the latch proximal end (2110) and disposed in-between post members (2106). Angled latch (2102) may further be biased so that the latch distal end (2112) is angled away from backing (2104) and protrudes from in-between post members (2106). Accordingly, as angled latch post (2100) is inserted into the patient's cranium, latch distal end (2112) may similarly be urged towards post members (2106) to likewise facilitate insertion. This movement or urging may be accomplished by depressing latch extension (2108), which may be integrally attached to both backing (2104) and angled latch (2102). Because latch extension (2108) may be attached in apposition to angled latch (2102), depressing it would thereby move latch distal end (2112) accordingly.
  • FIGS. [0131] 22A-22B show alternative variations of the post which may include any of the features discussed herein. FIG. 22A shows rounded post (2202) having a radiused distal end. FIG. 22B shows angled post (2204) which defines a predetermined angle, α, between a plane of backing (2200) and a longitudinal axis defined by angled post (2204). FIG. 22C shows another variation where a post is not used at all. Rather, a hole may be provided which has a diameter sufficient to receive a separate fastener. In this variation, the fastener may be used to secure backing (2200) to the patient's cranium through hole (2206). Fasteners may comprise any conventional fasteners, e.g., pins, nails, screws, and so forth. Alternatively, rather than securing the device via a fastener through a hole, the hole (2206) may be omitted entirely and the backing (2200) may be secured to the cranial surface via an adhesive, e.g., cyanoacrylate. Such an adhesive is preferably biocompatible and provides sufficient bonding strength to support the tissue or scalp when lifted.
  • FIGS. [0132] 22D-22E show an alternative variation where the post comprises radially expandable extensions. Expandable post (2208) is preferably integral with backing (2200) to provide a uniform device. FIG. 22D shows expandable post (2208) having a first diameter, d1. This device may be inserted into the patient's cranium and positioned in a desired location and configuration. Once positioned, the diameter may be expanded by inserting expander device (2212), or using a tool configured to expand radially, which pushes against the inner surfaces of expandable post (2208). The resulting expanded configuration is shown in FIG. 22E where expanded post (2210) has a second diameter, d2, which is larger than first diameter d1 and thus aids in securing the device in place.
  • Variations on Drilled Holes [0133]
  • In securing a brow lift device within a patient, a hole may be drilled into the cranium to receive the securing post of the device. As mentioned above, the hole may be drilled by any number of conventional drills or specialized surgical drills. FIG. 23A shows a cross-sectional view of a typical drilled hole ([0134] 2304) in cranium (2300) which extends down into the cranial bone (2302). FIG. 23B shows another variation having angled hole (2306) which may be used to receive any of the post variations discussed herein. A further variation is shown in FIG. 23C where the hole may comprise keyed hole (2308). This variation shows keyed hole (2308) having two concentric grooves within the hole; however, any number of grooves or variations thereof may be incorporated depending upon the desired hole profile and the tightness of the fit of the post within the hole.
  • Variations on Supportive Backing [0135]
  • FIGS. [0136] 24A-24D show a variation on the brow lift device backing. FIGS. 24A-24B show a top and side view of a device which is similar in many aspects to the device as shown in FIGS. 13A-13C. The device comprises supportive backing (2400), post (2406), proximal cavity (2408), and attachment points (2402). However, this variation also comprises an additional leading attachment point (2404). This leading attachment point (2404) may be incorporated as a redundancy to ensure tissue adhesion should the other attachment points (2402) slip or tear from the scalp tissue. FIG. 24C shows a perspective view of the device with leading attachment point (2404). And FIG. 24D shows a view of cross-section 24D-24D from FIG. 24A. Proximal cavity (2408) is clearly seen to extend partially into post (2406); but post (2406) may incorporate other cavities and configurations as discussed above.
  • FIGS. 25A shows a top view of supportive backing ([0137] 2500). This variation is also similar in many aspects to the device as shown in FIGS. 13A-13C. The device may comprise post (2504), proximal cavity (2508), and through-hole (2510), which may be slotted or may comprise any other shape. Also, as seen in FIGS. 25B and 25C, the device may also comprise distal cavity (2506); however, this variation may have separatable attachment points which may be held in attachment point locations (2502). This variation may allow a doctor or surgeon to attach variously shaped attachment points in a variety of orientations relative to one another depending upon the desired result. Moreover, this variation may allow one to selectively attach attachment points at desired attachment point locations (2502). Any number of attachments points may be utilized; however, it is preferable that at least three attachment points or tines spaced relatively apart be used to optimize the holding capacity of the device to the tissue.
  • FIG. 26A shows a top view of an alternative variation for supportive backing ([0138] 2600) which is configured to be flexible and hold multiple attachment points (2602). This particular variation may be configured to reduce the amount of material used and simultaneously increase the flexibility to allow backing (2600) to conform to the patient's cranium. Flexibility may be achieved via the use of through-holes (2608) and slot (2610) which are seen in FIGS. 26A and 26C. This variation also may incorporate post (2604) which may comprise anchoring tabs (2606), as seen in the side view of FIG. 26B, to aid in securing the device to the cranium.
  • FIG. 27A shows a top view of another alternative variation for supportive backing ([0139] 2600) which is similar in most aspects to the device shown in FIG. 26A. As seen in FIGS. 27A-27C, particularly 27B this variation incorporates latched post (2700). Post (2700) may utilize a latching mechanism similar to the latched posts illustrated in FIGS. 20-21. This particular post comprises latch (2702) which is shown as having a hooked distal end.
  • FIGS. [0140] 28A-28C shows top, side, and perspective views of a further variation for supportive backing (2600). This variation illustrates latched post (2800) having beveled latch (2802) which may be similar to the latching device shown in FIG. 21. FIG. 28D shows a view of cross-section 28D-28D taken from FIG. 28A. The latched post (2800) and the configuration of latch (2800) may be seen where latch (2802) is preferably integral with backing (2600).
  • In addition to alternative backings, variations of MTDS devices having multiple posts may also be utilized. FIG. 29C shows a variation also having attachment points ([0141] 2902) and through-hole (2906). As seen further in FIGS. 29B, this variation may comprise a configuration where two posts (2904) are attached to backing (2900). Posts (2904) are preferably attached integrally to backing (2900) and may be orientated, as seen in FIG. 29A, such that posts (2904) are aligned along an x-axis. The addition of a second post along the x-axis may aid in increasing the device resistance to rotation about the posts (2904) once it is inserted into the cranium. This added rotational stability may then allow the device to be inserted at various angles within the cranium relative to the tissue to be lifted depending upon the desired results.
  • A further alternative backing having multiple posts is shown in FIG. 30A. Also seen in this variation are attachment points ([0142] 3002) attached to backing (3000) and through-hole (3006) defined within backing (3000). However, this variation comprises two posts (3004), which are preferably integral with backing (3000), aligned along a y-axis. The additional post along the y-axis may aid greatly in also increasing the device resistance to rotation about posts (2904). This variation likewise may allow the device to be inserted at various angles within the cranium depending upon the desired results and the angle of desired lift. Furthermore, this particular variation may be desirable where cranial physiology would prevent two adjacent posts from being secured into the cranium.
  • Placement Tools [0143]
  • Many of the variations on the brow lift device may be inserted and secured into a patient in a number of ways. One such method involves using an insertion tool of a type shown in FIG. 31A. This variation shows a top view of such a tool which may serve several functions. This tool comprises manipulation handle ([0144] 3100), by which a doctor or surgeon manipulates, for example, the device of FIGS. 13A-13C. As shown further in FIG. 31B, cross-section 31B-31B from FIG. 31A, handle (3100) may be hinged by any conventional methods but shown here as bolt hinge (3104). At a distal end of handle (3100) are grasping members (3102). These grasping members (3102) may generally be designed to have opposing members which may be urged together or apart, i.e., to close or open; as handle (3100) is urged about hinge (3104).
  • To prevent uncontrolled rotation of handle ([0145] 3100) and to provide a way of securely grasping the device, handle (3100) may also comprise a locking mechanism which may hold handle (3100) and grasping members (3102) in a desired position. Grasping members (3102) are preferably designed or configured to securely hold the supportive backing (1300) relatively planar with grasping members (3102) such that attachment points (1302) face away from the patient during insertion. It is further preferable that grasping members (3102) securely hold the MTDS device via anchoring post (1304) to allow easy handling and insertion. As seen in FIG. 31B, grasping members (3102) are preferably angled relative to a plane defined by handle (3100) at a predetermined angle, α, to further allow easy insertion of the device.
  • FIG. 31C shows a close-up cross-sectional view of the distal end of the insertion tool. As shown, also attached to hinge ([0146] 3104) is support block (3106). Support block (3106) is preferably configured to attach to handle (3100) at hinge (3104) yet still allow rotational movement of the tool about hinge (3104). Support block (3106) also preferably defines channel (3110) through a top surface of support block (3106), as shown in FIGS. 31A-31C. Channel (3110) may run substantially parallel relative to a symmetrical axis defined by the insertion tool. Support block (3106) may be supported by support post (3108) which may help in preventing rotation of support block (3106) about hinge (3104) as well as maintaining a position of the block relative to handle (3100).
  • Further seen in FIG. 31C, channel ([0147] 3110) in support block (3106) is preferably angled relative to the plane defined by handle (3100). While grasping members (3162) are angled at an angle, a, relative to handle (3100), channel (3110) may be angled relative to grasping members (3102) at a desired angle, β. This angle β is preferably similar to the angle formed by attachment points (1302) relative to supportive backing (1300). Angling channel (3110) may allow a mating block, described below in further detail, to run along channel (3110) and press against the tissue to be lifted against attachment points (1302). A block pressing against tissue to be set on attachment points (1302) allows for optimal piercing of the tissue if the force applied by the block is in the same or similar angle or direction as attachment points (1302).
  • FIGS. 31D and 31E show a bottom and a top perspective view, respectively, of the insertion tool from FIG. 31A grasping an device. As seen in FIG. 32A, the same insertion tool from FIG. 31A is shown with the addition of depressible block ([0148] 3200) mated with support block (3106). Depressible block (3200) may be mated with support block (3106) via channel (3110), into which mating slide (3204) may be inserted. Slide (3204) may be an integral extension of depressible block (3200) and is preferably configured to allow a degree of tolerance relative to channel (3110) so that depressible block (3200) may slide freely or when urged via channel (3110) and mating slide (3204), as shown by the arrow in FIG. 32B.
  • FIG. 32B also shows a [0149] cross-section 32B-32B from FIG. 32A. Depressible block (3200) further illustrates depression region (3202), which may be a slight indentation defined in the surface facing away from the patient during insertion. Depression region (3202) may serve as a locator for the optimal region the physician may depress to force depressible block (3200) and contact surface (3206) downward against the tissue and attachment points (1302) in order to set, or pierce, the tissue. FIG. 32C shows a close-up cross-sectional view of the distal end of the insertion tool with depression block (3200) inserted. Contact surface (3206) is the surface which ultimately presses the tissue against attachment points (1302) and is preferably relatively parallel with the plane defined by grasping members (3102) and supportive backing (1300) to present the greatest surface area pressing against the tissue. Depressible block (3200) is further preferably configured to slide or run along the same angle, β, at which support block (3106) is set to provide a planar contact surface (3206) to press against the tissue at an optimal angle, which may be at the same or similar angle as attachment points (1302), as discussed above.
  • FIGS. 32D and 32E show a bottom and a top perspective view, respectively, of the insertion tool from FIG. 32A with depressible block ([0150] 3200) set in channel (3110). Although the placement tool has been described with depressible block (3200), the tool may also be used without a block for depressing the tissue or scalp against the attachment points (1302). Rather, affixing or setting the tissue may also be done by hand, i.e., simply depressing the tissue with the hand and fingers against attachment points (1302).
  • We have described this invention by example and by description of the physical attributes and benefits of the structure. This manner of describing the invention should not, however, be taken as limiting the scope of the invention in any way. [0151]

Claims (1)

We claim:
1. An implantable tissue approximation device comprising:
a) a supportive backing adapted to conform to a surface in contact with said backing;
b) a plurality of attachment points extending from said backing; and
c) an anchoring region integral with said backing.
US10/299,119 2000-05-19 2002-11-18 Multi-point tissue tension distribution device, a brow and face lift variation, and a method of tissue approximation using the device Abandoned US20030069602A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/299,119 US20030069602A1 (en) 2000-05-19 2002-11-18 Multi-point tissue tension distribution device, a brow and face lift variation, and a method of tissue approximation using the device
US10/418,541 US7510566B2 (en) 2000-05-19 2003-04-17 Multi-point tissue tension distribution device and method, a chin lift variation
US10/418,325 US20040010275A1 (en) 2000-05-19 2003-04-17 Multi-point tissue tension distribution device and method, a custom-fittable variation

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/574,603 US6645226B1 (en) 2000-05-19 2000-05-19 Multi-point tension distribution system device and method of tissue approximation using that device to improve wound healing
US09/788,118 US6485503B2 (en) 2000-05-19 2001-02-16 Multi-point tissue tension distribution device, a brow and face lift variation, and a method of tissue approximation using the device
US10/299,119 US20030069602A1 (en) 2000-05-19 2002-11-18 Multi-point tissue tension distribution device, a brow and face lift variation, and a method of tissue approximation using the device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/788,118 Continuation US6485503B2 (en) 2000-05-19 2001-02-16 Multi-point tissue tension distribution device, a brow and face lift variation, and a method of tissue approximation using the device

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10/418,325 Continuation-In-Part US20040010275A1 (en) 2000-05-19 2003-04-17 Multi-point tissue tension distribution device and method, a custom-fittable variation
US10/418,541 Continuation-In-Part US7510566B2 (en) 2000-05-19 2003-04-17 Multi-point tissue tension distribution device and method, a chin lift variation

Publications (1)

Publication Number Publication Date
US20030069602A1 true US20030069602A1 (en) 2003-04-10

Family

ID=27076432

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/788,118 Expired - Lifetime US6485503B2 (en) 2000-05-19 2001-02-16 Multi-point tissue tension distribution device, a brow and face lift variation, and a method of tissue approximation using the device
US09/816,641 Abandoned US20020022861A1 (en) 2000-05-19 2001-03-22 Multi-point tissue tension distribution device, a combined orbital rim repair and suspension variation, and a method of tissue approximation using the device
US10/299,119 Abandoned US20030069602A1 (en) 2000-05-19 2002-11-18 Multi-point tissue tension distribution device, a brow and face lift variation, and a method of tissue approximation using the device

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US09/788,118 Expired - Lifetime US6485503B2 (en) 2000-05-19 2001-02-16 Multi-point tissue tension distribution device, a brow and face lift variation, and a method of tissue approximation using the device
US09/816,641 Abandoned US20020022861A1 (en) 2000-05-19 2001-03-22 Multi-point tissue tension distribution device, a combined orbital rim repair and suspension variation, and a method of tissue approximation using the device

Country Status (3)

Country Link
US (3) US6485503B2 (en)
IL (1) IL152817A (en)
RU (1) RU2002134180A (en)

Cited By (112)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020084078A1 (en) * 1999-02-26 2002-07-04 Shell Oil Co. Method of operating an apparatus for radially expanding a tubular member
US20030074021A1 (en) * 2000-05-19 2003-04-17 Morriss John H. Remotely anchored tissue fixation device
US20040010276A1 (en) * 2000-05-19 2004-01-15 Daniel Jacobs Multi-point tissue tension distribution device and method, a chin lift variation
US20050119694A1 (en) * 2000-05-19 2005-06-02 Jacobs Daniel I. Remotely anchored tissue fixation device and method
US20050209542A1 (en) * 2004-03-16 2005-09-22 Jacobs Daniel I Tissue approximation sling and method
US20050261737A1 (en) * 2004-05-19 2005-11-24 Sakura Chester Y Tissue lifting device and method
US20070005109A1 (en) * 2005-06-29 2007-01-04 Popadiuk Nicholas M Barbed suture
US20080200993A1 (en) * 2007-02-15 2008-08-21 Jenifer Lee Henderson Temporal Brow Lifting and Fixation Device
US20080288004A1 (en) * 2007-05-16 2008-11-20 Genesis Biosystems Corporation Tissue suspension device
US20100087813A1 (en) * 2007-02-15 2010-04-08 Ethicon Endo-Surgery, Inc. Electroporation ablation apparatus, system, and method
US20100249700A1 (en) * 2009-03-27 2010-09-30 Ethicon Endo-Surgery, Inc. Surgical instruments for in vivo assembly
US7996967B2 (en) 2001-08-31 2011-08-16 Quill Medical, Inc. System for variable-angle cutting of a suture to create tissue retainers of a desired shape and size
US8032996B2 (en) 2003-05-13 2011-10-11 Quill Medical, Inc. Apparatus for forming barbs on a suture
US8037591B2 (en) 2009-02-02 2011-10-18 Ethicon Endo-Surgery, Inc. Surgical scissors
US8070759B2 (en) 2008-05-30 2011-12-06 Ethicon Endo-Surgery, Inc. Surgical fastening device
US8075572B2 (en) 2007-04-26 2011-12-13 Ethicon Endo-Surgery, Inc. Surgical suturing apparatus
US8083770B2 (en) 2002-08-09 2011-12-27 Quill Medical, Inc. Suture anchor and method
US8100922B2 (en) 2007-04-27 2012-01-24 Ethicon Endo-Surgery, Inc. Curved needle suturing tool
US8114072B2 (en) 2008-05-30 2012-02-14 Ethicon Endo-Surgery, Inc. Electrical ablation device
US8114119B2 (en) 2008-09-09 2012-02-14 Ethicon Endo-Surgery, Inc. Surgical grasping device
US8118834B1 (en) 2007-12-20 2012-02-21 Angiotech Pharmaceuticals, Inc. Composite self-retaining sutures and method
US8157834B2 (en) 2008-11-25 2012-04-17 Ethicon Endo-Surgery, Inc. Rotational coupling device for surgical instrument with flexible actuators
US8172772B2 (en) 2008-12-11 2012-05-08 Ethicon Endo-Surgery, Inc. Specimen retrieval device
US8211125B2 (en) 2008-08-15 2012-07-03 Ethicon Endo-Surgery, Inc. Sterile appliance delivery device for endoscopic procedures
US8216273B1 (en) 2008-02-25 2012-07-10 Ethicon, Inc. Self-retainers with supporting structures on a suture
US8241204B2 (en) 2008-08-29 2012-08-14 Ethicon Endo-Surgery, Inc. Articulating end cap
US8246652B2 (en) 1993-05-03 2012-08-21 Ethicon, Inc. Suture with a pointed end and an anchor end and with equally spaced yieldable tissue grasping barbs located at successive axial locations
US8252057B2 (en) 2009-01-30 2012-08-28 Ethicon Endo-Surgery, Inc. Surgical access device
US8262680B2 (en) 2008-03-10 2012-09-11 Ethicon Endo-Surgery, Inc. Anastomotic device
US8262563B2 (en) 2008-07-14 2012-09-11 Ethicon Endo-Surgery, Inc. Endoscopic translumenal articulatable steerable overtube
US8262655B2 (en) 2007-11-21 2012-09-11 Ethicon Endo-Surgery, Inc. Bipolar forceps
US8317806B2 (en) 2008-05-30 2012-11-27 Ethicon Endo-Surgery, Inc. Endoscopic suturing tension controlling and indication devices
US8337394B2 (en) 2008-10-01 2012-12-25 Ethicon Endo-Surgery, Inc. Overtube with expandable tip
US8353487B2 (en) 2009-12-17 2013-01-15 Ethicon Endo-Surgery, Inc. User interface support devices for endoscopic surgical instruments
US8361112B2 (en) 2008-06-27 2013-01-29 Ethicon Endo-Surgery, Inc. Surgical suture arrangement
US8403926B2 (en) 2008-06-05 2013-03-26 Ethicon Endo-Surgery, Inc. Manually articulating devices
US8409200B2 (en) 2008-09-03 2013-04-02 Ethicon Endo-Surgery, Inc. Surgical grasping device
US20130096584A1 (en) * 2011-10-12 2013-04-18 David S. Kirsch Mesh Fixation System
US8480657B2 (en) 2007-10-31 2013-07-09 Ethicon Endo-Surgery, Inc. Detachable distal overtube section and methods for forming a sealable opening in the wall of an organ
US8480689B2 (en) 2008-09-02 2013-07-09 Ethicon Endo-Surgery, Inc. Suturing device
US8496574B2 (en) 2009-12-17 2013-07-30 Ethicon Endo-Surgery, Inc. Selectively positionable camera for surgical guide tube assembly
US8506564B2 (en) 2009-12-18 2013-08-13 Ethicon Endo-Surgery, Inc. Surgical instrument comprising an electrode
US8529563B2 (en) 2008-08-25 2013-09-10 Ethicon Endo-Surgery, Inc. Electrical ablation devices
US8568410B2 (en) 2007-08-31 2013-10-29 Ethicon Endo-Surgery, Inc. Electrical ablation surgical instruments
US8579897B2 (en) 2007-11-21 2013-11-12 Ethicon Endo-Surgery, Inc. Bipolar forceps
US8608652B2 (en) 2009-11-05 2013-12-17 Ethicon Endo-Surgery, Inc. Vaginal entry surgical devices, kit, system, and method
US8615856B1 (en) 2008-01-30 2013-12-31 Ethicon, Inc. Apparatus and method for forming self-retaining sutures
US8641732B1 (en) 2008-02-26 2014-02-04 Ethicon, Inc. Self-retaining suture with variable dimension filament and method
US8652150B2 (en) 2008-05-30 2014-02-18 Ethicon Endo-Surgery, Inc. Multifunction surgical device
US8679003B2 (en) 2008-05-30 2014-03-25 Ethicon Endo-Surgery, Inc. Surgical device and endoscope including same
US8715320B2 (en) 2005-06-29 2014-05-06 Ethicon, Inc. Braided barbed suture
US8721681B2 (en) 2002-09-30 2014-05-13 Ethicon, Inc. Barbed suture in combination with surgical needle
US8721664B2 (en) 2004-05-14 2014-05-13 Ethicon, Inc. Suture methods and devices
US8734485B2 (en) 2002-09-30 2014-05-27 Ethicon, Inc. Sutures with barbs that overlap and cover projections
US8747437B2 (en) 2001-06-29 2014-06-10 Ethicon, Inc. Continuous stitch wound closure utilizing one-way suture
US8771260B2 (en) 2008-05-30 2014-07-08 Ethicon Endo-Surgery, Inc. Actuating and articulating surgical device
US8771313B2 (en) 2007-12-19 2014-07-08 Ethicon, Inc. Self-retaining sutures with heat-contact mediated retainers
US8777987B2 (en) 2007-09-27 2014-07-15 Ethicon, Inc. Self-retaining sutures including tissue retainers having improved strength
US8793863B2 (en) 2007-04-13 2014-08-05 Ethicon, Inc. Method and apparatus for forming retainers on a suture
US8828031B2 (en) 2009-01-12 2014-09-09 Ethicon Endo-Surgery, Inc. Apparatus for forming an anastomosis
US8852214B2 (en) 2011-02-04 2014-10-07 University Of Utah Research Foundation System for tissue fixation to bone
US8858577B2 (en) 2010-05-19 2014-10-14 University Of Utah Research Foundation Tissue stabilization system
US8876865B2 (en) 2008-04-15 2014-11-04 Ethicon, Inc. Self-retaining sutures with bi-directional retainers or uni-directional retainers
US8875607B2 (en) 2008-01-30 2014-11-04 Ethicon, Inc. Apparatus and method for forming self-retaining sutures
US8888792B2 (en) 2008-07-14 2014-11-18 Ethicon Endo-Surgery, Inc. Tissue apposition clip application devices and methods
US8906035B2 (en) 2008-06-04 2014-12-09 Ethicon Endo-Surgery, Inc. Endoscopic drop off bag
US8916077B1 (en) 2007-12-19 2014-12-23 Ethicon, Inc. Self-retaining sutures with retainers formed from molten material
US8932328B2 (en) 2008-11-03 2015-01-13 Ethicon, Inc. Length of self-retaining suture and method and device for using the same
US8939897B2 (en) 2007-10-31 2015-01-27 Ethicon Endo-Surgery, Inc. Methods for closing a gastrotomy
US8945156B2 (en) 2010-05-19 2015-02-03 University Of Utah Research Foundation Tissue fixation
US8961560B2 (en) 2008-05-16 2015-02-24 Ethicon, Inc. Bidirectional self-retaining sutures with laser-marked and/or non-laser marked indicia and methods
USRE45426E1 (en) 1997-05-21 2015-03-17 Ethicon, Inc. Surgical methods using one-way suture
US8986199B2 (en) 2012-02-17 2015-03-24 Ethicon Endo-Surgery, Inc. Apparatus and methods for cleaning the lens of an endoscope
US9005198B2 (en) 2010-01-29 2015-04-14 Ethicon Endo-Surgery, Inc. Surgical instrument comprising an electrode
US9011431B2 (en) 2009-01-12 2015-04-21 Ethicon Endo-Surgery, Inc. Electrical ablation devices
US9028483B2 (en) 2009-12-18 2015-05-12 Ethicon Endo-Surgery, Inc. Surgical instrument comprising an electrode
US9049987B2 (en) 2011-03-17 2015-06-09 Ethicon Endo-Surgery, Inc. Hand held surgical device for manipulating an internal magnet assembly within a patient
US9078662B2 (en) 2012-07-03 2015-07-14 Ethicon Endo-Surgery, Inc. Endoscopic cap electrode and method for using the same
US9125647B2 (en) 2008-02-21 2015-09-08 Ethicon, Inc. Method and apparatus for elevating retainers on self-retaining sutures
US9226772B2 (en) 2009-01-30 2016-01-05 Ethicon Endo-Surgery, Inc. Surgical device
US9233241B2 (en) 2011-02-28 2016-01-12 Ethicon Endo-Surgery, Inc. Electrical ablation devices and methods
CN105263423A (en) * 2013-06-25 2016-01-20 米特拉利根公司 Percutaneous valve repair by reshaping and resizing right ventricle
US9248580B2 (en) 2002-09-30 2016-02-02 Ethicon, Inc. Barb configurations for barbed sutures
US9254169B2 (en) 2011-02-28 2016-02-09 Ethicon Endo-Surgery, Inc. Electrical ablation devices and methods
US9277957B2 (en) 2012-08-15 2016-03-08 Ethicon Endo-Surgery, Inc. Electrosurgical devices and methods
US9314620B2 (en) 2011-02-28 2016-04-19 Ethicon Endo-Surgery, Inc. Electrical ablation devices and methods
US9427309B2 (en) 2012-07-30 2016-08-30 Conextions, Inc. Soft tissue repair devices, systems, and methods
US9427255B2 (en) 2012-05-14 2016-08-30 Ethicon Endo-Surgery, Inc. Apparatus for introducing a steerable camera assembly into a patient
US9545290B2 (en) 2012-07-30 2017-01-17 Ethicon Endo-Surgery, Inc. Needle probe guide
US9572623B2 (en) 2012-08-02 2017-02-21 Ethicon Endo-Surgery, Inc. Reusable electrode and disposable sheath
US9629632B2 (en) 2012-07-30 2017-04-25 Conextions, Inc. Soft tissue repair devices, systems, and methods
US9675341B2 (en) 2010-11-09 2017-06-13 Ethicon Inc. Emergency self-retaining sutures and packaging
CN106923934A (en) * 2017-03-14 2017-07-07 北京爱康宜诚医疗器材有限公司 Orthopaedics implantation titanium net
US9955962B2 (en) 2010-06-11 2018-05-01 Ethicon, Inc. Suture delivery tools for endoscopic and robot-assisted surgery and methods
US10092291B2 (en) 2011-01-25 2018-10-09 Ethicon Endo-Surgery, Inc. Surgical instrument with selectively rigidizable features
US10098527B2 (en) 2013-02-27 2018-10-16 Ethidcon Endo-Surgery, Inc. System for performing a minimally invasive surgical procedure
US10188384B2 (en) 2011-06-06 2019-01-29 Ethicon, Inc. Methods and devices for soft palate tissue elevation procedures
US10219804B2 (en) 2012-07-30 2019-03-05 Conextions, Inc. Devices, systems, and methods for repairing soft tissue and attaching soft tissue to bone
US10314649B2 (en) 2012-08-02 2019-06-11 Ethicon Endo-Surgery, Inc. Flexible expandable electrode and method of intraluminal delivery of pulsed power
US10390935B2 (en) 2012-07-30 2019-08-27 Conextions, Inc. Soft tissue to bone repair devices, systems, and methods
US10420546B2 (en) 2010-05-04 2019-09-24 Ethicon, Inc. Self-retaining systems having laser-cut retainers
US10492780B2 (en) 2011-03-23 2019-12-03 Ethicon, Inc. Self-retaining variable loop sutures
US10779882B2 (en) 2009-10-28 2020-09-22 Ethicon Endo-Surgery, Inc. Electrical ablation devices
US10835241B2 (en) 2012-07-30 2020-11-17 Conextions, Inc. Devices, systems, and methods for repairing soft tissue and attaching soft tissue to bone
US10973509B2 (en) 2017-12-20 2021-04-13 Conextions, Inc. Devices, systems, and methods for repairing soft tissue and attaching soft tissue to bone
US11007296B2 (en) 2010-11-03 2021-05-18 Ethicon, Inc. Drug-eluting self-retaining sutures and methods relating thereto
US11253252B2 (en) 2012-07-30 2022-02-22 Conextions, Inc. Devices, systems, and methods for repairing soft tissue and attaching soft tissue to bone
US11458004B2 (en) 2017-10-19 2022-10-04 C.R. Bard, Inc. Self-gripping hernia prosthesis
US11547397B2 (en) 2017-12-20 2023-01-10 Conextions, Inc. Devices, systems, and methods for repairing soft tissue and attaching soft tissue to bone
US11583384B2 (en) 2014-03-12 2023-02-21 Conextions, Inc. Devices, systems, and methods for repairing soft tissue and attaching soft tissue to bone
US11696822B2 (en) 2016-09-28 2023-07-11 Conextions, Inc. Devices, systems, and methods for repairing soft tissue and attaching soft tissue to bone
US11944531B2 (en) 2012-07-30 2024-04-02 Conextions, Inc. Devices, systems, and methods for repairing soft tissue and attaching soft tissue to bone

Families Citing this family (653)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6984241B2 (en) * 1996-09-13 2006-01-10 Tendon Technology, Ltd. Apparatus and methods for tendon or ligament repair
US7494488B2 (en) * 1998-05-28 2009-02-24 Pearl Technology Holdings, Llc Facial tissue strengthening and tightening device and methods
US8574243B2 (en) 1999-06-25 2013-11-05 Usgi Medical, Inc. Apparatus and methods for forming and securing gastrointestinal tissue folds
US7160312B2 (en) * 1999-06-25 2007-01-09 Usgi Medical, Inc. Implantable artificial partition and methods of use
US6991643B2 (en) 2000-12-20 2006-01-31 Usgi Medical Inc. Multi-barbed device for retaining tissue in apposition and methods of use
US7156862B2 (en) 2000-05-19 2007-01-02 Coapt Systems, Inc. Multi-point tension distribution system device and method of tissue approximation using that device to improve wound healing
US20040010275A1 (en) * 2000-05-19 2004-01-15 Daniel Jacobs Multi-point tissue tension distribution device and method, a custom-fittable variation
US6645226B1 (en) 2000-05-19 2003-11-11 Coapt Systems, Inc. Multi-point tension distribution system device and method of tissue approximation using that device to improve wound healing
US6485503B2 (en) * 2000-05-19 2002-11-26 Coapt Systems, Inc. Multi-point tissue tension distribution device, a brow and face lift variation, and a method of tissue approximation using the device
US20030130621A1 (en) * 2002-01-04 2003-07-10 Bryan Vincent E. Spinal needle system
US20030142676A1 (en) * 2002-01-25 2003-07-31 Raymond Zeisz Method and apparauts for admission control in packet switch
US8529956B2 (en) * 2002-03-18 2013-09-10 Carnell Therapeutics Corporation Methods and apparatus for manufacturing plasma based plastics and bioplastics produced therefrom
US20100254900A1 (en) * 2002-03-18 2010-10-07 Campbell Phil G Biocompatible polymers and Methods of use
US6923833B2 (en) * 2002-04-09 2005-08-02 Ray C. Wasielewski Biologically reabsorbable acetabular constraining components and materials for use with a hip replacement prosthesis and bioreabsorbable materials to augment hip replacement stability and function
US20030229364A1 (en) * 2002-06-11 2003-12-11 Michael Seiba Device for anastomosis in a radical retropubic prostatectomy
US7413570B2 (en) * 2002-08-21 2008-08-19 Kci Licensing, Inc. Medical closure screen installation systems and methods
US7381211B2 (en) * 2002-08-21 2008-06-03 Kci Licensing, Inc. Medical closure screen device and method
US7413571B2 (en) * 2002-08-21 2008-08-19 Kci Licensing, Inc. Flexible medical closure screen and method
US7351250B2 (en) * 2002-08-21 2008-04-01 Kci Licensing, Inc. Circumferential medical closure device and method
US7410495B2 (en) * 2002-08-21 2008-08-12 Kci Licensing, Inc. Medical closure clip system and method
US8062331B2 (en) * 2002-08-21 2011-11-22 Kci Licensing, Inc. Internal and external medical closure screen systems and methods
JP4660714B2 (en) * 2002-09-06 2011-03-30 シー・アール・バード・インク Endoscopic tissue acquisition system
FR2845590B1 (en) * 2002-10-10 2005-10-21 Jean Francois Garbe DEVICE FOR CONNECTION BETWEEN A PROSTHESIS AND A BODY CONDUIT AND DEVICE FOR CONNECTING TWO BODY CONDUITS DISPOSED AT END-TO-END
US20040083004A1 (en) * 2002-10-23 2004-04-29 Wasielewski Ray C. Use of snap-on semiannular augments to inhibit multi-directional instability after total hip arthroplasty
ITMO20020337A1 (en) * 2002-11-21 2004-05-22 G A M A H S Srl DEVICE FOR ANASTOMOSIS.
US7976519B2 (en) 2002-12-31 2011-07-12 Kci Licensing, Inc. Externally-applied patient interface system and method
US10363344B2 (en) 2002-12-31 2019-07-30 Kci Licensing, Inc. Externally-applied patient interface system and method with a controlled region for implanted or buried bio-reactor
US20040193187A1 (en) * 2003-01-25 2004-09-30 Boehringer John R. Device and method for treating a wound
US7497864B2 (en) * 2003-04-30 2009-03-03 Marctec, Llc. Tissue fastener and methods for using same
US9060770B2 (en) 2003-05-20 2015-06-23 Ethicon Endo-Surgery, Inc. Robotically-driven surgical instrument with E-beam driver
US20070084897A1 (en) 2003-05-20 2007-04-19 Shelton Frederick E Iv Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
WO2004111192A2 (en) 2003-05-29 2004-12-23 The Scripps Research Institute Targeted delivery to legumain-expressing cells
US7972347B2 (en) * 2003-06-27 2011-07-05 Surgical Security, Llc Device for surgical repair, closure, and reconstruction
US20040267309A1 (en) * 2003-06-27 2004-12-30 Garvin Dennis D. Device for sutureless wound closure
US20050197699A1 (en) * 2004-02-10 2005-09-08 Jacobs Daniel I. Tissue repair apparatus and method
US7407511B2 (en) * 2004-05-13 2008-08-05 Wright Medical Technology Inc Methods and materials for connective tissue repair
US11896225B2 (en) 2004-07-28 2024-02-13 Cilag Gmbh International Staple cartridge comprising a pan
US8215531B2 (en) 2004-07-28 2012-07-10 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a medical substance dispenser
US20060100584A1 (en) * 2004-08-10 2006-05-11 Orest Olejnik Needleless microprotrusion elastoplast system
US20060058891A1 (en) * 2004-09-16 2006-03-16 Lesh Michael D Transformable tissue bulking device
WO2006034077A1 (en) * 2004-09-16 2006-03-30 Juva Medical, Inc. Tissue augmentation device
US20060058892A1 (en) * 2004-09-16 2006-03-16 Lesh Michael D Valved tissue augmentation implant
US7641688B2 (en) 2004-09-16 2010-01-05 Evera Medical, Inc. Tissue augmentation device
US7244270B2 (en) * 2004-09-16 2007-07-17 Evera Medical Systems and devices for soft tissue augmentation
US9237891B2 (en) 2005-08-31 2016-01-19 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US10159482B2 (en) 2005-08-31 2018-12-25 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and different staple heights
US7669746B2 (en) 2005-08-31 2010-03-02 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US20070194082A1 (en) 2005-08-31 2007-08-23 Morgan Jerome R Surgical stapling device with anvil having staple forming pockets of varying depths
US11246590B2 (en) 2005-08-31 2022-02-15 Cilag Gmbh International Staple cartridge including staple drivers having different unfired heights
US11484312B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
US7934630B2 (en) 2005-08-31 2011-05-03 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US20070065545A1 (en) * 2005-09-20 2007-03-22 Terry Vovan Multi-topping tray container system
US20070106317A1 (en) 2005-11-09 2007-05-10 Shelton Frederick E Iv Hydraulically and electrically actuated articulation joints for surgical instruments
US20070156175A1 (en) * 2005-12-29 2007-07-05 Weadock Kevin S Device for attaching, relocating and reinforcing tissue and methods of using same
US8820603B2 (en) 2006-01-31 2014-09-02 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US7753904B2 (en) 2006-01-31 2010-07-13 Ethicon Endo-Surgery, Inc. Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US8708213B2 (en) 2006-01-31 2014-04-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
US20110024477A1 (en) 2009-02-06 2011-02-03 Hall Steven G Driven Surgical Stapler Improvements
US11224427B2 (en) 2006-01-31 2022-01-18 Cilag Gmbh International Surgical stapling system including a console and retraction assembly
US20110290856A1 (en) 2006-01-31 2011-12-01 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical instrument with force-feedback capabilities
US7845537B2 (en) 2006-01-31 2010-12-07 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US20110006101A1 (en) 2009-02-06 2011-01-13 EthiconEndo-Surgery, Inc. Motor driven surgical fastener device with cutting member lockout arrangements
US9861359B2 (en) 2006-01-31 2018-01-09 Ethicon Llc Powered surgical instruments with firing system lockout arrangements
US11793518B2 (en) 2006-01-31 2023-10-24 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US8186555B2 (en) 2006-01-31 2012-05-29 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with mechanical closure system
US11278279B2 (en) 2006-01-31 2022-03-22 Cilag Gmbh International Surgical instrument assembly
US20120292367A1 (en) 2006-01-31 2012-11-22 Ethicon Endo-Surgery, Inc. Robotically-controlled end effector
US8992422B2 (en) 2006-03-23 2015-03-31 Ethicon Endo-Surgery, Inc. Robotically-controlled endoscopic accessory channel
US20070225562A1 (en) 2006-03-23 2007-09-27 Ethicon Endo-Surgery, Inc. Articulating endoscopic accessory channel
AU2007249293C1 (en) * 2006-05-12 2013-06-27 Arthrocare Corporation Middle turbinate medializer
EP2024000A4 (en) * 2006-05-23 2011-11-16 Entrigue Surgical Inc Sinus tube
US7837706B2 (en) * 2006-05-31 2010-11-23 Boston Scientific Scimed, Inc. Tissue attachment device, system, and method
US8322455B2 (en) 2006-06-27 2012-12-04 Ethicon Endo-Surgery, Inc. Manually driven surgical cutting and fastening instrument
AU2007282013B2 (en) 2006-08-03 2013-07-11 The Board Of Trustees Of The Leland Stanford Junior University Devices and bandages for the treatment or prevention of scars and/or keloids and methods and kits therefor
US8485412B2 (en) 2006-09-29 2013-07-16 Ethicon Endo-Surgery, Inc. Surgical staples having attached drivers and stapling instruments for deploying the same
US10130359B2 (en) 2006-09-29 2018-11-20 Ethicon Llc Method for forming a staple
US10568652B2 (en) 2006-09-29 2020-02-25 Ethicon Llc Surgical staples having attached drivers of different heights and stapling instruments for deploying the same
US8529959B2 (en) 2006-10-17 2013-09-10 Carmell Therapeutics Corporation Methods and apparatus for manufacturing plasma based plastics and bioplastics produced therefrom
US7828854B2 (en) * 2006-10-31 2010-11-09 Ethicon, Inc. Implantable repair device
US7931651B2 (en) 2006-11-17 2011-04-26 Wake Lake University Health Sciences External fixation assembly and method of use
US7998152B2 (en) * 2006-12-21 2011-08-16 Frank Robert E Implantable prosthesis for periareolar mastopexy
US9192471B2 (en) * 2007-01-08 2015-11-24 Millipede, Inc. Device for translumenal reshaping of a mitral valve annulus
US11291441B2 (en) 2007-01-10 2022-04-05 Cilag Gmbh International Surgical instrument with wireless communication between control unit and remote sensor
US8652120B2 (en) 2007-01-10 2014-02-18 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US8684253B2 (en) 2007-01-10 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US8377016B2 (en) * 2007-01-10 2013-02-19 Wake Forest University Health Sciences Apparatus and method for wound treatment employing periodic sub-atmospheric pressure
US8701958B2 (en) 2007-01-11 2014-04-22 Ethicon Endo-Surgery, Inc. Curved end effector for a surgical stapling device
US11039836B2 (en) 2007-01-11 2021-06-22 Cilag Gmbh International Staple cartridge for use with a surgical stapling instrument
US8727197B2 (en) 2007-03-15 2014-05-20 Ethicon Endo-Surgery, Inc. Staple cartridge cavity configuration with cooperative surgical staple
US8893946B2 (en) 2007-03-28 2014-11-25 Ethicon Endo-Surgery, Inc. Laparoscopic tissue thickness and clamp load measuring devices
US8931682B2 (en) 2007-06-04 2015-01-13 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US11672531B2 (en) 2007-06-04 2023-06-13 Cilag Gmbh International Rotary drive systems for surgical instruments
US8308040B2 (en) 2007-06-22 2012-11-13 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with an articulatable end effector
US7753245B2 (en) 2007-06-22 2010-07-13 Ethicon Endo-Surgery, Inc. Surgical stapling instruments
US11849941B2 (en) 2007-06-29 2023-12-26 Cilag Gmbh International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
US9358009B2 (en) 2007-08-03 2016-06-07 Neodyne Biosciences, Inc. Skin straining devices and methods
CA2699736C (en) 2007-09-14 2016-06-28 Entrigue Surgical, Inc. Implant system
US8500759B2 (en) 2007-09-26 2013-08-06 Ethicon, Inc. Hernia mesh support device
US8771314B2 (en) 2007-09-28 2014-07-08 Ethicon, Inc. Surgical anchor device
WO2009049058A1 (en) 2007-10-10 2009-04-16 Wake Forest University Health Sciences Devices and methods for treating spinal cord tissue
US20090112259A1 (en) * 2007-10-31 2009-04-30 Angiotech Pharmaceuticals, Inc. Recombinant expressed bioadsorbable polyhydroxyalkonate monofilament and multi-filaments self-retaining sutures
US20090143819A1 (en) * 2007-10-31 2009-06-04 D Agostino William L Coatings for modifying monofilament and multi-filaments self-retaining sutures
US20090125096A1 (en) * 2007-11-12 2009-05-14 Medtronic Vascular, Inc. Stent Graft With Pins
US8597336B2 (en) * 2007-12-28 2013-12-03 Howmedica Osteonics Corp. Apparatus for discrete tissue anchoring for soft tissue repair and method of use
BRPI0906939A2 (en) 2008-01-09 2017-06-13 Univ Wake Forest Health Sciences apparatus and method for treating injured central nervous system tissue.
US20090198329A1 (en) 2008-02-01 2009-08-06 Kesten Randy J Breast implant with internal flow dampening
US20090198331A1 (en) * 2008-02-01 2009-08-06 Kesten Randy J Implantable prosthesis with open cell flow regulation
US8561870B2 (en) 2008-02-13 2013-10-22 Ethicon Endo-Surgery, Inc. Surgical stapling instrument
US7905381B2 (en) 2008-09-19 2011-03-15 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with cutting member arrangement
US8657174B2 (en) 2008-02-14 2014-02-25 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument having handle based power source
US7819298B2 (en) 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with control features operable with one hand
US8573465B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical end effector system with rotary actuated closure systems
US8636736B2 (en) 2008-02-14 2014-01-28 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument
US7866527B2 (en) 2008-02-14 2011-01-11 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with interlockable firing system
US8758391B2 (en) 2008-02-14 2014-06-24 Ethicon Endo-Surgery, Inc. Interchangeable tools for surgical instruments
BRPI0901282A2 (en) 2008-02-14 2009-11-17 Ethicon Endo Surgery Inc surgical cutting and fixation instrument with rf electrodes
US9179912B2 (en) 2008-02-14 2015-11-10 Ethicon Endo-Surgery, Inc. Robotically-controlled motorized surgical cutting and fastening instrument
US11272927B2 (en) 2008-02-15 2022-03-15 Cilag Gmbh International Layer arrangements for surgical staple cartridges
US9615826B2 (en) 2010-09-30 2017-04-11 Ethicon Endo-Surgery, Llc Multiple thickness implantable layers for surgical stapling devices
US8758373B2 (en) 2008-02-18 2014-06-24 Covidien Lp Means and method for reversibly connecting a patch to a patch deployment device
US9034002B2 (en) 2008-02-18 2015-05-19 Covidien Lp Lock bar spring and clip for implant deployment device
US9044235B2 (en) 2008-02-18 2015-06-02 Covidien Lp Magnetic clip for implant deployment device
US8808314B2 (en) 2008-02-18 2014-08-19 Covidien Lp Device and method for deploying and attaching an implant to a biological tissue
US9393002B2 (en) 2008-02-18 2016-07-19 Covidien Lp Clip for implant deployment device
US9393093B2 (en) 2008-02-18 2016-07-19 Covidien Lp Clip for implant deployment device
US9301826B2 (en) 2008-02-18 2016-04-05 Covidien Lp Lock bar spring and clip for implant deployment device
US9398944B2 (en) 2008-02-18 2016-07-26 Covidien Lp Lock bar spring and clip for implant deployment device
US9833240B2 (en) 2008-02-18 2017-12-05 Covidien Lp Lock bar spring and clip for implant deployment device
US8317808B2 (en) 2008-02-18 2012-11-27 Covidien Lp Device and method for rolling and inserting a prosthetic patch into a body cavity
EP2247245B1 (en) 2008-02-18 2017-06-28 Covidien LP A device for deploying and attaching a patch to a biological tissue
US20090228021A1 (en) * 2008-03-06 2009-09-10 Leung Jeffrey C Matrix material
US20090259263A1 (en) 2008-04-11 2009-10-15 Biomet Microfixation, Inc. Apparatus and methods of fixating bone
US9289193B2 (en) 2008-07-18 2016-03-22 Wake Forest University Health Sciences Apparatus and method for cardiac tissue modulation by topical application of vacuum to minimize cell death and damage
US8777990B2 (en) 2008-09-08 2014-07-15 Howmedica Osteonics Corp. Knotless suture anchor for soft tissue repair and method of use
AU2009293181B2 (en) 2008-09-17 2014-07-24 Arthrocare Corporation Methods and systems for medializing a turbinate
PL3476312T3 (en) 2008-09-19 2024-03-11 Ethicon Llc Surgical stapler with apparatus for adjusting staple height
US8210411B2 (en) 2008-09-23 2012-07-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument
US9005230B2 (en) 2008-09-23 2015-04-14 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US11648005B2 (en) 2008-09-23 2023-05-16 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US9386983B2 (en) 2008-09-23 2016-07-12 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument
US8608045B2 (en) 2008-10-10 2013-12-17 Ethicon Endo-Sugery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
EP2792307B1 (en) 2008-10-20 2017-10-04 Covidien LP A device for attaching a patch to a biological tissue
US9451942B2 (en) * 2008-11-12 2016-09-27 Howmedica Osteonics Corp. Insertion tool for knotless suture anchor for soft tissue repair and method of use
US8517239B2 (en) 2009-02-05 2013-08-27 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising a magnetic element driver
US8444036B2 (en) 2009-02-06 2013-05-21 Ethicon Endo-Surgery, Inc. Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector
JP2012517287A (en) 2009-02-06 2012-08-02 エシコン・エンド−サージェリィ・インコーポレイテッド Improvement of driven surgical stapler
US8821533B2 (en) * 2009-05-06 2014-09-02 Cook Biotech Incorporated Device for minimally invasive plastic surgery lift procedure
EP2427128A4 (en) 2009-05-07 2015-12-02 Covidien Lp Surgical patch cover and method of use
JP5146499B2 (en) * 2009-08-08 2013-02-20 株式会社ニコン Solid-state image sensor
EP3207904B1 (en) 2009-08-11 2020-12-30 Neodyne Biosciences, Inc. Devices and methods for dressing applicators
AU2010286116B2 (en) 2009-08-17 2014-06-26 Covidien Lp Means and method for reversibly connecting an implant to a deployment device
AU2010286117B9 (en) 2009-08-17 2014-07-10 Covidien Lp Articulating patch deployment device and method of use
US10349980B2 (en) 2009-08-27 2019-07-16 The Foundry, Llc Method and apparatus for altering biomechanics of the shoulder
US9861408B2 (en) 2009-08-27 2018-01-09 The Foundry, Llc Method and apparatus for treating canine cruciate ligament disease
US9278004B2 (en) * 2009-08-27 2016-03-08 Cotera, Inc. Method and apparatus for altering biomechanics of the articular joints
US9668868B2 (en) 2009-08-27 2017-06-06 Cotera, Inc. Apparatus and methods for treatment of patellofemoral conditions
US8597362B2 (en) 2009-08-27 2013-12-03 Cotera, Inc. Method and apparatus for force redistribution in articular joints
US8409296B2 (en) * 2009-12-16 2013-04-02 Ethicon, Inc. Brow lift implant and method
US8220688B2 (en) 2009-12-24 2012-07-17 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument with electric actuator directional control assembly
US8851354B2 (en) 2009-12-24 2014-10-07 Ethicon Endo-Surgery, Inc. Surgical cutting instrument that analyzes tissue thickness
WO2011091169A1 (en) * 2010-01-20 2011-07-28 University Of Rochester Nerve and blood vessel repair systems
WO2011112888A2 (en) * 2010-03-11 2011-09-15 Microkoll, Inc. Apparatus and method for tissue adhesion
AU2011232332A1 (en) * 2010-03-24 2012-11-15 Covidien Lp Three-dimensional surgical implant
FR2962646B1 (en) 2010-07-16 2012-06-22 Sofradim Production PROSTHETIC WITH RADIO OPAQUE ELEMENT
US8783543B2 (en) 2010-07-30 2014-07-22 Ethicon Endo-Surgery, Inc. Tissue acquisition arrangements and methods for surgical stapling devices
US20120053680A1 (en) 2010-08-24 2012-03-01 Bolling Steven F Reconfiguring Heart Features
US9492952B2 (en) 2010-08-30 2016-11-15 Endo-Surgery, Inc. Super-hydrophilic structures
US20120143228A1 (en) 2010-08-30 2012-06-07 Agency For Science Technology And Research Adhesive structure with stiff protrusions on adhesive surface
US9408956B2 (en) 2010-09-24 2016-08-09 Kci Licensing, Inc. Cellular control and tissue regeneration systems and methods
AU2011305256A1 (en) 2010-09-24 2013-04-11 Entrigue Surgical, Inc. Systems, devices, and methods for providing therapy to an anatomical structure using high frequency pressure waves and/or cryogenic temperatures
US8733613B2 (en) 2010-09-29 2014-05-27 Ethicon Endo-Surgery, Inc. Staple cartridge
US9220501B2 (en) 2010-09-30 2015-12-29 Ethicon Endo-Surgery, Inc. Tissue thickness compensators
US11925354B2 (en) 2010-09-30 2024-03-12 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
CA2812553C (en) 2010-09-30 2019-02-12 Ethicon Endo-Surgery, Inc. Fastener system comprising a retention matrix and an alignment matrix
US9232941B2 (en) 2010-09-30 2016-01-12 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a reservoir
US11812965B2 (en) 2010-09-30 2023-11-14 Cilag Gmbh International Layer of material for a surgical end effector
US9307989B2 (en) 2012-03-28 2016-04-12 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorportating a hydrophobic agent
US20120080498A1 (en) 2010-09-30 2012-04-05 Ethicon Endo-Surgery, Inc. Curved end effector for a stapling instrument
US10945731B2 (en) 2010-09-30 2021-03-16 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
US8893949B2 (en) 2010-09-30 2014-11-25 Ethicon Endo-Surgery, Inc. Surgical stapler with floating anvil
US9314246B2 (en) 2010-09-30 2016-04-19 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorporating an anti-inflammatory agent
US11298125B2 (en) 2010-09-30 2022-04-12 Cilag Gmbh International Tissue stapler having a thickness compensator
US9386988B2 (en) 2010-09-30 2016-07-12 Ethicon End-Surgery, LLC Retainer assembly including a tissue thickness compensator
US9044228B2 (en) * 2010-09-30 2015-06-02 Ethicon Endo-Surgery, Inc. Fastener system comprising a plurality of fastener cartridges
US9700317B2 (en) 2010-09-30 2017-07-11 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a releasable tissue thickness compensator
US9113865B2 (en) 2010-09-30 2015-08-25 Ethicon Endo-Surgery, Inc. Staple cartridge comprising a layer
US9364233B2 (en) 2010-09-30 2016-06-14 Ethicon Endo-Surgery, Llc Tissue thickness compensators for circular surgical staplers
US9332974B2 (en) 2010-09-30 2016-05-10 Ethicon Endo-Surgery, Llc Layered tissue thickness compensator
US9204880B2 (en) 2012-03-28 2015-12-08 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising capsules defining a low pressure environment
US9414838B2 (en) 2012-03-28 2016-08-16 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprised of a plurality of materials
US9351730B2 (en) 2011-04-29 2016-05-31 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising channels
US9220500B2 (en) 2010-09-30 2015-12-29 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising structure to produce a resilient load
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US8695866B2 (en) 2010-10-01 2014-04-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a power control circuit
US9861590B2 (en) 2010-10-19 2018-01-09 Covidien Lp Self-supporting films for delivery of therapeutic agents
BR112013017506B1 (en) 2011-01-07 2021-01-26 Neodyne Biosciences, Inc. dressing assembly
EP2667791B1 (en) * 2011-01-26 2017-03-15 Carmell Therapeutics Corporation Barbs for fixation of biologic plastics
US9421132B2 (en) 2011-02-04 2016-08-23 University Of Massachusetts Negative pressure wound closure device
RU2756986C2 (en) 2011-02-04 2021-10-08 Юниверсити Оф Массачусетс Wound closure device with the creation of negative pressure
CN103501739B (en) 2011-03-03 2018-06-19 尼欧迪纳生物科学公司 For the device of skin-tightening
FR2972626B1 (en) 2011-03-16 2014-04-11 Sofradim Production PROSTHETIC COMPRISING A THREE-DIMENSIONAL KNIT AND ADJUSTED
WO2012136950A1 (en) * 2011-04-05 2012-10-11 Northwood Implants Limited Ear scaffold
US9597484B2 (en) * 2011-04-15 2017-03-21 University Of Massachusetts Surgical cavity drainage and closure system
AU2012250197B2 (en) 2011-04-29 2017-08-10 Ethicon Endo-Surgery, Inc. Staple cartridge comprising staples positioned within a compressible portion thereof
US11207064B2 (en) 2011-05-27 2021-12-28 Cilag Gmbh International Automated end effector component reloading system for use with a robotic system
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
US9456930B2 (en) 2011-07-12 2016-10-04 Kci Licensing, Inc. Topical vacuum-press surgical incisional dressings, surgical adjuncts, hybrids and composites
FR2977790B1 (en) 2011-07-13 2013-07-19 Sofradim Production PROSTHETIC FOR UMBILIC HERNIA
FR2977789B1 (en) 2011-07-13 2013-07-19 Sofradim Production PROSTHETIC FOR UMBILIC HERNIA
US8579924B2 (en) 2011-07-26 2013-11-12 Covidien Lp Implantable devices including a mesh and a pivotable film
US9492170B2 (en) * 2011-08-10 2016-11-15 Ethicon Endo-Surgery, Inc. Device for applying adjunct in endoscopic procedure
US9782957B2 (en) 2011-08-24 2017-10-10 Covidien Lp Medical device films
US9050084B2 (en) 2011-09-23 2015-06-09 Ethicon Endo-Surgery, Inc. Staple cartridge including collapsible deck arrangement
US8932621B2 (en) 2011-10-25 2015-01-13 Covidien Lp Implantable film/mesh composite
US9179994B2 (en) 2011-10-25 2015-11-10 Covidien Lp Implantable film/mesh composite
US9005308B2 (en) 2011-10-25 2015-04-14 Covidien Lp Implantable film/mesh composite for passage of tissue therebetween
US10561359B2 (en) 2011-12-02 2020-02-18 Neodyne Biosciences, Inc. Elastic devices, methods, systems and kits for selecting skin treatment devices
US9569566B2 (en) 2011-12-12 2017-02-14 Zam Research Llc Simulation and control system and method using contact, pressure waves and factor controls for cell regeneration, tissue closure and related applications
FR2985170B1 (en) 2011-12-29 2014-01-24 Sofradim Production PROSTHESIS FOR INGUINAL HERNIA
US10278701B2 (en) 2011-12-29 2019-05-07 Ethicon, Inc. Adhesive structure with tissue piercing protrusions on its surface
US10213350B2 (en) 2012-02-08 2019-02-26 Neodyne Biosciences, Inc. Radially tensioned wound or skin treatment devices and methods
US9044230B2 (en) 2012-02-13 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US9161756B2 (en) * 2012-03-16 2015-10-20 Covidien Lp Closure tape dispenser
JP6305979B2 (en) 2012-03-28 2018-04-04 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Tissue thickness compensator with multiple layers
RU2644272C2 (en) 2012-03-28 2018-02-08 Этикон Эндо-Серджери, Инк. Limitation node with tissue thickness compensator
US9198662B2 (en) 2012-03-28 2015-12-01 Ethicon Endo-Surgery, Inc. Tissue thickness compensator having improved visibility
BR112014024098B1 (en) 2012-03-28 2021-05-25 Ethicon Endo-Surgery, Inc. staple cartridge
US10206769B2 (en) 2012-03-30 2019-02-19 Covidien Lp Implantable devices including a film providing folding characteristics
US8926881B2 (en) 2012-04-06 2015-01-06 DePuy Synthes Products, LLC Super-hydrophobic hierarchical structures, method of forming them and medical devices incorporating them
US8969648B2 (en) 2012-04-06 2015-03-03 Ethicon, Inc. Blood clotting substrate and medical device
CN107280857A (en) 2012-05-22 2017-10-24 史密夫及内修公开有限公司 Wound healing device
MX2014014266A (en) 2012-05-22 2015-06-23 Smith & Nephew Apparatuses and methods for wound therapy.
CN104736110B (en) 2012-05-24 2019-05-31 史密夫和内修有限公司 Device and method for wound to be handled and closed using negative pressure
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
US11202631B2 (en) 2012-06-28 2021-12-21 Cilag Gmbh International Stapling assembly comprising a firing lockout
US9119657B2 (en) 2012-06-28 2015-09-01 Ethicon Endo-Surgery, Inc. Rotary actuatable closure arrangement for surgical end effector
FR2992662B1 (en) 2012-06-28 2014-08-08 Sofradim Production KNIT WITH PICOTS
US9125662B2 (en) 2012-06-28 2015-09-08 Ethicon Endo-Surgery, Inc. Multi-axis articulating and rotating surgical tools
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
US9282974B2 (en) 2012-06-28 2016-03-15 Ethicon Endo-Surgery, Llc Empty clip cartridge lockout
US9028494B2 (en) 2012-06-28 2015-05-12 Ethicon Endo-Surgery, Inc. Interchangeable end effector coupling arrangement
US9072536B2 (en) 2012-06-28 2015-07-07 Ethicon Endo-Surgery, Inc. Differential locking arrangements for rotary powered surgical instruments
US20140001231A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Firing system lockout arrangements for surgical instruments
US9561038B2 (en) 2012-06-28 2017-02-07 Ethicon Endo-Surgery, Llc Interchangeable clip applier
BR112014032776B1 (en) 2012-06-28 2021-09-08 Ethicon Endo-Surgery, Inc SURGICAL INSTRUMENT SYSTEM AND SURGICAL KIT FOR USE WITH A SURGICAL INSTRUMENT SYSTEM
US9204879B2 (en) 2012-06-28 2015-12-08 Ethicon Endo-Surgery, Inc. Flexible drive member
US9408606B2 (en) 2012-06-28 2016-08-09 Ethicon Endo-Surgery, Llc Robotically powered surgical device with manually-actuatable reversing system
JP6290201B2 (en) 2012-06-28 2018-03-07 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Lockout for empty clip cartridge
US9101385B2 (en) 2012-06-28 2015-08-11 Ethicon Endo-Surgery, Inc. Electrode connections for rotary driven surgical tools
FR2992547B1 (en) 2012-06-29 2015-04-24 Sofradim Production PROSTHETIC FOR HERNIA
EP3225205A2 (en) 2012-07-11 2017-10-04 Zimmer, Inc. Bone fixation tool
CN110448407B (en) 2012-07-16 2022-08-09 史密夫和内修有限公司 Negative pressure wound closure device
FR2994185B1 (en) 2012-08-02 2015-07-31 Sofradim Production PROCESS FOR THE PREPARATION OF A POROUS CHITOSAN LAYER
US20140046362A1 (en) 2012-08-07 2014-02-13 Zift Medical Tissue Attachment Device And Method
US9468466B1 (en) 2012-08-24 2016-10-18 Cotera, Inc. Method and apparatus for altering biomechanics of the spine
US20140074127A1 (en) * 2012-09-07 2014-03-13 Zimmer, Inc. Soft tissue connector
US10849755B2 (en) 2012-09-14 2020-12-01 Boston Scientific Scimed, Inc. Mitral valve inversion prostheses
US10543088B2 (en) 2012-09-14 2020-01-28 Boston Scientific Scimed, Inc. Mitral valve inversion prostheses
FR2995788B1 (en) 2012-09-25 2014-09-26 Sofradim Production HEMOSTATIC PATCH AND PREPARATION METHOD
FR2995779B1 (en) 2012-09-25 2015-09-25 Sofradim Production PROSTHETIC COMPRISING A TREILLIS AND A MEANS OF CONSOLIDATION
US9750595B2 (en) 2012-09-28 2017-09-05 Covidien Lp Implantable medical devices which include grip-members and methods of use thereof
EP2916786B1 (en) 2012-11-12 2018-03-21 KCI Licensing, Inc. Externally-applied wound dressings and closures
US20140163586A1 (en) * 2012-12-11 2014-06-12 Dolly Jeanne Holt Tissue repair devices and methods
US9908929B2 (en) 2013-02-01 2018-03-06 Washington University Collagen matrix with locally controlled intrafibrillar and extrafibrillar mineral content and methods of producing
US9386984B2 (en) 2013-02-08 2016-07-12 Ethicon Endo-Surgery, Llc Staple cartridge comprising a releasable cover
EP4039236A1 (en) 2013-02-20 2022-08-10 Cytrellis Biosystems, Inc. System for tightening a region of skin
BR112015021098B1 (en) 2013-03-01 2022-02-15 Ethicon Endo-Surgery, Inc COVERAGE FOR A JOINT JOINT AND SURGICAL INSTRUMENT
RU2669463C2 (en) 2013-03-01 2018-10-11 Этикон Эндо-Серджери, Инк. Surgical instrument with soft stop
US20140249557A1 (en) 2013-03-01 2014-09-04 Ethicon Endo-Surgery, Inc. Thumbwheel switch arrangements for surgical instruments
US9345481B2 (en) 2013-03-13 2016-05-24 Ethicon Endo-Surgery, Llc Staple cartridge tissue thickness sensor system
EP2968016B1 (en) 2013-03-13 2018-07-11 Smith&Nephew, Inc. Negative pressure wound closure device and systems and methods of use in treating wounds with negative pressure
BR112015021123A2 (en) 2013-03-14 2017-07-18 Smith & Nephew compressible wound fillers and systems and methods for use in treating negative pressure injuries
US9883860B2 (en) 2013-03-14 2018-02-06 Ethicon Llc Interchangeable shaft assemblies for use with a surgical instrument
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
US10492956B2 (en) 2013-03-15 2019-12-03 Kci Licensing, Inc. Topical vacuum-press surgical incisional dressings, surgical adjuncts, hybrids and composites
WO2014143730A1 (en) * 2013-03-15 2014-09-18 Boston Scientific Scimed, Inc. Anti-migratory stent coating
US9572577B2 (en) 2013-03-27 2017-02-21 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a tissue thickness compensator including openings therein
US9332984B2 (en) 2013-03-27 2016-05-10 Ethicon Endo-Surgery, Llc Fastener cartridge assemblies
US9795384B2 (en) 2013-03-27 2017-10-24 Ethicon Llc Fastener cartridge comprising a tissue thickness compensator and a gap setting element
BR112015026109B1 (en) 2013-04-16 2022-02-22 Ethicon Endo-Surgery, Inc surgical instrument
US10136887B2 (en) 2013-04-16 2018-11-27 Ethicon Llc Drive system decoupling arrangement for a surgical instrument
PT2991600T (en) * 2013-05-03 2018-11-05 Cytrellis Biosystems Inc Microclosures and related methods for skin treatment
US9574644B2 (en) 2013-05-30 2017-02-21 Ethicon Endo-Surgery, Llc Power module for use with a surgical instrument
AU2014306273B2 (en) 2013-08-09 2019-07-11 Cytrellis Biosystems, Inc. Methods and apparatuses for skin treatment using non-thermal tissue ablation
MX369362B (en) 2013-08-23 2019-11-06 Ethicon Endo Surgery Llc Firing member retraction devices for powered surgical instruments.
US9924942B2 (en) 2013-08-23 2018-03-27 Ethicon Llc Motor-powered articulatable surgical instruments
EP3060181B1 (en) 2013-10-21 2021-11-03 Smith & Nephew, Inc. Negative pressure wound closure device
US9433493B2 (en) * 2013-11-04 2016-09-06 Biomet Sports Medicine, Llc Tissue contacting member
EP3082897A4 (en) 2013-12-19 2017-07-26 Cytrellis Biosystems, Inc. Methods and devices for manipulating subdermal fat
US9724092B2 (en) 2013-12-23 2017-08-08 Ethicon Llc Modular surgical instruments
US20150173756A1 (en) 2013-12-23 2015-06-25 Ethicon Endo-Surgery, Inc. Surgical cutting and stapling methods
US9839428B2 (en) 2013-12-23 2017-12-12 Ethicon Llc Surgical cutting and stapling instruments with independent jaw control features
US9585662B2 (en) 2013-12-23 2017-03-07 Ethicon Endo-Surgery, Llc Fastener cartridge comprising an extendable firing member
WO2015110410A1 (en) 2014-01-21 2015-07-30 Smith & Nephew Plc Collapsible dressing for negative pressure wound treatment
US9114013B2 (en) 2014-01-24 2015-08-25 J. Randall Jordan Malar implant with dual-plane adhesion
US9962161B2 (en) 2014-02-12 2018-05-08 Ethicon Llc Deliverable surgical instrument
US20140166725A1 (en) 2014-02-24 2014-06-19 Ethicon Endo-Surgery, Inc. Staple cartridge including a barbed staple.
CN106232029B (en) 2014-02-24 2019-04-12 伊西康内外科有限责任公司 Fastening system including firing member locking piece
CN103932749A (en) * 2014-02-26 2014-07-23 李扬德 Medical and degradable magnesium-alloy multipurpose anastomotic piece
US20150272580A1 (en) 2014-03-26 2015-10-01 Ethicon Endo-Surgery, Inc. Verification of number of battery exchanges/procedure count
US9913642B2 (en) 2014-03-26 2018-03-13 Ethicon Llc Surgical instrument comprising a sensor system
BR112016021943B1 (en) 2014-03-26 2022-06-14 Ethicon Endo-Surgery, Llc SURGICAL INSTRUMENT FOR USE BY AN OPERATOR IN A SURGICAL PROCEDURE
US9820738B2 (en) 2014-03-26 2017-11-21 Ethicon Llc Surgical instrument comprising interactive systems
US9804618B2 (en) 2014-03-26 2017-10-31 Ethicon Llc Systems and methods for controlling a segmented circuit
US10179017B2 (en) 2014-04-03 2019-01-15 Zimmer, Inc. Orthopedic tool for bone fixation
US9801628B2 (en) 2014-09-26 2017-10-31 Ethicon Llc Surgical staple and driver arrangements for staple cartridges
CN106456176B (en) 2014-04-16 2019-06-28 伊西康内外科有限责任公司 Fastener cartridge including the extension with various configuration
US11185330B2 (en) 2014-04-16 2021-11-30 Cilag Gmbh International Fastener cartridge assemblies and staple retainer cover arrangements
US20150297222A1 (en) 2014-04-16 2015-10-22 Ethicon Endo-Surgery, Inc. Fastener cartridges including extensions having different configurations
BR112016023825B1 (en) 2014-04-16 2022-08-02 Ethicon Endo-Surgery, Llc STAPLE CARTRIDGE FOR USE WITH A SURGICAL STAPLER AND STAPLE CARTRIDGE FOR USE WITH A SURGICAL INSTRUMENT
JP6532889B2 (en) 2014-04-16 2019-06-19 エシコン エルエルシーEthicon LLC Fastener cartridge assembly and staple holder cover arrangement
US10045781B2 (en) 2014-06-13 2018-08-14 Ethicon Llc Closure lockout systems for surgical instruments
WO2016004283A1 (en) * 2014-07-02 2016-01-07 The Cleveland Clinic Foundation Anastomosis devices and methods of using same
US9180005B1 (en) 2014-07-17 2015-11-10 Millipede, Inc. Adjustable endolumenal mitral valve ring
US9561026B2 (en) 2014-08-19 2017-02-07 Depuy Mitek, Llc Segmented suture anchor
US10135242B2 (en) 2014-09-05 2018-11-20 Ethicon Llc Smart cartridge wake up operation and data retention
BR112017004361B1 (en) 2014-09-05 2023-04-11 Ethicon Llc ELECTRONIC SYSTEM FOR A SURGICAL INSTRUMENT
US11311294B2 (en) 2014-09-05 2022-04-26 Cilag Gmbh International Powered medical device including measurement of closure state of jaws
US10105142B2 (en) 2014-09-18 2018-10-23 Ethicon Llc Surgical stapler with plurality of cutting elements
US11523821B2 (en) 2014-09-26 2022-12-13 Cilag Gmbh International Method for creating a flexible staple line
MX2017003960A (en) 2014-09-26 2017-12-04 Ethicon Llc Surgical stapling buttresses and adjunct materials.
US10076325B2 (en) 2014-10-13 2018-09-18 Ethicon Llc Surgical stapling apparatus comprising a tissue stop
AU2015331752B2 (en) * 2014-10-16 2020-01-30 Conextions, Inc. Devices, systems, and methods for repairing soft tissue and attaching soft tissue to bone
US9924944B2 (en) 2014-10-16 2018-03-27 Ethicon Llc Staple cartridge comprising an adjunct material
US11141153B2 (en) 2014-10-29 2021-10-12 Cilag Gmbh International Staple cartridges comprising driver arrangements
US10517594B2 (en) 2014-10-29 2019-12-31 Ethicon Llc Cartridge assemblies for surgical staplers
US9622844B2 (en) 2014-10-31 2017-04-18 Prevent Patch, LLC Devices and methods for preventing incisional hernias
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
JP2017533774A (en) 2014-11-14 2017-11-16 サイトレリス バイオシステムズ,インコーポレーテッド Device and method for skin ablation
US10736636B2 (en) 2014-12-10 2020-08-11 Ethicon Llc Articulatable surgical instrument system
US10004501B2 (en) 2014-12-18 2018-06-26 Ethicon Llc Surgical instruments with improved closure arrangements
US10117649B2 (en) 2014-12-18 2018-11-06 Ethicon Llc Surgical instrument assembly comprising a lockable articulation system
US10188385B2 (en) 2014-12-18 2019-01-29 Ethicon Llc Surgical instrument system comprising lockable systems
US9987000B2 (en) 2014-12-18 2018-06-05 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US10085748B2 (en) 2014-12-18 2018-10-02 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
RU2703684C2 (en) 2014-12-18 2019-10-21 ЭТИКОН ЭНДО-СЕРДЖЕРИ, ЭлЭлСи Surgical instrument with anvil which is selectively movable relative to staple cartridge around discrete fixed axis
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
EP3256077B1 (en) 2015-02-13 2024-03-27 Boston Scientific Scimed, Inc. Valve replacement using rotational anchors
EP3059255B1 (en) 2015-02-17 2020-05-13 Sofradim Production Method for preparing a chitosan-based matrix comprising a fiber reinforcement member
US10321907B2 (en) 2015-02-27 2019-06-18 Ethicon Llc System for monitoring whether a surgical instrument needs to be serviced
US11154301B2 (en) 2015-02-27 2021-10-26 Cilag Gmbh International Modular stapling assembly
US10180463B2 (en) 2015-02-27 2019-01-15 Ethicon Llc Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band
US10226250B2 (en) 2015-02-27 2019-03-12 Ethicon Llc Modular stapling assembly
US9993248B2 (en) 2015-03-06 2018-06-12 Ethicon Endo-Surgery, Llc Smart sensors with local signal processing
US10045776B2 (en) 2015-03-06 2018-08-14 Ethicon Llc Control techniques and sub-processor contained within modular shaft with select control processing from handle
US9895148B2 (en) 2015-03-06 2018-02-20 Ethicon Endo-Surgery, Llc Monitoring speed control and precision incrementing of motor for powered surgical instruments
US10687806B2 (en) 2015-03-06 2020-06-23 Ethicon Llc Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
US10441279B2 (en) 2015-03-06 2019-10-15 Ethicon Llc Multiple level thresholds to modify operation of powered surgical instruments
JP2020121162A (en) 2015-03-06 2020-08-13 エシコン エルエルシーEthicon LLC Time dependent evaluation of sensor data to determine stability element, creep element and viscoelastic element of measurement
US10052044B2 (en) 2015-03-06 2018-08-21 Ethicon Llc Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US10617412B2 (en) 2015-03-06 2020-04-14 Ethicon Llc System for detecting the mis-insertion of a staple cartridge into a surgical stapler
US9808246B2 (en) 2015-03-06 2017-11-07 Ethicon Endo-Surgery, Llc Method of operating a powered surgical instrument
US10245033B2 (en) 2015-03-06 2019-04-02 Ethicon Llc Surgical instrument comprising a lockable battery housing
US9924961B2 (en) 2015-03-06 2018-03-27 Ethicon Endo-Surgery, Llc Interactive feedback system for powered surgical instruments
US9901342B2 (en) 2015-03-06 2018-02-27 Ethicon Endo-Surgery, Llc Signal and power communication system positioned on a rotatable shaft
US10390825B2 (en) 2015-03-31 2019-08-27 Ethicon Llc Surgical instrument with progressive rotary drive systems
EP3085337B1 (en) 2015-04-24 2022-09-14 Sofradim Production Prosthesis for supporting a breast structure
AU2016254119A1 (en) 2015-04-29 2017-10-05 Smith & Nephew Inc. Negative pressure wound closure device
US10405863B2 (en) 2015-06-18 2019-09-10 Ethicon Llc Movable firing beam support arrangements for articulatable surgical instruments
ES2676072T3 (en) 2015-06-19 2018-07-16 Sofradim Production Synthetic prosthesis comprising a knitted fabric and a non-porous film and method of forming it
US11058425B2 (en) 2015-08-17 2021-07-13 Ethicon Llc Implantable layers for a surgical instrument
US10098642B2 (en) 2015-08-26 2018-10-16 Ethicon Llc Surgical staples comprising features for improved fastening of tissue
BR112018003693B1 (en) 2015-08-26 2022-11-22 Ethicon Llc SURGICAL STAPLE CARTRIDGE FOR USE WITH A SURGICAL STAPPING INSTRUMENT
MX2022006189A (en) 2015-09-02 2022-06-16 Ethicon Llc Surgical staple configurations with camming surfaces located between portions supporting surgical staples.
US10238390B2 (en) 2015-09-02 2019-03-26 Ethicon Llc Surgical staple cartridges with driver arrangements for establishing herringbone staple patterns
US10085751B2 (en) 2015-09-23 2018-10-02 Ethicon Llc Surgical stapler having temperature-based motor control
US10327769B2 (en) 2015-09-23 2019-06-25 Ethicon Llc Surgical stapler having motor control based on a drive system component
US10238386B2 (en) 2015-09-23 2019-03-26 Ethicon Llc Surgical stapler having motor control based on an electrical parameter related to a motor current
US10105139B2 (en) 2015-09-23 2018-10-23 Ethicon Llc Surgical stapler having downstream current-based motor control
US10076326B2 (en) 2015-09-23 2018-09-18 Ethicon Llc Surgical stapler having current mirror-based motor control
US10363036B2 (en) 2015-09-23 2019-07-30 Ethicon Llc Surgical stapler having force-based motor control
US10307165B2 (en) * 2015-09-24 2019-06-04 Ethicon Llc Apparatus and method for radially bunching a bodily lumen
US10299878B2 (en) 2015-09-25 2019-05-28 Ethicon Llc Implantable adjunct systems for determining adjunct skew
US10335275B2 (en) 2015-09-29 2019-07-02 Millipede, Inc. Methods for delivery of heart valve devices using intravascular ultrasound imaging
US10561420B2 (en) 2015-09-30 2020-02-18 Ethicon Llc Tubular absorbable constructs
US11890015B2 (en) 2015-09-30 2024-02-06 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US10980539B2 (en) 2015-09-30 2021-04-20 Ethicon Llc Implantable adjunct comprising bonded layers
US10285699B2 (en) 2015-09-30 2019-05-14 Ethicon Llc Compressible adjunct
EP3377000B1 (en) 2015-11-17 2023-02-01 Boston Scientific Scimed, Inc. Implantable device and delivery system for reshaping a heart valve annulus
US10814049B2 (en) 2015-12-15 2020-10-27 University Of Massachusetts Negative pressure wound closure devices and methods
US10575991B2 (en) 2015-12-15 2020-03-03 University Of Massachusetts Negative pressure wound closure devices and methods
US10265068B2 (en) 2015-12-30 2019-04-23 Ethicon Llc Surgical instruments with separable motors and motor control circuits
US10368865B2 (en) 2015-12-30 2019-08-06 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
EP3195830B1 (en) 2016-01-25 2020-11-18 Sofradim Production Prosthesis for hernia repair
US10716655B2 (en) 2016-02-03 2020-07-21 Shaare Zedek Scientific Ltd. Neck lift sling
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
US10433837B2 (en) 2016-02-09 2019-10-08 Ethicon Llc Surgical instruments with multiple link articulation arrangements
BR112018016098B1 (en) 2016-02-09 2023-02-23 Ethicon Llc SURGICAL INSTRUMENT
US10448948B2 (en) 2016-02-12 2019-10-22 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11224426B2 (en) 2016-02-12 2022-01-18 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10258331B2 (en) 2016-02-12 2019-04-16 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
WO2017172920A1 (en) 2016-03-29 2017-10-05 Cytrellis Biosystems, Inc. Devices and methods for cosmetic skin resurfacing
US10485542B2 (en) 2016-04-01 2019-11-26 Ethicon Llc Surgical stapling instrument comprising multiple lockouts
US10617413B2 (en) 2016-04-01 2020-04-14 Ethicon Llc Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts
US11607239B2 (en) 2016-04-15 2023-03-21 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10828028B2 (en) 2016-04-15 2020-11-10 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10335145B2 (en) 2016-04-15 2019-07-02 Ethicon Llc Modular surgical instrument with configurable operating mode
US10426467B2 (en) 2016-04-15 2019-10-01 Ethicon Llc Surgical instrument with detection sensors
US10492783B2 (en) 2016-04-15 2019-12-03 Ethicon, Llc Surgical instrument with improved stop/start control during a firing motion
US10456137B2 (en) 2016-04-15 2019-10-29 Ethicon Llc Staple formation detection mechanisms
US11179150B2 (en) 2016-04-15 2021-11-23 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10405859B2 (en) 2016-04-15 2019-09-10 Ethicon Llc Surgical instrument with adjustable stop/start control during a firing motion
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US20170296173A1 (en) 2016-04-18 2017-10-19 Ethicon Endo-Surgery, Llc Method for operating a surgical instrument
US10478181B2 (en) 2016-04-18 2019-11-19 Ethicon Llc Cartridge lockout arrangements for rotary powered surgical cutting and stapling instruments
US11317917B2 (en) 2016-04-18 2022-05-03 Cilag Gmbh International Surgical stapling system comprising a lockable firing assembly
US10675024B2 (en) 2016-06-24 2020-06-09 Ethicon Llc Staple cartridge comprising overdriven staples
CN109310431B (en) 2016-06-24 2022-03-04 伊西康有限责任公司 Staple cartridge comprising wire staples and punch staples
USD847989S1 (en) 2016-06-24 2019-05-07 Ethicon Llc Surgical fastener cartridge
USD850617S1 (en) 2016-06-24 2019-06-04 Ethicon Llc Surgical fastener cartridge
USD826405S1 (en) 2016-06-24 2018-08-21 Ethicon Llc Surgical fastener
US10994130B2 (en) 2016-09-06 2021-05-04 Biocircuit Technologies, Inc. Devices and methods for repairing damage to a nerve
US10238481B2 (en) 2016-09-20 2019-03-26 Surgical Innovation Associates, Inc. Apparatus and method for lifting or restraining a body part
CA3037490A1 (en) 2016-09-21 2018-03-29 Cytrellis Biosystems, Inc. Devices and methods for cosmetic skin resurfacing
GB2554928A (en) * 2016-10-14 2018-04-18 Univ College Dublin Nat Univ Ireland Dublin A tissue anchor and wound closure system
EP3312325B1 (en) 2016-10-21 2021-09-22 Sofradim Production Method for forming a mesh having a barbed suture attached thereto and the mesh thus obtained
US10588630B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical tool assemblies with closure stroke reduction features
US10517595B2 (en) 2016-12-21 2019-12-31 Ethicon Llc Jaw actuated lock arrangements for preventing advancement of a firing member in a surgical end effector unless an unfired cartridge is installed in the end effector
US20180168648A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Durability features for end effectors and firing assemblies of surgical stapling instruments
US10758229B2 (en) 2016-12-21 2020-09-01 Ethicon Llc Surgical instrument comprising improved jaw control
US10675025B2 (en) 2016-12-21 2020-06-09 Ethicon Llc Shaft assembly comprising separately actuatable and retractable systems
US10588632B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical end effectors and firing members thereof
US10856868B2 (en) 2016-12-21 2020-12-08 Ethicon Llc Firing member pin configurations
BR112019011947A2 (en) 2016-12-21 2019-10-29 Ethicon Llc surgical stapling systems
JP7010956B2 (en) 2016-12-21 2022-01-26 エシコン エルエルシー How to staple tissue
US20180168625A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling instruments with smart staple cartridges
US10617414B2 (en) 2016-12-21 2020-04-14 Ethicon Llc Closure member arrangements for surgical instruments
US20180168615A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
US10687810B2 (en) 2016-12-21 2020-06-23 Ethicon Llc Stepped staple cartridge with tissue retention and gap setting features
US10675026B2 (en) 2016-12-21 2020-06-09 Ethicon Llc Methods of stapling tissue
US10682138B2 (en) 2016-12-21 2020-06-16 Ethicon Llc Bilaterally asymmetric staple forming pocket pairs
US10893864B2 (en) 2016-12-21 2021-01-19 Ethicon Staple cartridges and arrangements of staples and staple cavities therein
CN110099619B (en) 2016-12-21 2022-07-15 爱惜康有限责任公司 Lockout device for surgical end effector and replaceable tool assembly
US11684367B2 (en) 2016-12-21 2023-06-27 Cilag Gmbh International Stepped assembly having and end-of-life indicator
US10993715B2 (en) 2016-12-21 2021-05-04 Ethicon Llc Staple cartridge comprising staples with different clamping breadths
US11419606B2 (en) 2016-12-21 2022-08-23 Cilag Gmbh International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
US10426471B2 (en) 2016-12-21 2019-10-01 Ethicon Llc Surgical instrument with multiple failure response modes
US20180168608A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical instrument system comprising an end effector lockout and a firing assembly lockout
US10945727B2 (en) 2016-12-21 2021-03-16 Ethicon Llc Staple cartridge with deformable driver retention features
US11134942B2 (en) 2016-12-21 2021-10-05 Cilag Gmbh International Surgical stapling instruments and staple-forming anvils
EP3398554A1 (en) 2017-05-02 2018-11-07 Sofradim Production Prosthesis for inguinal hernia repair
US11071554B2 (en) 2017-06-20 2021-07-27 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements
US10327767B2 (en) 2017-06-20 2019-06-25 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10390841B2 (en) 2017-06-20 2019-08-27 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US11090046B2 (en) 2017-06-20 2021-08-17 Cilag Gmbh International Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US11653914B2 (en) 2017-06-20 2023-05-23 Cilag Gmbh International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
US10779820B2 (en) 2017-06-20 2020-09-22 Ethicon Llc Systems and methods for controlling motor speed according to user input for a surgical instrument
US10888321B2 (en) 2017-06-20 2021-01-12 Ethicon Llc Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument
USD890784S1 (en) 2017-06-20 2020-07-21 Ethicon Llc Display panel with changeable graphical user interface
USD879809S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with changeable graphical user interface
US10881396B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Surgical instrument with variable duration trigger arrangement
US10813639B2 (en) 2017-06-20 2020-10-27 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions
US10368864B2 (en) 2017-06-20 2019-08-06 Ethicon Llc Systems and methods for controlling displaying motor velocity for a surgical instrument
US11382638B2 (en) 2017-06-20 2022-07-12 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
US10646220B2 (en) 2017-06-20 2020-05-12 Ethicon Llc Systems and methods for controlling displacement member velocity for a surgical instrument
US10980537B2 (en) 2017-06-20 2021-04-20 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
US10881399B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
US11517325B2 (en) 2017-06-20 2022-12-06 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
USD879808S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with graphical user interface
US10624633B2 (en) 2017-06-20 2020-04-21 Ethicon Llc Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument
US10945740B2 (en) 2017-06-22 2021-03-16 Teleflex Medical Incorporated Surgical clip
US10856869B2 (en) 2017-06-27 2020-12-08 Ethicon Llc Surgical anvil arrangements
US10993716B2 (en) 2017-06-27 2021-05-04 Ethicon Llc Surgical anvil arrangements
US10772629B2 (en) 2017-06-27 2020-09-15 Ethicon Llc Surgical anvil arrangements
US11324503B2 (en) 2017-06-27 2022-05-10 Cilag Gmbh International Surgical firing member arrangements
US11266405B2 (en) 2017-06-27 2022-03-08 Cilag Gmbh International Surgical anvil manufacturing methods
US20180368844A1 (en) 2017-06-27 2018-12-27 Ethicon Llc Staple forming pocket arrangements
US10211586B2 (en) 2017-06-28 2019-02-19 Ethicon Llc Surgical shaft assemblies with watertight housings
USD854151S1 (en) 2017-06-28 2019-07-16 Ethicon Llc Surgical instrument shaft
US11259805B2 (en) 2017-06-28 2022-03-01 Cilag Gmbh International Surgical instrument comprising firing member supports
US11246592B2 (en) 2017-06-28 2022-02-15 Cilag Gmbh International Surgical instrument comprising an articulation system lockable to a frame
US11564686B2 (en) 2017-06-28 2023-01-31 Cilag Gmbh International Surgical shaft assemblies with flexible interfaces
USD851762S1 (en) 2017-06-28 2019-06-18 Ethicon Llc Anvil
US10765427B2 (en) 2017-06-28 2020-09-08 Ethicon Llc Method for articulating a surgical instrument
EP3420947B1 (en) 2017-06-28 2022-05-25 Cilag GmbH International Surgical instrument comprising selectively actuatable rotatable couplers
US10903685B2 (en) 2017-06-28 2021-01-26 Ethicon Llc Surgical shaft assemblies with slip ring assemblies forming capacitive channels
USD869655S1 (en) 2017-06-28 2019-12-10 Ethicon Llc Surgical fastener cartridge
USD906355S1 (en) 2017-06-28 2020-12-29 Ethicon Llc Display screen or portion thereof with a graphical user interface for a surgical instrument
US10716614B2 (en) 2017-06-28 2020-07-21 Ethicon Llc Surgical shaft assemblies with slip ring assemblies with increased contact pressure
US11678880B2 (en) 2017-06-28 2023-06-20 Cilag Gmbh International Surgical instrument comprising a shaft including a housing arrangement
US11020114B2 (en) 2017-06-28 2021-06-01 Cilag Gmbh International Surgical instruments with articulatable end effector with axially shortened articulation joint configurations
US11007022B2 (en) 2017-06-29 2021-05-18 Ethicon Llc Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument
US10932772B2 (en) 2017-06-29 2021-03-02 Ethicon Llc Methods for closed loop velocity control for robotic surgical instrument
US10898183B2 (en) 2017-06-29 2021-01-26 Ethicon Llc Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing
US10258418B2 (en) 2017-06-29 2019-04-16 Ethicon Llc System for controlling articulation forces
US10398434B2 (en) 2017-06-29 2019-09-03 Ethicon Llc Closed loop velocity control of closure member for robotic surgical instrument
US11304695B2 (en) 2017-08-03 2022-04-19 Cilag Gmbh International Surgical system shaft interconnection
US11944300B2 (en) 2017-08-03 2024-04-02 Cilag Gmbh International Method for operating a surgical system bailout
US11471155B2 (en) 2017-08-03 2022-10-18 Cilag Gmbh International Surgical system bailout
USD917500S1 (en) 2017-09-29 2021-04-27 Ethicon Llc Display screen or portion thereof with graphical user interface
USD907648S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US10743872B2 (en) 2017-09-29 2020-08-18 Ethicon Llc System and methods for controlling a display of a surgical instrument
USD907647S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US11399829B2 (en) 2017-09-29 2022-08-02 Cilag Gmbh International Systems and methods of initiating a power shutdown mode for a surgical instrument
US10729501B2 (en) 2017-09-29 2020-08-04 Ethicon Llc Systems and methods for language selection of a surgical instrument
US10765429B2 (en) 2017-09-29 2020-09-08 Ethicon Llc Systems and methods for providing alerts according to the operational state of a surgical instrument
US10796471B2 (en) 2017-09-29 2020-10-06 Ethicon Llc Systems and methods of displaying a knife position for a surgical instrument
US11134944B2 (en) 2017-10-30 2021-10-05 Cilag Gmbh International Surgical stapler knife motion controls
US11090075B2 (en) 2017-10-30 2021-08-17 Cilag Gmbh International Articulation features for surgical end effector
US10842490B2 (en) 2017-10-31 2020-11-24 Ethicon Llc Cartridge body design with force reduction based on firing completion
US10779903B2 (en) 2017-10-31 2020-09-22 Ethicon Llc Positive shaft rotation lock activated by jaw closure
EP3709900B1 (en) 2017-11-14 2024-04-10 Teleflex Medical Incorporated Surgical clip
US10687813B2 (en) 2017-12-15 2020-06-23 Ethicon Llc Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments
US10828033B2 (en) 2017-12-15 2020-11-10 Ethicon Llc Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto
US10779826B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Methods of operating surgical end effectors
US10869666B2 (en) 2017-12-15 2020-12-22 Ethicon Llc Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument
US11006955B2 (en) 2017-12-15 2021-05-18 Ethicon Llc End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments
US10743874B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Sealed adapters for use with electromechanical surgical instruments
US10966718B2 (en) 2017-12-15 2021-04-06 Ethicon Llc Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments
US11197670B2 (en) 2017-12-15 2021-12-14 Cilag Gmbh International Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed
US10743875B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member
US10779825B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments
US11033267B2 (en) 2017-12-15 2021-06-15 Ethicon Llc Systems and methods of controlling a clamping member firing rate of a surgical instrument
US11071543B2 (en) 2017-12-15 2021-07-27 Cilag Gmbh International Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges
USD910847S1 (en) 2017-12-19 2021-02-16 Ethicon Llc Surgical instrument assembly
US10835330B2 (en) 2017-12-19 2020-11-17 Ethicon Llc Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
US10729509B2 (en) 2017-12-19 2020-08-04 Ethicon Llc Surgical instrument comprising closure and firing locking mechanism
US10716565B2 (en) 2017-12-19 2020-07-21 Ethicon Llc Surgical instruments with dual articulation drivers
US11045270B2 (en) 2017-12-19 2021-06-29 Cilag Gmbh International Robotic attachment comprising exterior drive actuator
US11020112B2 (en) 2017-12-19 2021-06-01 Ethicon Llc Surgical tools configured for interchangeable use with different controller interfaces
US11076853B2 (en) 2017-12-21 2021-08-03 Cilag Gmbh International Systems and methods of displaying a knife position during transection for a surgical instrument
US11311290B2 (en) 2017-12-21 2022-04-26 Cilag Gmbh International Surgical instrument comprising an end effector dampener
US11179151B2 (en) 2017-12-21 2021-11-23 Cilag Gmbh International Surgical instrument comprising a display
US11129680B2 (en) 2017-12-21 2021-09-28 Cilag Gmbh International Surgical instrument comprising a projector
US11045187B2 (en) * 2018-02-28 2021-06-29 BandGrip, Inc. Subcutaneous wound closure assembly and method of use
US11045192B2 (en) 2018-08-20 2021-06-29 Cilag Gmbh International Fabricating techniques for surgical stapler anvils
USD914878S1 (en) 2018-08-20 2021-03-30 Ethicon Llc Surgical instrument anvil
US10912559B2 (en) 2018-08-20 2021-02-09 Ethicon Llc Reinforced deformable anvil tip for surgical stapler anvil
US11253256B2 (en) 2018-08-20 2022-02-22 Cilag Gmbh International Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
US10842492B2 (en) 2018-08-20 2020-11-24 Ethicon Llc Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
US11039834B2 (en) 2018-08-20 2021-06-22 Cilag Gmbh International Surgical stapler anvils with staple directing protrusions and tissue stability features
US11083458B2 (en) 2018-08-20 2021-08-10 Cilag Gmbh International Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
US10779821B2 (en) 2018-08-20 2020-09-22 Ethicon Llc Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
US10856870B2 (en) 2018-08-20 2020-12-08 Ethicon Llc Switching arrangements for motor powered articulatable surgical instruments
US11291440B2 (en) 2018-08-20 2022-04-05 Cilag Gmbh International Method for operating a powered articulatable surgical instrument
US11324501B2 (en) 2018-08-20 2022-05-10 Cilag Gmbh International Surgical stapling devices with improved closure members
US11207065B2 (en) 2018-08-20 2021-12-28 Cilag Gmbh International Method for fabricating surgical stapler anvils
US11071547B2 (en) 2018-09-12 2021-07-27 Absolutions Med, Inc. Abdominal closure method and device for ventral hernia
EP3836852A4 (en) 2018-10-03 2022-05-04 Absolutions Med, Inc. Abdominal closure method and device variations
EP3893825A1 (en) 2018-12-13 2021-10-20 University of Massachusetts Negative pressure wound closure devices and methods
US11147553B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11147551B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11172929B2 (en) 2019-03-25 2021-11-16 Cilag Gmbh International Articulation drive arrangements for surgical systems
US11696761B2 (en) 2019-03-25 2023-07-11 Cilag Gmbh International Firing drive arrangements for surgical systems
CN114126506A (en) 2019-04-10 2022-03-01 腹腔解决方案医疗公司 Variations of abdominal closure methods and devices to close abdominal hernias and reduce recurrence
US11426251B2 (en) 2019-04-30 2022-08-30 Cilag Gmbh International Articulation directional lights on a surgical instrument
US11452528B2 (en) 2019-04-30 2022-09-27 Cilag Gmbh International Articulation actuators for a surgical instrument
US11432816B2 (en) 2019-04-30 2022-09-06 Cilag Gmbh International Articulation pin for a surgical instrument
US11253254B2 (en) 2019-04-30 2022-02-22 Cilag Gmbh International Shaft rotation actuator on a surgical instrument
US11903581B2 (en) 2019-04-30 2024-02-20 Cilag Gmbh International Methods for stapling tissue using a surgical instrument
US11471157B2 (en) 2019-04-30 2022-10-18 Cilag Gmbh International Articulation control mapping for a surgical instrument
US11648009B2 (en) 2019-04-30 2023-05-16 Cilag Gmbh International Rotatable jaw tip for a surgical instrument
US11523822B2 (en) 2019-06-28 2022-12-13 Cilag Gmbh International Battery pack including a circuit interrupter
US11497492B2 (en) 2019-06-28 2022-11-15 Cilag Gmbh International Surgical instrument including an articulation lock
US11376098B2 (en) 2019-06-28 2022-07-05 Cilag Gmbh International Surgical instrument system comprising an RFID system
US11638587B2 (en) 2019-06-28 2023-05-02 Cilag Gmbh International RFID identification systems for surgical instruments
US11684434B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Surgical RFID assemblies for instrument operational setting control
US11051807B2 (en) 2019-06-28 2021-07-06 Cilag Gmbh International Packaging assembly including a particulate trap
US11478241B2 (en) 2019-06-28 2022-10-25 Cilag Gmbh International Staple cartridge including projections
US11259803B2 (en) 2019-06-28 2022-03-01 Cilag Gmbh International Surgical stapling system having an information encryption protocol
US11660163B2 (en) 2019-06-28 2023-05-30 Cilag Gmbh International Surgical system with RFID tags for updating motor assembly parameters
US11399837B2 (en) 2019-06-28 2022-08-02 Cilag Gmbh International Mechanisms for motor control adjustments of a motorized surgical instrument
US11627959B2 (en) 2019-06-28 2023-04-18 Cilag Gmbh International Surgical instruments including manual and powered system lockouts
US11291451B2 (en) 2019-06-28 2022-04-05 Cilag Gmbh International Surgical instrument with battery compatibility verification functionality
US11771419B2 (en) 2019-06-28 2023-10-03 Cilag Gmbh International Packaging for a replaceable component of a surgical stapling system
US11298127B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Interational Surgical stapling system having a lockout mechanism for an incompatible cartridge
US11553971B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Surgical RFID assemblies for display and communication
US11464601B2 (en) 2019-06-28 2022-10-11 Cilag Gmbh International Surgical instrument comprising an RFID system for tracking a movable component
US11298132B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Inlernational Staple cartridge including a honeycomb extension
US11224497B2 (en) 2019-06-28 2022-01-18 Cilag Gmbh International Surgical systems with multiple RFID tags
US11426167B2 (en) 2019-06-28 2022-08-30 Cilag Gmbh International Mechanisms for proper anvil attachment surgical stapling head assembly
US11246678B2 (en) 2019-06-28 2022-02-15 Cilag Gmbh International Surgical stapling system having a frangible RFID tag
US11229437B2 (en) 2019-06-28 2022-01-25 Cilag Gmbh International Method for authenticating the compatibility of a staple cartridge with a surgical instrument
US11219455B2 (en) 2019-06-28 2022-01-11 Cilag Gmbh International Surgical instrument including a lockout key
US11446029B2 (en) 2019-12-19 2022-09-20 Cilag Gmbh International Staple cartridge comprising projections extending from a curved deck surface
US11844520B2 (en) 2019-12-19 2023-12-19 Cilag Gmbh International Staple cartridge comprising driver retention members
US11234698B2 (en) 2019-12-19 2022-02-01 Cilag Gmbh International Stapling system comprising a clamp lockout and a firing lockout
US11504122B2 (en) 2019-12-19 2022-11-22 Cilag Gmbh International Surgical instrument comprising a nested firing member
US11607219B2 (en) 2019-12-19 2023-03-21 Cilag Gmbh International Staple cartridge comprising a detachable tissue cutting knife
US11304696B2 (en) 2019-12-19 2022-04-19 Cilag Gmbh International Surgical instrument comprising a powered articulation system
US11529137B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Staple cartridge comprising driver retention members
US11529139B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Motor driven surgical instrument
US11464512B2 (en) 2019-12-19 2022-10-11 Cilag Gmbh International Staple cartridge comprising a curved deck surface
US11911032B2 (en) 2019-12-19 2024-02-27 Cilag Gmbh International Staple cartridge comprising a seating cam
US11291447B2 (en) 2019-12-19 2022-04-05 Cilag Gmbh International Stapling instrument comprising independent jaw closing and staple firing systems
US11559304B2 (en) 2019-12-19 2023-01-24 Cilag Gmbh International Surgical instrument comprising a rapid closure mechanism
US11576672B2 (en) 2019-12-19 2023-02-14 Cilag Gmbh International Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
US11701111B2 (en) 2019-12-19 2023-07-18 Cilag Gmbh International Method for operating a surgical stapling instrument
US11931033B2 (en) 2019-12-19 2024-03-19 Cilag Gmbh International Staple cartridge comprising a latch lockout
USD975850S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD975851S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD974560S1 (en) 2020-06-02 2023-01-03 Cilag Gmbh International Staple cartridge
USD975278S1 (en) 2020-06-02 2023-01-10 Cilag Gmbh International Staple cartridge
USD966512S1 (en) 2020-06-02 2022-10-11 Cilag Gmbh International Staple cartridge
USD967421S1 (en) 2020-06-02 2022-10-18 Cilag Gmbh International Staple cartridge
USD976401S1 (en) 2020-06-02 2023-01-24 Cilag Gmbh International Staple cartridge
US20220031350A1 (en) 2020-07-28 2022-02-03 Cilag Gmbh International Surgical instruments with double pivot articulation joint arrangements
US20230157690A1 (en) * 2020-08-19 2023-05-25 Bioforma, Inc. Unidirectional and Bidirectional Anchor Scaffolds
US11452526B2 (en) 2020-10-29 2022-09-27 Cilag Gmbh International Surgical instrument comprising a staged voltage regulation start-up system
US11779330B2 (en) 2020-10-29 2023-10-10 Cilag Gmbh International Surgical instrument comprising a jaw alignment system
US11517390B2 (en) 2020-10-29 2022-12-06 Cilag Gmbh International Surgical instrument comprising a limited travel switch
US11534259B2 (en) 2020-10-29 2022-12-27 Cilag Gmbh International Surgical instrument comprising an articulation indicator
US11896217B2 (en) 2020-10-29 2024-02-13 Cilag Gmbh International Surgical instrument comprising an articulation lock
US11844518B2 (en) 2020-10-29 2023-12-19 Cilag Gmbh International Method for operating a surgical instrument
US11717289B2 (en) 2020-10-29 2023-08-08 Cilag Gmbh International Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable
USD1013170S1 (en) 2020-10-29 2024-01-30 Cilag Gmbh International Surgical instrument assembly
US11931025B2 (en) 2020-10-29 2024-03-19 Cilag Gmbh International Surgical instrument comprising a releasable closure drive lock
US11617577B2 (en) 2020-10-29 2023-04-04 Cilag Gmbh International Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
USD980425S1 (en) 2020-10-29 2023-03-07 Cilag Gmbh International Surgical instrument assembly
US11744581B2 (en) 2020-12-02 2023-09-05 Cilag Gmbh International Powered surgical instruments with multi-phase tissue treatment
US11653920B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Powered surgical instruments with communication interfaces through sterile barrier
US11944296B2 (en) 2020-12-02 2024-04-02 Cilag Gmbh International Powered surgical instruments with external connectors
US11737751B2 (en) 2020-12-02 2023-08-29 Cilag Gmbh International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
US11849943B2 (en) 2020-12-02 2023-12-26 Cilag Gmbh International Surgical instrument with cartridge release mechanisms
US11627960B2 (en) 2020-12-02 2023-04-18 Cilag Gmbh International Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections
US11678882B2 (en) 2020-12-02 2023-06-20 Cilag Gmbh International Surgical instruments with interactive features to remedy incidental sled movements
US11653915B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Surgical instruments with sled location detection and adjustment features
US11890010B2 (en) 2020-12-02 2024-02-06 Cllag GmbH International Dual-sided reinforced reload for surgical instruments
US11723657B2 (en) 2021-02-26 2023-08-15 Cilag Gmbh International Adjustable communication based on available bandwidth and power capacity
US11696757B2 (en) 2021-02-26 2023-07-11 Cilag Gmbh International Monitoring of internal systems to detect and track cartridge motion status
US11925349B2 (en) 2021-02-26 2024-03-12 Cilag Gmbh International Adjustment to transfer parameters to improve available power
US11730473B2 (en) 2021-02-26 2023-08-22 Cilag Gmbh International Monitoring of manufacturing life-cycle
US11744583B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Distal communication array to tune frequency of RF systems
US11749877B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Stapling instrument comprising a signal antenna
US11812964B2 (en) 2021-02-26 2023-11-14 Cilag Gmbh International Staple cartridge comprising a power management circuit
US11793514B2 (en) 2021-02-26 2023-10-24 Cilag Gmbh International Staple cartridge comprising sensor array which may be embedded in cartridge body
US11751869B2 (en) 2021-02-26 2023-09-12 Cilag Gmbh International Monitoring of multiple sensors over time to detect moving characteristics of tissue
US11701113B2 (en) 2021-02-26 2023-07-18 Cilag Gmbh International Stapling instrument comprising a separate power antenna and a data transfer antenna
US11826042B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Surgical instrument comprising a firing drive including a selectable leverage mechanism
US11806011B2 (en) 2021-03-22 2023-11-07 Cilag Gmbh International Stapling instrument comprising tissue compression systems
US11826012B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Stapling instrument comprising a pulsed motor-driven firing rack
US11723658B2 (en) 2021-03-22 2023-08-15 Cilag Gmbh International Staple cartridge comprising a firing lockout
US11717291B2 (en) 2021-03-22 2023-08-08 Cilag Gmbh International Staple cartridge comprising staples configured to apply different tissue compression
US11759202B2 (en) 2021-03-22 2023-09-19 Cilag Gmbh International Staple cartridge comprising an implantable layer
US11737749B2 (en) 2021-03-22 2023-08-29 Cilag Gmbh International Surgical stapling instrument comprising a retraction system
US11857183B2 (en) 2021-03-24 2024-01-02 Cilag Gmbh International Stapling assembly components having metal substrates and plastic bodies
US11744603B2 (en) 2021-03-24 2023-09-05 Cilag Gmbh International Multi-axis pivot joints for surgical instruments and methods for manufacturing same
US11849945B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising eccentrically driven firing member
US11944336B2 (en) 2021-03-24 2024-04-02 Cilag Gmbh International Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments
US11849944B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Drivers for fastener cartridge assemblies having rotary drive screws
US11903582B2 (en) 2021-03-24 2024-02-20 Cilag Gmbh International Leveraging surfaces for cartridge installation
US11896219B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Mating features between drivers and underside of a cartridge deck
US11832816B2 (en) 2021-03-24 2023-12-05 Cilag Gmbh International Surgical stapling assembly comprising nonplanar staples and planar staples
US11786243B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Firing members having flexible portions for adapting to a load during a surgical firing stroke
US11786239B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Surgical instrument articulation joint arrangements comprising multiple moving linkage features
US11793516B2 (en) 2021-03-24 2023-10-24 Cilag Gmbh International Surgical staple cartridge comprising longitudinal support beam
US11896218B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Method of using a powered stapling device
US20220378426A1 (en) 2021-05-28 2022-12-01 Cilag Gmbh International Stapling instrument comprising a mounted shaft orientation sensor
US11877745B2 (en) 2021-10-18 2024-01-23 Cilag Gmbh International Surgical stapling assembly having longitudinally-repeating staple leg clusters
US11937816B2 (en) 2021-10-28 2024-03-26 Cilag Gmbh International Electrical lead arrangements for surgical instruments

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4259959A (en) * 1978-12-20 1981-04-07 Walker Wesley W Suturing element
US5254127A (en) * 1992-02-28 1993-10-19 Shadyside Hospital Method and apparatus for connecting and closing severed blood vessels
US5531760A (en) * 1995-04-14 1996-07-02 Alwafaie; Mohammed G. Skin closure clip
US6132442A (en) * 1999-03-25 2000-10-17 Smith & Nephew Graft clamp

Family Cites Families (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2421193A (en) 1943-08-02 1947-05-27 Cleveland Clinic Foundation Surgical dressing
US2472009A (en) 1945-08-01 1949-05-31 Cleveland Clinic Foundation Surgical dressing
US2631327A (en) * 1951-04-27 1953-03-17 Roberts Co Carpet anchor
US3031730A (en) * 1958-09-26 1962-05-01 Louis H Morin Burr-type closure or coupling element
US3471903A (en) * 1967-10-24 1969-10-14 Minnesota Mining & Mfg Stud-backed fasteners
US3646615A (en) 1970-01-26 1972-03-07 Richard A Ness Reinforcing element for muscles
FR2084475A5 (en) * 1970-03-16 1971-12-17 Brumlik George
US3851357A (en) * 1971-02-03 1974-12-03 American Velcro Inc Fastener
GB1465744A (en) * 1974-01-30 1977-03-02 Ethicon Inc Attaching fibrous connective tissue to bone
US4501029A (en) * 1982-04-22 1985-02-26 Mcminn Derek J W Tendon repair
US4430998A (en) 1982-06-01 1984-02-14 Thoratec Laboratories Corporation Wound closing device
US4535772A (en) 1983-03-10 1985-08-20 Kells Medical, Incorporated Skin closure device
US4548202A (en) * 1983-06-20 1985-10-22 Ethicon, Inc. Mesh tissue fasteners
CH662936A5 (en) * 1984-05-18 1987-11-13 Technomed Gmk BONE JOINT PLATE.
US4610250A (en) 1985-10-08 1986-09-09 United States Surgical Corporation Two-part surgical fastener for fascia wound approximation
US4865026A (en) 1987-04-23 1989-09-12 Barrett David M Sealing wound closure device
ES2043842T3 (en) * 1987-10-30 1994-01-01 Howmedica DEVICE FOR REPAIR OF TENDONS AND LIGAMENTS.
US4960420A (en) * 1988-08-23 1990-10-02 Marlowe Goble E Channel ligament clamp and system
US5047047A (en) 1988-10-26 1991-09-10 Inbae Yoon Wound closing device
US4998319A (en) * 1989-05-31 1991-03-12 Christopher Ford Carpet gripping device for use under an overlayed floor covering
US5342395A (en) 1990-07-06 1994-08-30 American Cyanamid Co. Absorbable surgical repair devices
US5106422A (en) * 1991-01-18 1992-04-21 American Electric Power Service Corporation Rapid-setting flowable backfill composition and method of using
US5312456A (en) * 1991-01-31 1994-05-17 Carnegie Mellon University Micromechanical barb and method for making the same
US5263973A (en) 1991-08-30 1993-11-23 Cook Melvin S Surgical stapling method
US5179964A (en) 1991-08-30 1993-01-19 Cook Melvin S Surgical stapling method
US5176692A (en) 1991-12-09 1993-01-05 Wilk Peter J Method and surgical instrument for repairing hernia
CA2087132A1 (en) * 1992-01-31 1993-08-01 Michael S. Williams Stent capable of attachment within a body lumen
FR2690840B1 (en) 1992-05-07 1994-08-19 Patrick Frechet Living tissue extension device.
US5766246A (en) 1992-05-20 1998-06-16 C. R. Bard, Inc. Implantable prosthesis and method and apparatus for loading and delivering an implantable prothesis
US5779706A (en) * 1992-06-15 1998-07-14 Medicon Eg Surgical system
US5383897A (en) 1992-10-19 1995-01-24 Shadyside Hospital Method and apparatus for closing blood vessel punctures
US6241747B1 (en) * 1993-05-03 2001-06-05 Quill Medical, Inc. Barbed Bodily tissue connector
US5352229A (en) * 1993-05-12 1994-10-04 Marlowe Goble E Arbor press staple and washer and method for its use
US5505735A (en) * 1993-06-10 1996-04-09 Mitek Surgical Products, Inc. Surgical anchor and method for using the same
US5632748A (en) * 1993-06-14 1997-05-27 Linvatec Corporation Endosteal anchoring device for urging a ligament against a bone surface
US5584859A (en) 1993-10-12 1996-12-17 Brotz; Gregory R. Suture assembly
US5425747A (en) 1993-10-12 1995-06-20 Brotz; Gregory R. Suture
US5571216A (en) 1994-01-19 1996-11-05 The General Hospital Corporation Methods and apparatus for joining collagen-containing materials
US5662714A (en) 1994-01-21 1997-09-02 M.X.M. Device for extending living tissues
US5569250A (en) * 1994-03-01 1996-10-29 Sarver; David R. Method and apparatus for securing adjacent bone portions
JPH07275014A (en) * 1994-04-01 1995-10-24 Minnesota Mining & Mfg Co <3M> Face-toface engaging fastener member and its manufacture, and affixing member equipped with face-to-face engaging fastener
JPH10506817A (en) 1994-10-06 1998-07-07 テラテクノロジーズ インコーポレイテッド Closure of wounds with harness and cast elements without using thread
US5611814A (en) * 1994-11-16 1997-03-18 Lorenc; Z. Paul Resorbable surgical appliances and endoscopic soft tissue suspension procedure
WO1996016612A1 (en) * 1994-12-02 1996-06-06 Omeros Medical Systems, Inc. Tendon and ligament repair system
US6106556A (en) * 1994-12-02 2000-08-22 Omeros Medical Systems, Inc. Tendon and ligament repair system
US5941878A (en) * 1995-02-14 1999-08-24 Medoff; Robert J. Implantable, surgical buttressing device
US5591203A (en) * 1995-03-24 1997-01-07 Organ, Inc. Anastomosis cuff manipulator tool
US5634926A (en) * 1995-04-25 1997-06-03 Jobe; Richard P. Surgical bone fixation apparatus
SE9504388D0 (en) * 1995-12-07 1995-12-07 Bo S Bergstroem Split Clamp
USD374286S (en) * 1995-12-12 1996-10-01 Zimmer, Inc. Orthopaedic washer
DE19603887C2 (en) * 1996-02-03 1998-07-02 Lerch Karl Dieter Arrangement for fixing a piece of bone that has been removed from the skull capsule for the purpose of the surgical intervention to the remaining skull leg
FR2744623B1 (en) 1996-02-08 1998-04-30 Mxm ELASTIC LIVE TISSUE EXTENSION DEVICE
US5919234A (en) 1996-08-19 1999-07-06 Macropore, Inc. Resorbable, macro-porous, non-collapsing and flexible membrane barrier for skeletal repair and regeneration
US6083244A (en) 1996-09-13 2000-07-04 Tendon Technology, Ltd. Apparatus and method for tendon or ligament repair
US5766250A (en) * 1996-10-28 1998-06-16 Medicinelodge, Inc. Ligament fixator for a ligament anchor system
FR2757371B1 (en) 1996-12-20 1999-03-26 Mxm ELASTIC DEVICE WITH LARGE ELONGATION CAPACITY FOR LIVE TISSUE EXTENSION
US6692499B2 (en) * 1997-07-02 2004-02-17 Linvatec Biomaterials Oy Surgical fastener for tissue treatment
US5916224A (en) 1997-07-09 1999-06-29 The United States Of America As Represented By The Secretary Of The Army Tendon repair clip implant
US6280472B1 (en) * 1997-07-23 2001-08-28 Arthrotek, Inc. Apparatus and method for tibial fixation of soft tissue
US5906617A (en) * 1997-08-15 1999-05-25 Meislin; Robert J. Surgical repair with hook-and-loop fastener
US5950633A (en) * 1997-10-02 1999-09-14 Ethicon, Inc. Microsurgical technique for cosmetic surgery
US5984949A (en) * 1997-10-06 1999-11-16 Levin; John M. Tissue hooks and tools for applying same
US5954747A (en) 1997-11-20 1999-09-21 Clark; Ron Meniscus repair anchor system
US6015410A (en) * 1997-12-23 2000-01-18 Bionx Implants Oy Bioabsorbable surgical implants for endoscopic soft tissue suspension procedure
US5984927A (en) * 1998-03-03 1999-11-16 Ethicon, Inc. Device for sutureless attachment of soft tissue to bone
US6296641B2 (en) * 1998-04-03 2001-10-02 Bionx Implants Oy Anatomical fixation implant
US6110100A (en) * 1998-04-22 2000-08-29 Scimed Life Systems, Inc. System for stress relieving the heart muscle and for controlling heart function
US6168633B1 (en) 1998-08-10 2001-01-02 Itzhak Shoher Composite surface composition for an implant structure
US6165203A (en) * 1998-09-11 2000-12-26 Bio Innovation, Ltd. Suture anchor installation devices and methods
US6350284B1 (en) * 1998-09-14 2002-02-26 Bionx Implants, Oy Bioabsorbable, layered composite material for guided bone tissue regeneration
US6235058B1 (en) * 1998-10-19 2001-05-22 Douglas B. Huene Bone plug anchoring device and methods for anchoring one or more tendons or other grafts using the bone plug anchoring device
CA2262408C (en) 1999-02-23 2007-10-23 Advanced Therapeutic Technologies At2 Inc. Wound closure system
AU4988700A (en) * 1999-05-05 2000-11-17 Gary K. Michelson Spinal fusion implants with opposed locking screws
US6168596B1 (en) * 1999-11-09 2001-01-02 Bioplate, Inc. Cranial bone flap fixation clip
US6355058B1 (en) * 1999-12-30 2002-03-12 Advanced Cardiovascular Systems, Inc. Stent with radiopaque coating consisting of particles in a binder
US6270517B1 (en) 2000-02-04 2001-08-07 Gregory R. Brotz Suture assembly and method
US6712830B2 (en) * 2000-03-15 2004-03-30 Esplin Medical Inventions, L.L.C. Soft tissue anchor
US6485503B2 (en) * 2000-05-19 2002-11-26 Coapt Systems, Inc. Multi-point tissue tension distribution device, a brow and face lift variation, and a method of tissue approximation using the device
US6645226B1 (en) * 2000-05-19 2003-11-11 Coapt Systems, Inc. Multi-point tension distribution system device and method of tissue approximation using that device to improve wound healing
USD462766S1 (en) * 2001-02-16 2002-09-10 Coapt Systems, Inc. Brow lift device
US6485493B1 (en) * 2001-05-24 2002-11-26 Paul W. Bremer Skull closure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4259959A (en) * 1978-12-20 1981-04-07 Walker Wesley W Suturing element
US5254127A (en) * 1992-02-28 1993-10-19 Shadyside Hospital Method and apparatus for connecting and closing severed blood vessels
US5531760A (en) * 1995-04-14 1996-07-02 Alwafaie; Mohammed G. Skin closure clip
US6132442A (en) * 1999-03-25 2000-10-17 Smith & Nephew Graft clamp

Cited By (176)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8246652B2 (en) 1993-05-03 2012-08-21 Ethicon, Inc. Suture with a pointed end and an anchor end and with equally spaced yieldable tissue grasping barbs located at successive axial locations
USRE45426E1 (en) 1997-05-21 2015-03-17 Ethicon, Inc. Surgical methods using one-way suture
US20020084078A1 (en) * 1999-02-26 2002-07-04 Shell Oil Co. Method of operating an apparatus for radially expanding a tubular member
US20050119694A1 (en) * 2000-05-19 2005-06-02 Jacobs Daniel I. Remotely anchored tissue fixation device and method
US7172615B2 (en) 2000-05-19 2007-02-06 Coapt Systems, Inc. Remotely anchored tissue fixation device
US20040010276A1 (en) * 2000-05-19 2004-01-15 Daniel Jacobs Multi-point tissue tension distribution device and method, a chin lift variation
US20030074021A1 (en) * 2000-05-19 2003-04-17 Morriss John H. Remotely anchored tissue fixation device
US7510566B2 (en) 2000-05-19 2009-03-31 Coapt Systems, Inc. Multi-point tissue tension distribution device and method, a chin lift variation
US8764776B2 (en) 2001-06-29 2014-07-01 Ethicon, Inc. Anastomosis method using self-retaining sutures
US8777989B2 (en) 2001-06-29 2014-07-15 Ethicon, Inc. Subcutaneous sinusoidal wound closure utilizing one-way suture
US8777988B2 (en) 2001-06-29 2014-07-15 Ethicon, Inc. Methods for using self-retaining sutures in endoscopic procedures
US8764796B2 (en) 2001-06-29 2014-07-01 Ethicon, Inc. Suture method
US8747437B2 (en) 2001-06-29 2014-06-10 Ethicon, Inc. Continuous stitch wound closure utilizing one-way suture
US8020263B2 (en) 2001-08-31 2011-09-20 Quill Medical, Inc. Automated system for cutting tissue retainers on a suture
US7996967B2 (en) 2001-08-31 2011-08-16 Quill Medical, Inc. System for variable-angle cutting of a suture to create tissue retainers of a desired shape and size
US7996968B2 (en) 2001-08-31 2011-08-16 Quill Medical, Inc. Automated method for cutting tissue retainers on a suture
US8011072B2 (en) 2001-08-31 2011-09-06 Quill Medical, Inc. Method for variable-angle cutting of a suture to create tissue retainers of a desired shape and size
US8015678B2 (en) 2001-08-31 2011-09-13 Quill Medical, Inc. Method for cutting a suture to create tissue retainers of a desired shape and size
US8028388B2 (en) 2001-08-31 2011-10-04 Quill Medical, Inc. System for cutting a suture to create tissue retainers of a desired shape and size
US8926659B2 (en) 2001-08-31 2015-01-06 Ethicon, Inc. Barbed suture created having barbs defined by variable-angle cut
US8028387B2 (en) 2001-08-31 2011-10-04 Quill Medical, Inc. System for supporting and cutting suture thread to create tissue retainers thereon
US8083770B2 (en) 2002-08-09 2011-12-27 Quill Medical, Inc. Suture anchor and method
US8734486B2 (en) 2002-08-09 2014-05-27 Ethicon, Inc. Multiple suture thread configuration with an intermediate connector
US8690914B2 (en) 2002-08-09 2014-04-08 Ethicon, Inc. Suture with an intermediate barbed body
US8679158B2 (en) 2002-08-09 2014-03-25 Ethicon, Inc. Multiple suture thread configuration with an intermediate connector
US8652170B2 (en) 2002-08-09 2014-02-18 Ethicon, Inc. Double ended barbed suture with an intermediate body
US8852232B2 (en) 2002-09-30 2014-10-07 Ethicon, Inc. Self-retaining sutures having effective holding strength and tensile strength
US8734485B2 (en) 2002-09-30 2014-05-27 Ethicon, Inc. Sutures with barbs that overlap and cover projections
US8795332B2 (en) 2002-09-30 2014-08-05 Ethicon, Inc. Barbed sutures
US8721681B2 (en) 2002-09-30 2014-05-13 Ethicon, Inc. Barbed suture in combination with surgical needle
US8821540B2 (en) 2002-09-30 2014-09-02 Ethicon, Inc. Self-retaining sutures having effective holding strength and tensile strength
US9248580B2 (en) 2002-09-30 2016-02-02 Ethicon, Inc. Barb configurations for barbed sutures
US8032996B2 (en) 2003-05-13 2011-10-11 Quill Medical, Inc. Apparatus for forming barbs on a suture
US20050209542A1 (en) * 2004-03-16 2005-09-22 Jacobs Daniel I Tissue approximation sling and method
US11723654B2 (en) 2004-05-14 2023-08-15 Ethicon, Inc. Suture methods and devices
US10548592B2 (en) 2004-05-14 2020-02-04 Ethicon, Inc. Suture methods and devices
US10779815B2 (en) 2004-05-14 2020-09-22 Ethicon, Inc. Suture methods and devices
US8721664B2 (en) 2004-05-14 2014-05-13 Ethicon, Inc. Suture methods and devices
US7850700B2 (en) 2004-05-19 2010-12-14 Sakura Chester Y Tissue lifting device and method
US20050261737A1 (en) * 2004-05-19 2005-11-24 Sakura Chester Y Tissue lifting device and method
US8715320B2 (en) 2005-06-29 2014-05-06 Ethicon, Inc. Braided barbed suture
US20070005109A1 (en) * 2005-06-29 2007-01-04 Popadiuk Nicholas M Barbed suture
US8267961B2 (en) * 2005-06-29 2012-09-18 Ethicon, Inc. Barbed suture
US8585774B2 (en) 2007-02-15 2013-11-19 Jenifer Lee Henderson Temporal brow lifting and fixation device
US8449538B2 (en) 2007-02-15 2013-05-28 Ethicon Endo-Surgery, Inc. Electroporation ablation apparatus, system, and method
US10478248B2 (en) 2007-02-15 2019-11-19 Ethicon Llc Electroporation ablation apparatus, system, and method
US20080200993A1 (en) * 2007-02-15 2008-08-21 Jenifer Lee Henderson Temporal Brow Lifting and Fixation Device
US9375268B2 (en) 2007-02-15 2016-06-28 Ethicon Endo-Surgery, Inc. Electroporation ablation apparatus, system, and method
US8029504B2 (en) 2007-02-15 2011-10-04 Ethicon Endo-Surgery, Inc. Electroporation ablation apparatus, system, and method
US8425505B2 (en) 2007-02-15 2013-04-23 Ethicon Endo-Surgery, Inc. Electroporation ablation apparatus, system, and method
US20100087813A1 (en) * 2007-02-15 2010-04-08 Ethicon Endo-Surgery, Inc. Electroporation ablation apparatus, system, and method
US8915943B2 (en) 2007-04-13 2014-12-23 Ethicon, Inc. Self-retaining systems for surgical procedures
US8793863B2 (en) 2007-04-13 2014-08-05 Ethicon, Inc. Method and apparatus for forming retainers on a suture
US8075572B2 (en) 2007-04-26 2011-12-13 Ethicon Endo-Surgery, Inc. Surgical suturing apparatus
US8100922B2 (en) 2007-04-27 2012-01-24 Ethicon Endo-Surgery, Inc. Curved needle suturing tool
US20080288004A1 (en) * 2007-05-16 2008-11-20 Genesis Biosystems Corporation Tissue suspension device
US8568410B2 (en) 2007-08-31 2013-10-29 Ethicon Endo-Surgery, Inc. Electrical ablation surgical instruments
US8777987B2 (en) 2007-09-27 2014-07-15 Ethicon, Inc. Self-retaining sutures including tissue retainers having improved strength
US9498893B2 (en) 2007-09-27 2016-11-22 Ethicon, Inc. Self-retaining sutures including tissue retainers having improved strength
US8939897B2 (en) 2007-10-31 2015-01-27 Ethicon Endo-Surgery, Inc. Methods for closing a gastrotomy
US8480657B2 (en) 2007-10-31 2013-07-09 Ethicon Endo-Surgery, Inc. Detachable distal overtube section and methods for forming a sealable opening in the wall of an organ
US8579897B2 (en) 2007-11-21 2013-11-12 Ethicon Endo-Surgery, Inc. Bipolar forceps
US8262655B2 (en) 2007-11-21 2012-09-11 Ethicon Endo-Surgery, Inc. Bipolar forceps
US8771313B2 (en) 2007-12-19 2014-07-08 Ethicon, Inc. Self-retaining sutures with heat-contact mediated retainers
US8916077B1 (en) 2007-12-19 2014-12-23 Ethicon, Inc. Self-retaining sutures with retainers formed from molten material
US8118834B1 (en) 2007-12-20 2012-02-21 Angiotech Pharmaceuticals, Inc. Composite self-retaining sutures and method
US9044225B1 (en) 2007-12-20 2015-06-02 Ethicon, Inc. Composite self-retaining sutures and method
US8875607B2 (en) 2008-01-30 2014-11-04 Ethicon, Inc. Apparatus and method for forming self-retaining sutures
US8615856B1 (en) 2008-01-30 2013-12-31 Ethicon, Inc. Apparatus and method for forming self-retaining sutures
US9125647B2 (en) 2008-02-21 2015-09-08 Ethicon, Inc. Method and apparatus for elevating retainers on self-retaining sutures
US8460338B2 (en) 2008-02-25 2013-06-11 Ethicon, Inc. Self-retainers with supporting structures on a suture
US8216273B1 (en) 2008-02-25 2012-07-10 Ethicon, Inc. Self-retainers with supporting structures on a suture
US8641732B1 (en) 2008-02-26 2014-02-04 Ethicon, Inc. Self-retaining suture with variable dimension filament and method
US8262680B2 (en) 2008-03-10 2012-09-11 Ethicon Endo-Surgery, Inc. Anastomotic device
US8876865B2 (en) 2008-04-15 2014-11-04 Ethicon, Inc. Self-retaining sutures with bi-directional retainers or uni-directional retainers
US8961560B2 (en) 2008-05-16 2015-02-24 Ethicon, Inc. Bidirectional self-retaining sutures with laser-marked and/or non-laser marked indicia and methods
US8679003B2 (en) 2008-05-30 2014-03-25 Ethicon Endo-Surgery, Inc. Surgical device and endoscope including same
US8771260B2 (en) 2008-05-30 2014-07-08 Ethicon Endo-Surgery, Inc. Actuating and articulating surgical device
US8317806B2 (en) 2008-05-30 2012-11-27 Ethicon Endo-Surgery, Inc. Endoscopic suturing tension controlling and indication devices
US8652150B2 (en) 2008-05-30 2014-02-18 Ethicon Endo-Surgery, Inc. Multifunction surgical device
US8114072B2 (en) 2008-05-30 2012-02-14 Ethicon Endo-Surgery, Inc. Electrical ablation device
US8070759B2 (en) 2008-05-30 2011-12-06 Ethicon Endo-Surgery, Inc. Surgical fastening device
US8906035B2 (en) 2008-06-04 2014-12-09 Ethicon Endo-Surgery, Inc. Endoscopic drop off bag
US8403926B2 (en) 2008-06-05 2013-03-26 Ethicon Endo-Surgery, Inc. Manually articulating devices
US8361112B2 (en) 2008-06-27 2013-01-29 Ethicon Endo-Surgery, Inc. Surgical suture arrangement
US11399834B2 (en) 2008-07-14 2022-08-02 Cilag Gmbh International Tissue apposition clip application methods
US8262563B2 (en) 2008-07-14 2012-09-11 Ethicon Endo-Surgery, Inc. Endoscopic translumenal articulatable steerable overtube
US10105141B2 (en) 2008-07-14 2018-10-23 Ethicon Endo-Surgery, Inc. Tissue apposition clip application methods
US8888792B2 (en) 2008-07-14 2014-11-18 Ethicon Endo-Surgery, Inc. Tissue apposition clip application devices and methods
US8211125B2 (en) 2008-08-15 2012-07-03 Ethicon Endo-Surgery, Inc. Sterile appliance delivery device for endoscopic procedures
US8529563B2 (en) 2008-08-25 2013-09-10 Ethicon Endo-Surgery, Inc. Electrical ablation devices
US8241204B2 (en) 2008-08-29 2012-08-14 Ethicon Endo-Surgery, Inc. Articulating end cap
US8480689B2 (en) 2008-09-02 2013-07-09 Ethicon Endo-Surgery, Inc. Suturing device
US8409200B2 (en) 2008-09-03 2013-04-02 Ethicon Endo-Surgery, Inc. Surgical grasping device
US8114119B2 (en) 2008-09-09 2012-02-14 Ethicon Endo-Surgery, Inc. Surgical grasping device
US8337394B2 (en) 2008-10-01 2012-12-25 Ethicon Endo-Surgery, Inc. Overtube with expandable tip
US8932328B2 (en) 2008-11-03 2015-01-13 Ethicon, Inc. Length of self-retaining suture and method and device for using the same
US10441270B2 (en) 2008-11-03 2019-10-15 Ethicon, Inc. Length of self-retaining suture and method and device for using the same
US11234689B2 (en) 2008-11-03 2022-02-01 Ethicon, Inc. Length of self-retaining suture and method and device for using the same
US10314603B2 (en) 2008-11-25 2019-06-11 Ethicon Llc Rotational coupling device for surgical instrument with flexible actuators
US8157834B2 (en) 2008-11-25 2012-04-17 Ethicon Endo-Surgery, Inc. Rotational coupling device for surgical instrument with flexible actuators
US9220526B2 (en) 2008-11-25 2015-12-29 Ethicon Endo-Surgery, Inc. Rotational coupling device for surgical instrument with flexible actuators
US8172772B2 (en) 2008-12-11 2012-05-08 Ethicon Endo-Surgery, Inc. Specimen retrieval device
US10004558B2 (en) 2009-01-12 2018-06-26 Ethicon Endo-Surgery, Inc. Electrical ablation devices
US8828031B2 (en) 2009-01-12 2014-09-09 Ethicon Endo-Surgery, Inc. Apparatus for forming an anastomosis
US9011431B2 (en) 2009-01-12 2015-04-21 Ethicon Endo-Surgery, Inc. Electrical ablation devices
US9226772B2 (en) 2009-01-30 2016-01-05 Ethicon Endo-Surgery, Inc. Surgical device
US8252057B2 (en) 2009-01-30 2012-08-28 Ethicon Endo-Surgery, Inc. Surgical access device
US8037591B2 (en) 2009-02-02 2011-10-18 Ethicon Endo-Surgery, Inc. Surgical scissors
US20100249700A1 (en) * 2009-03-27 2010-09-30 Ethicon Endo-Surgery, Inc. Surgical instruments for in vivo assembly
US10779882B2 (en) 2009-10-28 2020-09-22 Ethicon Endo-Surgery, Inc. Electrical ablation devices
US8608652B2 (en) 2009-11-05 2013-12-17 Ethicon Endo-Surgery, Inc. Vaginal entry surgical devices, kit, system, and method
US8496574B2 (en) 2009-12-17 2013-07-30 Ethicon Endo-Surgery, Inc. Selectively positionable camera for surgical guide tube assembly
US8353487B2 (en) 2009-12-17 2013-01-15 Ethicon Endo-Surgery, Inc. User interface support devices for endoscopic surgical instruments
US8506564B2 (en) 2009-12-18 2013-08-13 Ethicon Endo-Surgery, Inc. Surgical instrument comprising an electrode
US10098691B2 (en) 2009-12-18 2018-10-16 Ethicon Endo-Surgery, Inc. Surgical instrument comprising an electrode
US9028483B2 (en) 2009-12-18 2015-05-12 Ethicon Endo-Surgery, Inc. Surgical instrument comprising an electrode
US9005198B2 (en) 2010-01-29 2015-04-14 Ethicon Endo-Surgery, Inc. Surgical instrument comprising an electrode
US11234692B2 (en) 2010-05-04 2022-02-01 Cilag Gmbh International Self-retaining system having laser-cut retainers
US10420546B2 (en) 2010-05-04 2019-09-24 Ethicon, Inc. Self-retaining systems having laser-cut retainers
US10952721B2 (en) 2010-05-04 2021-03-23 Ethicon, Inc. Laser cutting system and methods for creating self-retaining sutures
US8858577B2 (en) 2010-05-19 2014-10-14 University Of Utah Research Foundation Tissue stabilization system
US8945156B2 (en) 2010-05-19 2015-02-03 University Of Utah Research Foundation Tissue fixation
US9451961B2 (en) 2010-05-19 2016-09-27 University Of Utah Research Foundation Tissue stabilization system
US9955962B2 (en) 2010-06-11 2018-05-01 Ethicon, Inc. Suture delivery tools for endoscopic and robot-assisted surgery and methods
US11007296B2 (en) 2010-11-03 2021-05-18 Ethicon, Inc. Drug-eluting self-retaining sutures and methods relating thereto
US9675341B2 (en) 2010-11-09 2017-06-13 Ethicon Inc. Emergency self-retaining sutures and packaging
US10092291B2 (en) 2011-01-25 2018-10-09 Ethicon Endo-Surgery, Inc. Surgical instrument with selectively rigidizable features
US8852214B2 (en) 2011-02-04 2014-10-07 University Of Utah Research Foundation System for tissue fixation to bone
US9381019B2 (en) 2011-02-04 2016-07-05 University Of Utah Research Foundation System for tissue fixation to bone
US10258406B2 (en) 2011-02-28 2019-04-16 Ethicon Llc Electrical ablation devices and methods
US9254169B2 (en) 2011-02-28 2016-02-09 Ethicon Endo-Surgery, Inc. Electrical ablation devices and methods
US9233241B2 (en) 2011-02-28 2016-01-12 Ethicon Endo-Surgery, Inc. Electrical ablation devices and methods
US9314620B2 (en) 2011-02-28 2016-04-19 Ethicon Endo-Surgery, Inc. Electrical ablation devices and methods
US10278761B2 (en) 2011-02-28 2019-05-07 Ethicon Llc Electrical ablation devices and methods
US9049987B2 (en) 2011-03-17 2015-06-09 Ethicon Endo-Surgery, Inc. Hand held surgical device for manipulating an internal magnet assembly within a patient
US9883910B2 (en) 2011-03-17 2018-02-06 Eticon Endo-Surgery, Inc. Hand held surgical device for manipulating an internal magnet assembly within a patient
US11690614B2 (en) 2011-03-23 2023-07-04 Ethicon, Inc. Self-retaining variable loop sutures
US10492780B2 (en) 2011-03-23 2019-12-03 Ethicon, Inc. Self-retaining variable loop sutures
US10188384B2 (en) 2011-06-06 2019-01-29 Ethicon, Inc. Methods and devices for soft palate tissue elevation procedures
US20130096584A1 (en) * 2011-10-12 2013-04-18 David S. Kirsch Mesh Fixation System
US8585721B2 (en) * 2011-10-12 2013-11-19 Covidien Lp Mesh fixation system
US8986199B2 (en) 2012-02-17 2015-03-24 Ethicon Endo-Surgery, Inc. Apparatus and methods for cleaning the lens of an endoscope
US11284918B2 (en) 2012-05-14 2022-03-29 Cilag GmbH Inlernational Apparatus for introducing a steerable camera assembly into a patient
US9427255B2 (en) 2012-05-14 2016-08-30 Ethicon Endo-Surgery, Inc. Apparatus for introducing a steerable camera assembly into a patient
US10206709B2 (en) 2012-05-14 2019-02-19 Ethicon Llc Apparatus for introducing an object into a patient
US9788888B2 (en) 2012-07-03 2017-10-17 Ethicon Endo-Surgery, Inc. Endoscopic cap electrode and method for using the same
US9078662B2 (en) 2012-07-03 2015-07-14 Ethicon Endo-Surgery, Inc. Endoscopic cap electrode and method for using the same
US9427309B2 (en) 2012-07-30 2016-08-30 Conextions, Inc. Soft tissue repair devices, systems, and methods
US9545290B2 (en) 2012-07-30 2017-01-17 Ethicon Endo-Surgery, Inc. Needle probe guide
US11944531B2 (en) 2012-07-30 2024-04-02 Conextions, Inc. Devices, systems, and methods for repairing soft tissue and attaching soft tissue to bone
US10492880B2 (en) 2012-07-30 2019-12-03 Ethicon Llc Needle probe guide
US10390935B2 (en) 2012-07-30 2019-08-27 Conextions, Inc. Soft tissue to bone repair devices, systems, and methods
US10660643B2 (en) 2012-07-30 2020-05-26 Conextions, Inc. Soft tissue repair devices, systems, and methods
US10660642B2 (en) 2012-07-30 2020-05-26 Conextions, Inc. Soft tissue repair devices, systems, and methods
US9655625B2 (en) 2012-07-30 2017-05-23 Conextions, Inc. Soft tissue repair devices, systems, and methods
US11253252B2 (en) 2012-07-30 2022-02-22 Conextions, Inc. Devices, systems, and methods for repairing soft tissue and attaching soft tissue to bone
US10835241B2 (en) 2012-07-30 2020-11-17 Conextions, Inc. Devices, systems, and methods for repairing soft tissue and attaching soft tissue to bone
US10219804B2 (en) 2012-07-30 2019-03-05 Conextions, Inc. Devices, systems, and methods for repairing soft tissue and attaching soft tissue to bone
US11701218B2 (en) 2012-07-30 2023-07-18 Conextions, Inc. Soft tissue to bone repair devices, systems, and methods
US9629632B2 (en) 2012-07-30 2017-04-25 Conextions, Inc. Soft tissue repair devices, systems, and methods
US11446024B2 (en) 2012-07-30 2022-09-20 Conextions, Inc. Devices, systems, and methods for repairing soft tissue and attaching soft tissue to bone
US9572623B2 (en) 2012-08-02 2017-02-21 Ethicon Endo-Surgery, Inc. Reusable electrode and disposable sheath
US10314649B2 (en) 2012-08-02 2019-06-11 Ethicon Endo-Surgery, Inc. Flexible expandable electrode and method of intraluminal delivery of pulsed power
US9788885B2 (en) 2012-08-15 2017-10-17 Ethicon Endo-Surgery, Inc. Electrosurgical system energy source
US10342598B2 (en) 2012-08-15 2019-07-09 Ethicon Llc Electrosurgical system for delivering a biphasic waveform
US9277957B2 (en) 2012-08-15 2016-03-08 Ethicon Endo-Surgery, Inc. Electrosurgical devices and methods
US11484191B2 (en) 2013-02-27 2022-11-01 Cilag Gmbh International System for performing a minimally invasive surgical procedure
US10098527B2 (en) 2013-02-27 2018-10-16 Ethidcon Endo-Surgery, Inc. System for performing a minimally invasive surgical procedure
CN105263423A (en) * 2013-06-25 2016-01-20 米特拉利根公司 Percutaneous valve repair by reshaping and resizing right ventricle
US11583384B2 (en) 2014-03-12 2023-02-21 Conextions, Inc. Devices, systems, and methods for repairing soft tissue and attaching soft tissue to bone
US11696822B2 (en) 2016-09-28 2023-07-11 Conextions, Inc. Devices, systems, and methods for repairing soft tissue and attaching soft tissue to bone
CN106923934A (en) * 2017-03-14 2017-07-07 北京爱康宜诚医疗器材有限公司 Orthopaedics implantation titanium net
US11458004B2 (en) 2017-10-19 2022-10-04 C.R. Bard, Inc. Self-gripping hernia prosthesis
US11547397B2 (en) 2017-12-20 2023-01-10 Conextions, Inc. Devices, systems, and methods for repairing soft tissue and attaching soft tissue to bone
US10973509B2 (en) 2017-12-20 2021-04-13 Conextions, Inc. Devices, systems, and methods for repairing soft tissue and attaching soft tissue to bone

Also Published As

Publication number Publication date
RU2002134180A (en) 2004-06-27
US20020022861A1 (en) 2002-02-21
US20010044637A1 (en) 2001-11-22
IL152817A (en) 2008-03-20
US6485503B2 (en) 2002-11-26

Similar Documents

Publication Publication Date Title
US6485503B2 (en) Multi-point tissue tension distribution device, a brow and face lift variation, and a method of tissue approximation using the device
US7510566B2 (en) Multi-point tissue tension distribution device and method, a chin lift variation
EP1289431B1 (en) Tissue approximation device
US7172615B2 (en) Remotely anchored tissue fixation device
EP1737354B1 (en) Remotely anchored tissue fixation device
US20040010275A1 (en) Multi-point tissue tension distribution device and method, a custom-fittable variation
US20040260340A1 (en) Remotely anchored tissue fixation device and method
US6645226B1 (en) Multi-point tension distribution system device and method of tissue approximation using that device to improve wound healing
AU2001264739A1 (en) Tissue approximation device and a method using it
US7156862B2 (en) Multi-point tension distribution system device and method of tissue approximation using that device to improve wound healing
US6991643B2 (en) Multi-barbed device for retaining tissue in apposition and methods of use
US20180250007A1 (en) Tissue fastener and methods for using same
EP1070487B1 (en) Graft fixation device
US8518061B2 (en) Method of treating vaginal prolapse
US7387634B2 (en) System for securing sutures, grafts and soft tissue to bone and periosteum
AU2003200043A1 (en) Graft fixation device combination
JP2024038484A (en) Devices, systems, and methods for repairing soft tissue and attaching soft tissue to bone
US8585774B2 (en) Temporal brow lifting and fixation device

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION