US20020103529A1 - Longitudinally flexible stent - Google Patents

Longitudinally flexible stent Download PDF

Info

Publication number
US20020103529A1
US20020103529A1 US10/040,789 US4078902A US2002103529A1 US 20020103529 A1 US20020103529 A1 US 20020103529A1 US 4078902 A US4078902 A US 4078902A US 2002103529 A1 US2002103529 A1 US 2002103529A1
Authority
US
United States
Prior art keywords
loop
meander patterns
stent
loop containing
containing section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/040,789
Inventor
Gregory Pinchasik
Jacob Richter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/040,789 priority Critical patent/US20020103529A1/en
Publication of US20020103529A1 publication Critical patent/US20020103529A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M29/00Dilators with or without means for introducing media, e.g. remedies
    • A61M29/02Dilators made of swellable material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/91508Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other the meander having a difference in amplitude along the band
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/91516Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other the meander having a change in frequency along the band
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/91525Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other within the whole structure different bands showing different meander characteristics, e.g. frequency or amplitude
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/91533Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other characterised by the phase between adjacent bands
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/9155Adjacent bands being connected to each other
    • A61F2002/91558Adjacent bands being connected to each other connected peak to peak
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0028Shapes in the form of latin or greek characters
    • A61F2230/0054V-shaped

Definitions

  • the present invention relates generally to stents, which are endoprostheses implanted into vessels within the body, such as blood vessels, to support and hold open the vessels, or to secure and support other endoprostheses in the vessels.
  • the present invention relates to a stent which is longitudinally flexible before after expansion.
  • stents are known in the art.
  • stents are generally tubular in shape, and are expandable from a relatively small, unexpanded diameter to a larger, expanded diameter.
  • the stent is typically mounted on the end of a catheter, with the stent being held on the catheter at its relatively small, unexpanded diameter.
  • the unexpanded stent is directed through the lumen to the intended implantation site.
  • the stent is expanded, typically either by an internal force, for example by inflating a balloon on the inside of the stent, or by allowing the stent to self-expand, for example by removing a sleeve from around a self-expanding stent, allowing the stent to expand outwardly.
  • the expanded stent resists the tendency of the vessel to narrow, thereby maintaining the vessel's patency.
  • U.S. Pat. No. 5,733,303 to Israel et al. (“'303”), which is expressly incorporated by reference, shows a unique stent formed of a tube having a patterned shape which has first and second meander patterns having axes extending in first and second directions.
  • the second meander patterns are intertwined with the first meander patterns to form flexible cells.
  • Stents such as this one are very flexible in their unexpanded state such that they can be tracked easily down tortuous lumens. Upon expansion, these stents provide excellent radial support, stability, and coverage of the vessel wall.
  • These stents are also conformable, in that they adapt to the shape of the vessel wall during implantation.
  • FIG. 1 a schematic diagram of a conventional stent 202 in a curved vessel 204 .
  • a stent To implant a stent, it maybe delivered to a desired site by a balloon catheter when the stent is in an unexpanded state.
  • the balloon catheter is then inflated to expand the stent, affixing the stent into place. Due to the high inflation pressures of the balloon—up to 20 atm—the balloon causes the curved vessel 204 and even a longitudinally flexible stent to straighten when it is inflated. If the stent, because of the configuration of its mesh is or becomes relatively rigid after expansion, then the stent remains or tends to remain in the same or substantially the same shape after deflation of the balloon. However, the artery attempts to return to its natural curve (indicated by dashed lines)in FIG.
  • U.S. Pat. No. 5,807,404 to Richter which is expressly incorporated by reference, shows another stent which is especially suited for implantation into curved arterial portions or ostial regions.
  • This stent can include sections adjacent the end of the stent with greater bending flexibility than the remaining axial length of the stent. While this modification at the end of the stent alleviates the stress at the end points, it does not eliminate the stress along the entire length of the stent.
  • Various stents are known that retain longitudinal flexibility after expansion.
  • U.S. Pat. Nos. 4,886,062 and 5,133,732 to Wiktor (“the Wiktor '062 and '732 patents”) show various stents formed of wire wherein the wire is initially formed into a band of zig-zags forming a serpentine pattern, and then the zig-zag band is coiled into a helical stent.
  • the stents are expanded by an internal force, for example by inflating a balloon.
  • the coiled zig-zag stents that are illustrated in FIGS. 1 through 6 of the Wiktor '062 and '732 patents are longitudinally flexible both in the expanded and unexpanded condition such that they can be tracked easily down tortuous lumens and such that they conform relatively closely to the compliance of the vessel after deployment. While these stents are flexible, they also have relatively unstable support after expansion. Furthermore, these stents leave large portions of the vessel wall uncovered, allowing tissue and plaque prolapse into the lumen of the vessel.
  • a stent which exhibits longitudinal flexibility before expansion such that it can easily be tracked down tortuous lumens and longitudinal flexibility after expansion such that it can comply with the vessel's natural flexibility and curvature while still providing continuous, stable coverage of a vessel wall that will minimize tissue sag into the lumen.
  • an object of the invention is to provide a stent that is longitudinally flexible before expansion so that it can easily be tracked down tortuous vessels and remains longitudinally flexible after expansion such that it will substantially eliminate any stress points by complying with the vessel's flexibility and assuming the natural curve of the vessel.
  • Another object of the present invention is to provide a stent that is longitudinally flexible after delivery such that it flexes during the cycles of the heartbeat to reduce cyclic stress at the ends of the stent and along the stent.
  • Another object of the present invention is to provide a stent with a closed cell pattern such that it provides good coverage and support to a vessel wall after expansion.
  • the stent of the present invention is formed to be a tube having a patterned shape which has first and second meander patterns having axes extending in first and second direction wherein the second meander patterns are intertwined with the first meander patterns.
  • the intertwined meander patterns form cells which have three points at which the first and second meander patterns meet each other, and which in this sense could be called triangular cells.
  • These three cornered or triangular cells are flexible about the longitudinal axis of the stent after expansion. These triangular cells provide comparable scaffolding and radial strength to that of cells formed by intertwined meander patterns which have four points at which the first and second patterns meet each other, and which in this sense could be called square cells.
  • bands of cells are provided along the length of a stent.
  • the bands of cells alternate between cells adapted predominantly to enhance radial support with cells that are adapted predominantly to enhance longitudinal flexibility after expansion.
  • the first meander patterns are adapted to prevent any “flaring out” of loops of the first meander patterns during delivery of the stent.
  • a stent according to the invention retains the longitudinal flexibility associated with the '303 cellular stent in its unexpanded state, and has increased longitudinal flexibility in the expanded state.
  • the stent does so without sacrificing scaffolding—i.e. coverage of the vessel wall—or radial support.
  • FIG. 1 shows a schematic diagram of a conventional rigid stent deployed in a curved lumen
  • FIG. 2 shows a schematic diagram of a stent of the present invention deployed in a curved lumen
  • FIG. 3 shows a pattern for a stent made in accordance with the present invention
  • FIG. 4 shows an enlarged view of one cell of the pattern of FIG. 3
  • FIG. 5 shows a pattern for a stent made in accordance with the present invention
  • FIG. 6 shows an enlarged view of one cell of the pattern of FIG. 5;
  • FIG. 7 shows a pattern for a stent made in accordance with the present invention
  • FIG. 8 shows an enlarged view of one cell used in the pattern of FIG. 7;
  • FIG. 9 shows an enlarged view of another cell used in FIG. 7;
  • FIG. 10 shows a schematic comparison of a four cornered or “square cell” and a three cornered or “triangular” cell of the present invention.
  • FIG. 11 shows a pattern for a stent constructed according to the principles of the invention which has variable geometry along its length.
  • FIG. 2 shows a schematic diagram of a longitudinally flexible stent 208 of the present invention.
  • the stent 208 may be delivered to a curved vessel 210 by a balloon catheter, and implanted in the artery by inflating the balloon.
  • the balloon causes the artery to straighten upon inflation of the balloon.
  • the stent 208 assumes the natural curve of the vessel 210 because it is and remains longitudinally flexible after expansion. This reduces any potential stress points at the ends of the stent and along the length of the stent.
  • the stent is longitudinally flexible after expansion, the stent will flex longitudinally with the vessel during the cycles caused by a heartbeat. This also reduces any cyclic stress at the ends of the stent and along the length of the stent.
  • FIG. 3 shows a pattern of a stent according to the present invention.
  • This pattern may be constructed of known materials, and for example stainless steel, but it is particularly suitable to be constructed from NiTi.
  • the pattern can be formed by etching a flat sheet of NiTi into the pattern shown.
  • the flat sheet is formed into a stent by rolling the etched sheet into a tubular shape, and welding the edges of the sheet together to form a tubular stent.
  • the details of this method of forming the stent which has certain advantages, are disclosed in U.S. Pat. Nos. 5,836,964 and 5,997,973, which are hereby expressly incorporated by reference.
  • NiTi stent After formation into a tubular shape, an NiTi stent is heat treated, as known by those skilled in the art, to take advantage of the shape memory characteristics of NiTi and its superelasticity.
  • the pattern 300 is formed from a plurality of each of two orthogonal meander patterns which patterns are intertwined with each other.
  • the term “meander pattern” is taken herein to describe a periodic pattern about a center line and “orthogonal meander patterns” are patterns whose center lines are orthogonal to each other.
  • a meander pattern 301 is a vertical sinusoid having a vertical center line 302 .
  • a meander pattern 301 has two loops 304 and 306 per period wherein loops 304 open to the right while loops 306 open to the left. Loops 304 and 306 share common members 308 and 310 , where member 308 joins one loop 304 to its following loop 306 and member 308 joins one loop 306 to its following loop 304 .
  • a meander pattern 312 (two of which have been shaded for reference) is a horizontal pattern having a horizontal center line 314 .
  • a horizontal meander pattern 312 also has loops labeled 316 , 318 , 320 , 322 , and between the loops of a period is a section labeled 324 .
  • each left opening loop 306 of meander pattern 301 o faces a right opening loop 304 of meander pattern 301 e and a right opening loop 304 of meander pattern 301 o faces a left opening loop 306 of meander pattern 301 e.
  • the horizontal meander pattern 312 is also provided in odd and even forms.
  • the straight sections 324 of the horizontal meander pattern 312 e intersect with every third common member 310 of the even vertical meander pattern 301 e.
  • the straight sections 324 of the horizontal meander pattern 312 o also intersect with every third common member 310 of the odd vertical meander pattern 301 .
  • the loops of the vertical meander patterns 301 open up in the vertical direction. This causes them to shorten in the horizontal direction.
  • the loops in the horizontal meander pattern 312 open up both in the vertical direction and the horizontal direction, compensating for the shortening of the loops of the vertical meander patterns.
  • a stent formed from the pattern of FIG. 3 and made of NiTi is particularly well suited for use in the carotid artery or other lumens subject to an outside pressure.
  • One reason is that because the stent is formed of NiTi, it is reboundable, which is a desirable property for stents placed in the carotid artery.
  • the other reason is that the stent of FIG. 3 offers excellent scaffolding, which is particularly important in the carotid artery. Scaffolding is especially important in the carotid artery because dislodged particles in the artery may embolize and cause a stroke.
  • FIG. 4 is an expanded view of one flexible cell 500 of the pattern of FIG. 3.
  • Each flexible cell 500 includes: a first member 501 having a first end 502 and a second end 503 ; a second member 504 having a first end 505 and a second end 506 ; a third member 507 having a first end 508 and a second end 509 ; and a fourth member 510 having a first end 511 and a second end 512 .
  • the first end 502 of the first member 501 is joined to the first end 505 of the second member 504 by a first curved member 535 to form a first loop 550
  • the second end 506 of the second member 504 is joined to the second end 509 of the third member 508 by a second curved member 536
  • the first end 508 of the third member 507 is joined to the first end 511 of the fourth member 510 by a third curved member 537 to form a second loop 531
  • the first loop 530 defines a first angle 543
  • the second loop 531 defines a second angle 544 .
  • Each cell 500 also includes a fifth member 513 having a first end 514 and a second end 515 ; a sixth member 516 having a first end 517 and a second end 518 ; a seventh member 519 having a first end 520 and a second end 521 ; an eighth member 522 having a first end 523 and a second end 524 ; a ninth member 525 having a first end 526 and a second end 527 ; and a tenth member having a first end 529 and a second end 530 .
  • the first end 514 of the fifth member 513 is joined to the second end 503 of the first member 501 at second junction point 542
  • the second end 515 of the fifth member 513 is joined to the second end 518 of the sixth member by a curved member 539 to form a third loop 532
  • the first end 517 of the sixth member 516 is joined to the first end 520 of the seventh member 519 by a fifth curved member 548
  • the second end 521 of the seventh member 519 is joined to the second end 524 of the eighth member 522 at third junction point 540 to form a fourth loop 533
  • the first end 523 of the eighth member 522 is joined to the first end 526 of the ninth member 525 by a sixth curved member 549
  • the second end 526 of the ninth member 525 is joined to the second end 530 of the tenth member 528 by a seventh curved member 541 to form a fifth loop 534
  • the first end 529 of the tenth member 528 is joined to the second end 512
  • the first member 501 , the third member 507 , the sixth member 516 , the eighth member 522 , and the tenth member 528 have substantially the same angular orientation to the longitudinal axis of the stent and the second member 504 , the fourth member 510 , the fifth member 513 , the seventh member 519 , and the ninth member 512 have substantially the same angular orientation to the longitudinal axis of the stent.
  • the lengths of the first, second, third and fourth members 501 , 504 , 507 , 510 are substantially equal.
  • the lengths of the fifth, sixth, seventh, eighth, ninth and tenth members 513 , 516 , 519 , 522 , 525 , 528 are also substantially equal.
  • the first, second, third, and fourth members 501 , 504 , 507 , 510 have a width that is greater than the width of the fifth, sixth, seventh, eighth, ninth, and tenth members 513 , 516 , 519 , 522 , 525 , 528 in that cell.
  • the differing widths of the first, second, third, and fourth members and the fifth, sixth, seventh, eighth, ninth, and tenth members with respect to each other contribute to the overall flexibility and resistance to radial compression of the cell.
  • the widths of the various members can be tailored for specific applications.
  • the fifth, sixth, seventh, eighth, ninth, and tenth members are optimized predominantly to enable longitudinal flexibility, both before and after expansion, while the first, second, third, and fourth members are optimized predominantly to enable sufficient resistance to radial compression to hold a vessel open.
  • specific members are optimized to predominantly enable a desired characteristic, all the portions of the cell interactively cooperate and contribute to the characteristics of the stent.
  • FIGS. 5 and 6 show a pattern and an expanded view of one cell of an embodiment of the present invention which is specially adapted for a stent made of stainless steel.
  • the pattern is similar to the pattern of FIGS. 3 and 4, and the same reference numerals are used to indicate the generally corresponding parts.
  • the second loops 531 are made stronger by shortening the third and fourth members 507 , 510 . This helps assure that the second loops do not “flare out” during delivery of the stent through tortuous anatomy. This “flaring out” is not a concern with NiTi stents which are covered by a sheath during delivery.
  • the length of the members in this embodiment may be shorter than the length of the corresponding members in the embodiment illustrated in FIGS. 3 and 4.
  • the amount of strain allowed in a self-expanding NiTi stent may be around 10%.
  • the amount of strain allowed typically may be 20% or greater. Therefore, to facilitate stents made of NiTi and stents made of stainless steel expanding to comparable diameters, the members of the NiTi stent may be longer than the members of a stainless steel stent.
  • FIG. 7 illustrates another aspect of the present invention.
  • the stent of FIG. 7 is also constructed from orthogonal meander patterns 301 , 302 .
  • the meander patterns form a series of interlocking cells 50 , 700 of two types.
  • the first type of cell 50 is taught by U.S. Pat. No. 5,733,303. These cells are arranged so that they form alternating bands 704 of first type of cells 50 and bands 706 of the second type of cells 700 .
  • each of the '303 cells 50 has a first longitudinal apex 100 and a second longitudinal end 78 .
  • Each cell 50 also is provided with a first longitudinal end 77 and a second longitudinal apex 104 disposed at the second longitudinal end 78 .
  • Each cell 50 also includes a first member 51 having a longitudinal component having a first end 52 and a second end 53 ; a second member 54 having a longitudinal component having a first end 55 and a second end 56 ; a third member 57 having a longitudinal component having a first end 58 and a second end 59 ; and a fourth member 60 having a longitudinal component having a first end 61 and a second end 62 .
  • the stent also includes a first loop or curved member 63 defining a first angle 64 disposed between the first end 52 of the first member 51 and the first end 55 of the second member 54 .
  • a second loop or curved member 65 defining a second angle 66 is disposed between the second end 59 of the third member 57 and the second end 62 of the fourth member 60 and is disposed generally opposite to the first loop 63 .
  • a first flexible compensating member (or a section of a longitudinal meander pattern) 67 having curved portion and two legs with a first end 68 and a second end 69 is disposed between the first member 51 and the third member 57 with the first end 68 of the first flexible compensating member 67 joined to and communicating with the second end 53 of the first member 51 and the second end 69 of the first flexible compensating member 67 joined to and communicating with the first end 58 of the third member 57 .
  • the first end 68 and the second end 69 are disposed a variable longitudinal distance 70 from each other.
  • a second flexible compensating member (or, a section of a longitudinal meander pattern) 71 having a first end 72 and a second end 73 is disposed between the second member 54 and the fourth member 60 .
  • the first end 72 of the second flexible compensating member 71 is joined to and communicates with the second end 56 of the second member 54 and the second end 73 of the second flexible compensating member 71 is joined to and communicates with the first end 61 of the fourth member 60 .
  • the first end 72 and the second end 73 are disposed a variable longitudinal distance 74 from each other.
  • the first and second flexible compensating members, and particularly the curved portion thereof, 67 and 71 are arcuate.
  • each flexible compensating member 67 , 71 includes: a first portion or leg 79 with a first end 80 and a second end 81 ; a second portion or leg 82 with a first end 83 and a second end 84 ; and a third portion or leg 85 with the first end 86 and a second end 87 , with the second end 81 and the second end 84 being joined by a curved member and the first end 83 and the first end 86 being joined by a curved member.
  • the first end of a flexible compensating member 67 , 71 is the same as the first end 80 of the first portion 79
  • the second end of a flexible compensating member 67 , 71 is the same as the second end 87 of the third portion 85 .
  • a first area of inflection 88 is disposed between the second end 81 of the first portion 79 and the second end 84 of the second portion 82 where the curved portion joining them lies.
  • a second area of inflection 89 is disposed between the first end 83 of the second portion 82 and the first end 86 of the third portion 85 where the curved portion joining them lies.
  • FIG. 7 illustrates a pattern of alternating bands of cells
  • the stent may be optimized for a particular usage by tailoring the configuration of the bands.
  • the middle band of the second type of cells 700 may instead be formed of cells 50 , or vice versa.
  • the second type of cells in FIG. 7 may also utilize the cell configurations described with respect to FIGS. 4 and 6.
  • the cell configurations of FIGS. 4 and 6 provide the advantage that they will not cause any torque of one portion of the cell relative to another portion of the cell about the longitudinal axis of the stent upon expansion, which may happen when the second type of cells 700 expand, a torque which could cause a stent to deform, and stick out.
  • all of the flexible compensating members are arranged so that the path of the flexible compensating members, from left to right, travels in a generally downward direction.
  • the cells 700 can also be arranged so that the flexible compensating members in one band are arranged in a generally upward direction, and the flexible compensating members in an adjacent band are arranged in a generally downward direction.
  • One skilled in the art can easily make these modifications.
  • FIG. 10 is a schematic representation comparing the cells 804 of the present invention, which have three points where the intertwined first and second meander patterns meet and are in that sense three cornered or triangular cells, with cells 802 of the '303 stent which have four points where the intertwined first and second meander patterns meet and are in that sense four cornered or square cells. More particularly, on the left side of FIG. 10, a pair of vertical meander patterns 806 , 826 are joined by members 808 , 810 , 812 (which are sections of longitudinal meander patterns) to form a plurality of three cornered or triangular cells 804 .
  • triangular cell it is meant that there are three sections 810 , 812 , 814 , each having loop portions and three associated points 816 , 818 , 820 of their joining, forming each cell.
  • a pair of vertical meander patterns 822 , 824 are joined together compensating members 828 , 830 , 832 , 834 (which are sections of a longitudinal meander) to form a plurality of square cells 804 .
  • square cell it is meant that there are four sections, each having loop portions, and four associated points of their joining, forming each cell.
  • the shaded cell 802 is formed from four sections 832 , 836 , 830 , 838 , with four associated points of their joining 840 , 842 , 844 , 846 .
  • Both the square cell and the triangular cell have two kinds of sections with loops.
  • the first kind of loop containing section is formed from a vertical meander pattern and is optimized predominantly to enable radial support.
  • the second kind of loop containing section is optimized predominantly to enable flexibility along the longitudinal axis of the stent.
  • each loop containing section is optimized predominantly to enable a desired characteristic of the stent, the sections are interconnected and cooperate to define the characteristics of the stent. Therefore, the first kind of loop containing section contributes to the longitudinal flexibility of the stent, and the second kind of loop containing section contributes to the radial support of the stent.
  • the second kind of loop containing sections 830 , 832 each have one inflection point 848 , 850 .
  • the loop containing sections 810 , 812 each have two inflection point areas 852 , 854 , 856 , 858 .
  • the higher number of inflection points allows more freedom to deform after expansion of the stent and distributes the deformation over a longer section, thus, reducing the maximal strain along these loop containing sections.
  • a square cell 802 is generally more elongated along the longitudinal axis of the stent than a triangular cell 804 , which is generally more elongated along the circumference of the stent. This also contributes to higher flexibility after expansion.
  • the area of a triangular cell 804 is the same as a square cell 802 .
  • This can be more readily understood with reference to a band of cells around the circumference of a stent. Each band will encompass the same area, and each band will have the same number of cells. Accordingly, the area of each cell in one band formed of square cells will be the same as the area of each cell in another band formed of triangular cells.
  • the perimeter of the triangular cell is larger than the perimeter of the square cell. Therefore, in comparison to a square cell, a triangular cell offers increased coverage of a vessel wall.
  • the stent is substantially uniform over its entire length.
  • a band of cells 850 may be designed to provide different flexibility characteristics or different radial compression characteristics than the remaining bands of cells by altering the widths and lengths of the members making up that band.
  • the stent may be adapted to provide increased access to a side branch lumen by providing at least one cell 852 which is larger in size then the remaining cells, or by providing an entire band of cells 854 which are larger in size than the other bands of cells.
  • the stent may be designed to expand to different diameters along the length of the stent.
  • the stent may also be treated after formation of the stent by coating the stent with a medicine, plating the stent with a protective material, plating the stent with a radiopaque material, or covering the stent with a material.

Abstract

A stent has a first loop containing section arranged in a circumferential direction and defining loops therein occurring at a first frequency, a second loop containing section arranged in the circumferential direction and defining loops therein occurring at the first frequency, and a third loop containing section disposed in a generally circumferential space between the first loop containing section and the second loop containing section and coupling the first loop containing section to the second loop containing section for defining cells therebetween, the third loop containing section defining loops therein occurring at a second frequency that is greater than the first frequency.

Description

    RELATED APPLICATIONS
  • This application is a continuation of application Ser. No. 09/516,753, filed Mar. 1, 2000.[0001]
  • FIELD OF THE INVENTION
  • The present invention relates generally to stents, which are endoprostheses implanted into vessels within the body, such as blood vessels, to support and hold open the vessels, or to secure and support other endoprostheses in the vessels. In particular, the present invention relates to a stent which is longitudinally flexible before after expansion. [0002]
  • BACKGROUND OF THE INVENTION
  • Various stents are known in the art. Typically stents are generally tubular in shape, and are expandable from a relatively small, unexpanded diameter to a larger, expanded diameter. For implantation, the stent is typically mounted on the end of a catheter, with the stent being held on the catheter at its relatively small, unexpanded diameter. By the catheter, the unexpanded stent is directed through the lumen to the intended implantation site. Once the stent is at the intended implantation site, it is expanded, typically either by an internal force, for example by inflating a balloon on the inside of the stent, or by allowing the stent to self-expand, for example by removing a sleeve from around a self-expanding stent, allowing the stent to expand outwardly. In either case, the expanded stent resists the tendency of the vessel to narrow, thereby maintaining the vessel's patency. [0003]
  • U.S. Pat. No. 5,733,303 to Israel et al. (“'303”), which is expressly incorporated by reference, shows a unique stent formed of a tube having a patterned shape which has first and second meander patterns having axes extending in first and second directions. The second meander patterns are intertwined with the first meander patterns to form flexible cells. Stents such as this one are very flexible in their unexpanded state such that they can be tracked easily down tortuous lumens. Upon expansion, these stents provide excellent radial support, stability, and coverage of the vessel wall. These stents are also conformable, in that they adapt to the shape of the vessel wall during implantation. [0004]
  • One feature of stents with a cellular mesh design such as this one, however, is that they have limited longitudinal flexibility after expansion, which may be a disadvantage in particular applications. This limited longitudinal flexibility may cause stress points at the end of the stent and along the length of the stent. Conventional mesh stents like that shown in U.S. Pat. No. 4,733,665 may simply lack longitudinal flexibility, which is illustrated by FIG. 1, a schematic diagram of a [0005] conventional stent 202 in a curved vessel 204.
  • To implant a stent, it maybe delivered to a desired site by a balloon catheter when the stent is in an unexpanded state. The balloon catheter is then inflated to expand the stent, affixing the stent into place. Due to the high inflation pressures of the balloon—up to 20 atm—the balloon causes the [0006] curved vessel 204 and even a longitudinally flexible stent to straighten when it is inflated. If the stent, because of the configuration of its mesh is or becomes relatively rigid after expansion, then the stent remains or tends to remain in the same or substantially the same shape after deflation of the balloon. However, the artery attempts to return to its natural curve (indicated by dashed lines)in FIG. 1 with reference to a conventional mesh stent. The mismatch between the natural curve of the artery and the straightened section of the artery with a stent may cause points of stress concentration 206 at the ends of the stent and stress along the entire stent length. The coronary vasculature can impose additional stress on stents because the coronary vasculature moves relatively significant amounts with each heartbeat. For illustration purposes, the difference between the curve of the vessel and the straightened stent has been exaggerated in FIG. 1.
  • U.S. Pat. No. 5,807,404 to Richter, which is expressly incorporated by reference, shows another stent which is especially suited for implantation into curved arterial portions or ostial regions. This stent can include sections adjacent the end of the stent with greater bending flexibility than the remaining axial length of the stent. While this modification at the end of the stent alleviates the stress at the end points, it does not eliminate the stress along the entire length of the stent. [0007]
  • Various stents are known that retain longitudinal flexibility after expansion. For example, U.S. Pat. Nos. 4,886,062 and 5,133,732 to Wiktor (“the Wiktor '062 and '732 patents”) show various stents formed of wire wherein the wire is initially formed into a band of zig-zags forming a serpentine pattern, and then the zig-zag band is coiled into a helical stent. The stents are expanded by an internal force, for example by inflating a balloon. [0008]
  • The coiled zig-zag stents that are illustrated in FIGS. 1 through 6 of the Wiktor '062 and '732 patents are longitudinally flexible both in the expanded and unexpanded condition such that they can be tracked easily down tortuous lumens and such that they conform relatively closely to the compliance of the vessel after deployment. While these stents are flexible, they also have relatively unstable support after expansion. Furthermore, these stents leave large portions of the vessel wall uncovered, allowing tissue and plaque prolapse into the lumen of the vessel. [0009]
  • Thus, it is desired to have a stent which exhibits longitudinal flexibility before expansion such that it can easily be tracked down tortuous lumens and longitudinal flexibility after expansion such that it can comply with the vessel's natural flexibility and curvature while still providing continuous, stable coverage of a vessel wall that will minimize tissue sag into the lumen. [0010]
  • OBJECTS AND SUMMARY OF THE INVENTION
  • Accordingly, an object of the invention is to provide a stent that is longitudinally flexible before expansion so that it can easily be tracked down tortuous vessels and remains longitudinally flexible after expansion such that it will substantially eliminate any stress points by complying with the vessel's flexibility and assuming the natural curve of the vessel. [0011]
  • Another object of the present invention is to provide a stent that is longitudinally flexible after delivery such that it flexes during the cycles of the heartbeat to reduce cyclic stress at the ends of the stent and along the stent. [0012]
  • Another object of the present invention is to provide a stent with a closed cell pattern such that it provides good coverage and support to a vessel wall after expansion. [0013]
  • Other advantages of the present invention will be apparent to those skilled in the art. [0014]
  • In accordance with these objects, the stent of the present invention is formed to be a tube having a patterned shape which has first and second meander patterns having axes extending in first and second direction wherein the second meander patterns are intertwined with the first meander patterns. [0015]
  • In accordance with one embodiment of the invention, the intertwined meander patterns form cells which have three points at which the first and second meander patterns meet each other, and which in this sense could be called triangular cells. These three cornered or triangular cells are flexible about the longitudinal axis of the stent after expansion. These triangular cells provide comparable scaffolding and radial strength to that of cells formed by intertwined meander patterns which have four points at which the first and second patterns meet each other, and which in this sense could be called square cells. [0016]
  • In another embodiment of the invention, bands of cells are provided along the length of a stent. The bands of cells alternate between cells adapted predominantly to enhance radial support with cells that are adapted predominantly to enhance longitudinal flexibility after expansion. [0017]
  • In another embodiment of the invention, the first meander patterns are adapted to prevent any “flaring out” of loops of the first meander patterns during delivery of the stent. [0018]
  • A stent according to the invention retains the longitudinal flexibility associated with the '303 cellular stent in its unexpanded state, and has increased longitudinal flexibility in the expanded state. The stent does so without sacrificing scaffolding—i.e. coverage of the vessel wall—or radial support.[0019]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows a schematic diagram of a conventional rigid stent deployed in a curved lumen; [0020]
  • FIG. 2 shows a schematic diagram of a stent of the present invention deployed in a curved lumen; [0021]
  • FIG. 3 shows a pattern for a stent made in accordance with the present invention; [0022]
  • FIG. 4 shows an enlarged view of one cell of the pattern of FIG. 3; [0023]
  • FIG. 5 shows a pattern for a stent made in accordance with the present invention; [0024]
  • FIG. 6 shows an enlarged view of one cell of the pattern of FIG. 5; [0025]
  • FIG. 7 shows a pattern for a stent made in accordance with the present invention; [0026]
  • FIG. 8 shows an enlarged view of one cell used in the pattern of FIG. 7; [0027]
  • FIG. 9 shows an enlarged view of another cell used in FIG. 7; [0028]
  • FIG. 10 shows a schematic comparison of a four cornered or “square cell” and a three cornered or “triangular” cell of the present invention. [0029]
  • FIG. 11 shows a pattern for a stent constructed according to the principles of the invention which has variable geometry along its length.[0030]
  • DETAILED DESCRIPTION OF THE INVENTION
  • FIG. 2 shows a schematic diagram of a longitudinally [0031] flexible stent 208 of the present invention. The stent 208 may be delivered to a curved vessel 210 by a balloon catheter, and implanted in the artery by inflating the balloon. As described before, the balloon causes the artery to straighten upon inflation of the balloon. However, upon deflation of the balloon, the stent 208 assumes the natural curve of the vessel 210 because it is and remains longitudinally flexible after expansion. This reduces any potential stress points at the ends of the stent and along the length of the stent. Furthermore, because the stent is longitudinally flexible after expansion, the stent will flex longitudinally with the vessel during the cycles caused by a heartbeat. This also reduces any cyclic stress at the ends of the stent and along the length of the stent.
  • FIG. 3 shows a pattern of a stent according to the present invention. This pattern may be constructed of known materials, and for example stainless steel, but it is particularly suitable to be constructed from NiTi. The pattern can be formed by etching a flat sheet of NiTi into the pattern shown. The flat sheet is formed into a stent by rolling the etched sheet into a tubular shape, and welding the edges of the sheet together to form a tubular stent. The details of this method of forming the stent, which has certain advantages, are disclosed in U.S. Pat. Nos. 5,836,964 and 5,997,973, which are hereby expressly incorporated by reference. Other methods known to those of skill in the art such as laser cutting a tube or etching a tube may also be used to construct a stent which uses the present invention. After formation into a tubular shape, an NiTi stent is heat treated, as known by those skilled in the art, to take advantage of the shape memory characteristics of NiTi and its superelasticity. [0032]
  • The [0033] pattern 300 is formed from a plurality of each of two orthogonal meander patterns which patterns are intertwined with each other. The term “meander pattern” is taken herein to describe a periodic pattern about a center line and “orthogonal meander patterns” are patterns whose center lines are orthogonal to each other.
  • A [0034] meander pattern 301 is a vertical sinusoid having a vertical center line 302. A meander pattern 301 has two loops 304 and 306 per period wherein loops 304 open to the right while loops 306 open to the left. Loops 304 and 306 share common members 308 and 310, where member 308 joins one loop 304 to its following loop 306 and member 308 joins one loop 306 to its following loop 304.
  • A meander pattern [0035] 312 (two of which have been shaded for reference) is a horizontal pattern having a horizontal center line 314. A horizontal meander pattern 312 also has loops labeled 316, 318, 320, 322, and between the loops of a period is a section labeled 324.
  • [0036] Vertical meander pattern 301 is provided in odd and even (o and e) versions which are 180° out of phase with each other. Thus, each left opening loop 306 of meander pattern 301 o faces a right opening loop 304 of meander pattern 301 e and a right opening loop 304 of meander pattern 301 o faces a left opening loop 306 of meander pattern 301 e.
  • The [0037] horizontal meander pattern 312 is also provided in odd and even forms. The straight sections 324 of the horizontal meander pattern 312 e intersect with every third common member 310 of the even vertical meander pattern 301 e. The straight sections 324 of the horizontal meander pattern 312 o also intersect with every third common member 310 of the odd vertical meander pattern 301.
  • Upon expansion of the stent, the loops of the [0038] vertical meander patterns 301 open up in the vertical direction. This causes them to shorten in the horizontal direction. The loops in the horizontal meander pattern 312 open up both in the vertical direction and the horizontal direction, compensating for the shortening of the loops of the vertical meander patterns.
  • A stent formed from the pattern of FIG. 3 and made of NiTi is particularly well suited for use in the carotid artery or other lumens subject to an outside pressure. One reason is that because the stent is formed of NiTi, it is reboundable, which is a desirable property for stents placed in the carotid artery. The other reason is that the stent of FIG. 3 offers excellent scaffolding, which is particularly important in the carotid artery. Scaffolding is especially important in the carotid artery because dislodged particles in the artery may embolize and cause a stroke. [0039]
  • FIG. 4 is an expanded view of one [0040] flexible cell 500 of the pattern of FIG. 3. Each flexible cell 500 includes: a first member 501 having a first end 502 and a second end 503; a second member 504 having a first end 505 and a second end 506; a third member 507 having a first end 508 and a second end 509; and a fourth member 510 having a first end 511 and a second end 512. The first end 502 of the first member 501 is joined to the first end 505 of the second member 504 by a first curved member 535 to form a first loop 550, the second end 506 of the second member 504 is joined to the second end 509 of the third member 508 by a second curved member 536, and the first end 508 of the third member 507 is joined to the first end 511 of the fourth member 510 by a third curved member 537 to form a second loop 531. The first loop 530 defines a first angle 543. The second loop 531 defines a second angle 544. Each cell 500 also includes a fifth member 513 having a first end 514 and a second end 515; a sixth member 516 having a first end 517 and a second end 518; a seventh member 519 having a first end 520 and a second end 521; an eighth member 522 having a first end 523 and a second end 524; a ninth member 525 having a first end 526 and a second end 527; and a tenth member having a first end 529 and a second end 530. The first end 514 of the fifth member 513 is joined to the second end 503 of the first member 501 at second junction point 542, the second end 515 of the fifth member 513 is joined to the second end 518 of the sixth member by a curved member 539 to form a third loop 532, the first end 517 of the sixth member 516 is joined to the first end 520 of the seventh member 519 by a fifth curved member 548, the second end 521 of the seventh member 519 is joined to the second end 524 of the eighth member 522 at third junction point 540 to form a fourth loop 533, the first end 523 of the eighth member 522 is joined to the first end 526 of the ninth member 525 by a sixth curved member 549, the second end 526 of the ninth member 525 is joined to the second end 530 of the tenth member 528 by a seventh curved member 541 to form a fifth loop 534, and the first end 529 of the tenth member 528 is joined to the second end 512 of the fourth member 510. The third loop 532 defines a third angle 545. The fourth loop 533 defines a fourth angle 546. The fifth loop 534 defines a fifth angle 547.
  • In the embodiment shown in FIG. 4, the [0041] first member 501, the third member 507, the sixth member 516, the eighth member 522, and the tenth member 528 have substantially the same angular orientation to the longitudinal axis of the stent and the second member 504, the fourth member 510, the fifth member 513, the seventh member 519, and the ninth member 512 have substantially the same angular orientation to the longitudinal axis of the stent. In the embodiment shown in FIG. 4, the lengths of the first, second, third and fourth members 501, 504, 507, 510 are substantially equal. The lengths of the fifth, sixth, seventh, eighth, ninth and tenth members 513, 516, 519, 522, 525, 528 are also substantially equal. Other embodiments where lengths of individual members are tailored for specific applications, materials of construction or methods of delivery are also possible, and may be preferable for them.
  • Preferably, the first, second, third, and [0042] fourth members 501, 504, 507, 510 have a width that is greater than the width of the fifth, sixth, seventh, eighth, ninth, and tenth members 513, 516, 519, 522, 525, 528 in that cell. The differing widths of the first, second, third, and fourth members and the fifth, sixth, seventh, eighth, ninth, and tenth members with respect to each other contribute to the overall flexibility and resistance to radial compression of the cell. The widths of the various members can be tailored for specific applications. Preferably, the fifth, sixth, seventh, eighth, ninth, and tenth members are optimized predominantly to enable longitudinal flexibility, both before and after expansion, while the first, second, third, and fourth members are optimized predominantly to enable sufficient resistance to radial compression to hold a vessel open. Although specific members are optimized to predominantly enable a desired characteristic, all the portions of the cell interactively cooperate and contribute to the characteristics of the stent.
  • FIGS. 5 and 6 show a pattern and an expanded view of one cell of an embodiment of the present invention which is specially adapted for a stent made of stainless steel. The pattern is similar to the pattern of FIGS. 3 and 4, and the same reference numerals are used to indicate the generally corresponding parts. [0043]
  • In this embodiment of the invention, for example, the [0044] second loops 531 are made stronger by shortening the third and fourth members 507, 510. This helps assure that the second loops do not “flare out” during delivery of the stent through tortuous anatomy. This “flaring out” is not a concern with NiTi stents which are covered by a sheath during delivery.
  • Furthermore, the length of the members in this embodiment may be shorter than the length of the corresponding members in the embodiment illustrated in FIGS. 3 and 4. Typically, the amount of strain allowed in a self-expanding NiTi stent may be around 10%. In a stainless steel stent, the amount of strain allowed typically may be 20% or greater. Therefore, to facilitate stents made of NiTi and stents made of stainless steel expanding to comparable diameters, the members of the NiTi stent may be longer than the members of a stainless steel stent. [0045]
  • FIG. 7 illustrates another aspect of the present invention. The stent of FIG. 7 is also constructed from [0046] orthogonal meander patterns 301, 302. The meander patterns form a series of interlocking cells 50, 700 of two types. The first type of cell 50 is taught by U.S. Pat. No. 5,733,303. These cells are arranged so that they form alternating bands 704 of first type of cells 50 and bands 706 of the second type of cells 700.
  • As seen in FIG. 8 and particularly with respect to the cell labeled for ease of description, each of the '303 [0047] cells 50 has a first longitudinal apex 100 and a second longitudinal end 78. Each cell 50 also is provided with a first longitudinal end 77 and a second longitudinal apex 104 disposed at the second longitudinal end 78. Each cell 50 also includes a first member 51 having a longitudinal component having a first end 52 and a second end 53; a second member 54 having a longitudinal component having a first end 55 and a second end 56; a third member 57 having a longitudinal component having a first end 58 and a second end 59; and a fourth member 60 having a longitudinal component having a first end 61 and a second end 62. The stent also includes a first loop or curved member 63 defining a first angle 64 disposed between the first end 52 of the first member 51 and the first end 55 of the second member 54. A second loop or curved member 65 defining a second angle 66 is disposed between the second end 59 of the third member 57 and the second end 62 of the fourth member 60 and is disposed generally opposite to the first loop 63. A first flexible compensating member (or a section of a longitudinal meander pattern) 67 having curved portion and two legs with a first end 68 and a second end 69 is disposed between the first member 51 and the third member 57 with the first end 68 of the first flexible compensating member 67 joined to and communicating with the second end 53 of the first member 51 and the second end 69 of the first flexible compensating member 67 joined to and communicating with the first end 58 of the third member 57. The first end 68 and the second end 69 are disposed a variable longitudinal distance 70 from each other. A second flexible compensating member (or, a section of a longitudinal meander pattern) 71 having a first end 72 and a second end 73 is disposed between the second member 54 and the fourth member 60. The first end 72 of the second flexible compensating member 71 is joined to and communicates with the second end 56 of the second member 54 and the second end 73 of the second flexible compensating member 71 is joined to and communicates with the first end 61 of the fourth member 60. The first end 72 and the second end 73 are disposed a variable longitudinal distance 74 from each other. In this embodiment, the first and second flexible compensating members, and particularly the curved portion thereof, 67 and 71 are arcuate.
  • The second type of [0048] cell 700 is illustrated in FIG. 9 and the same reference numerals are used to indicate generally corresponding areas of the cell. The apices 100, 104 of the second type of cell 700 are offset circumferentially. Also, each flexible compensating member 67, 71 includes: a first portion or leg 79 with a first end 80 and a second end 81; a second portion or leg 82 with a first end 83 and a second end 84; and a third portion or leg 85 with the first end 86 and a second end 87, with the second end 81 and the second end 84 being joined by a curved member and the first end 83 and the first end 86 being joined by a curved member. The first end of a flexible compensating member 67, 71 is the same as the first end 80 of the first portion 79, and the second end of a flexible compensating member 67, 71 is the same as the second end 87 of the third portion 85. A first area of inflection 88 is disposed between the second end 81 of the first portion 79 and the second end 84 of the second portion 82 where the curved portion joining them lies. A second area of inflection 89 is disposed between the first end 83 of the second portion 82 and the first end 86 of the third portion 85 where the curved portion joining them lies.
  • While FIG. 7 illustrates a pattern of alternating bands of cells, the stent may be optimized for a particular usage by tailoring the configuration of the bands. For example, the middle band of the second type of [0049] cells 700 may instead be formed of cells 50, or vice versa. The second type of cells in FIG. 7 may also utilize the cell configurations described with respect to FIGS. 4 and 6. The cell configurations of FIGS. 4 and 6 provide the advantage that they will not cause any torque of one portion of the cell relative to another portion of the cell about the longitudinal axis of the stent upon expansion, which may happen when the second type of cells 700 expand, a torque which could cause a stent to deform, and stick out.
  • As illustrated in FIG. 7, all of the flexible compensating members are arranged so that the path of the flexible compensating members, from left to right, travels in a generally downward direction. The [0050] cells 700 can also be arranged so that the flexible compensating members in one band are arranged in a generally upward direction, and the flexible compensating members in an adjacent band are arranged in a generally downward direction. One skilled in the art can easily make these modifications.
  • FIG. 10 is a schematic representation comparing the [0051] cells 804 of the present invention, which have three points where the intertwined first and second meander patterns meet and are in that sense three cornered or triangular cells, with cells 802 of the '303 stent which have four points where the intertwined first and second meander patterns meet and are in that sense four cornered or square cells. More particularly, on the left side of FIG. 10, a pair of vertical meander patterns 806, 826 are joined by members 808, 810, 812 (which are sections of longitudinal meander patterns) to form a plurality of three cornered or triangular cells 804. By triangular cell, it is meant that there are three sections 810, 812, 814, each having loop portions and three associated points 816, 818, 820 of their joining, forming each cell.
  • On the right side of FIG. 10, a pair of [0052] vertical meander patterns 822, 824 are joined together compensating members 828, 830, 832, 834 (which are sections of a longitudinal meander) to form a plurality of square cells 804. By square cell, it is meant that there are four sections, each having loop portions, and four associated points of their joining, forming each cell. For example, the shaded cell 802 is formed from four sections 832, 836, 830, 838, with four associated points of their joining 840, 842, 844, 846.
  • Both the square cell and the triangular cell have two kinds of sections with loops. The first kind of loop containing section is formed from a vertical meander pattern and is optimized predominantly to enable radial support. The second kind of loop containing section is optimized predominantly to enable flexibility along the longitudinal axis of the stent. Although each loop containing section is optimized predominantly to enable a desired characteristic of the stent, the sections are interconnected and cooperate to define the characteristics of the stent. Therefore, the first kind of loop containing section contributes to the longitudinal flexibility of the stent, and the second kind of loop containing section contributes to the radial support of the stent. [0053]
  • In the [0054] square cell 802, it can be seen that the second kind of loop containing sections 830, 832 each have one inflection point 848, 850. In the triangular cell, the loop containing sections 810, 812 each have two inflection point areas 852, 854, 856, 858. The higher number of inflection points allows more freedom to deform after expansion of the stent and distributes the deformation over a longer section, thus, reducing the maximal strain along these loop containing sections.
  • Furthermore, it can be seen that a [0055] square cell 802 is generally more elongated along the longitudinal axis of the stent than a triangular cell 804, which is generally more elongated along the circumference of the stent. This also contributes to higher flexibility after expansion.
  • If the [0056] first meander patterns 806, 822, 824, 826 of both types of cells are constructed identically and spaced apart by the same amount, the area of a triangular cell 804 is the same as a square cell 802. This can be more readily understood with reference to a band of cells around the circumference of a stent. Each band will encompass the same area, and each band will have the same number of cells. Accordingly, the area of each cell in one band formed of square cells will be the same as the area of each cell in another band formed of triangular cells.
  • Although the areas of the cells are equal, the perimeter of the triangular cell is larger than the perimeter of the square cell. Therefore, in comparison to a square cell, a triangular cell offers increased coverage of a vessel wall. [0057]
  • In the particular embodiments described above, the stent is substantially uniform over its entire length. However, other applications where portions of the stent are adapted to provide different characteristics are also possible. For example, as shown in FIG. 11, a band of [0058] cells 850 may be designed to provide different flexibility characteristics or different radial compression characteristics than the remaining bands of cells by altering the widths and lengths of the members making up that band. Or, the stent may be adapted to provide increased access to a side branch lumen by providing at least one cell 852 which is larger in size then the remaining cells, or by providing an entire band of cells 854 which are larger in size than the other bands of cells. Or, the stent may be designed to expand to different diameters along the length of the stent. The stent may also be treated after formation of the stent by coating the stent with a medicine, plating the stent with a protective material, plating the stent with a radiopaque material, or covering the stent with a material.
  • Thus, what is described is a longitudinally flexible stent that utilizes a closed cell structure to provide excellent coverage of the vessel wall. The general concepts described herein can be utilized to form stents with different configurations than the particular embodiments described herein. For example, the general concepts can be used to form bifurcated stents. It will be appreciated by persons skilled in the art that the present invention is not limited to what has been particularly shown and described above. Rather, the scope of the present invention is defined by the claims which follow. [0059]

Claims (17)

What is claimed is:
1. A stent comprising:
a first loop containing section arranged in a circumferential direction and defining loops therein occurring at a first frequency;
a second loop containing section arranged in the circumferential direction and defining loops therein occurring at the first frequency;
a third loop containing section disposed in a generally circumferential space between the first loop containing section and the second loop containing section and coupling the first loop containing section to the second loop containing section for defining cells therebetween, the third loop containing section defining loops therein occurring at a second frequency that is greater than the first frequency.
2. The stent according to claim 1, wherein the first and second loop containing sections are each part of a continuous circumferential member having a plurality of the first and second loop containing sections respectively and the third loop containing section is also part a continuous loop having a plurality of the third loop containing sections coupled to first and second loop containing sections for defining the cells.
3. The stent according to claim 1, wherein the first and second loop containing sections are each part of a continuous circumferential member having a plurality of the first and second loop containing sections respectively and wherein a plurality of the third loop containing sections each having one end connected to one of the first loop containing sections and another end connected to one of the second loop containing sections are provided.
4. The stent according to claim 1, wherein the first loop containing section and the second loop containing section are 180 degrees out of phase with one another.
5. The stent according to claim 2, wherein the first loop containing section and the second loop containing section are 180 degrees out of phase with one another.
6. The stent according to claim 3, wherein the first loop containing section and the second loop containing section are 180 degrees out of phase with one another.
7. The stent according to claim 6, wherein one end of each of the third loop containing sections is connected to a first loop the first loop containing section, and another end of each of the flexible compensating members is connected to a second loop of the second loop containing section, said second loop being circumferentially offset with respect to the first loop.
8. The stent according to claim 7, wherein the third loop containing section has a width than is smaller than a width of the first loop containing section and of the second loop containing section.
9. A stent comprising:
first meander patterns having axes extending in a first direction;
second meander patterns having axes extending in a second direction that is different from the first direction;
wherein the second meander patterns are intertwined with the first meander patterns; and
wherein the second meander patterns have loop portions with at least one loop, each loop portion having one end connected to one of first meander patterns and another end connected to a neighboring one of the first meander patterns such that said one end of said each loop portion is circumferentially offset with respect to said another end of said each loop portion.
10. The stent according to claim 8, wherein each loop portion has at least two loops.
11. The stent according to claim 9, wherein the loop portions of the second meander patterns have a smaller width than the first meander patterns.
12. A stent formed of a tube having a patterned shape, the patterned shape in the expanded and deployed state comprising:
a) first meander patterns, having axes extending in a first direction;
b) second meander patterns having axes extending in a second direction different from said first direction, wherein said second meander patterns are intertwined with said first meander patterns to form a generally uniform distributed structure;
d) wherein said first meander patterns are connected to said second meander patterns so as to a leave a portion of said second meander patterns between each first meander pattern;
e) wherein said second meander patterns are connected to said first meander patterns so as to leave loops of said first meander patterns between each pair of second meander patterns; and
f) wherein said second meander patterns have loop portions with at least one loop, each loop portion having one end connected to one of first meander patterns and another end connected to a neighboring one of the first meander patterns such that said one end of said each loop portion is circumferentially offset with respect to said another end of said each loop portion.
13. A stent according to claim 12 wherein said first meander patterns have loops, and wherein said second meander patterns are connected to said first meander patterns so as to leave one loops of said first meander patterns between each pair of second meander patterns.
14. A stent according to any preceding claim, wherein the first meander patterns comprise even first meander patterns and odd first meander patterns and wherein the odd first meander patterns are 180° out of phase with the even first meander patterns and occur between every two even first meander patterns.
15. A stent comprising:
a. at least odd and even alternating serpentine sections, each having first areas of inflection, wherein said odd serpentine section is out of phase from said even serpentine section such that first areas of inflection on said odd serpentine section are adjacent first areas of inflection on said even serpentine section; and
b. a plurality of flexible connectors, one located between each first area of inflection of one of said odd and even alternating serpentine sections and a first area of inflection of the other of said odd even alternating serpentine sections which is circumferentially offset from said first area of inflection of one of said odd and even alternating serpentine sections, wherein said flexible connector has at least two portions connected by at least one second area of inflection, and wherein said first and second areas of inflection define first and second angles whose bisecting lines are substantially parallel to one another.
16. A stent according to claim 15, wherein said flexible connectors are part of a continuous additional serpentine section.
17. A stent according to claim 15, wherein said flexible connectors are separate elements.
US10/040,789 2000-03-01 2002-01-09 Longitudinally flexible stent Abandoned US20020103529A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/040,789 US20020103529A1 (en) 2000-03-01 2002-01-09 Longitudinally flexible stent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/516,753 US7141062B1 (en) 2000-03-01 2000-03-01 Longitudinally flexible stent
US10/040,789 US20020103529A1 (en) 2000-03-01 2002-01-09 Longitudinally flexible stent

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/516,753 Continuation US7141062B1 (en) 2000-03-01 2000-03-01 Longitudinally flexible stent

Publications (1)

Publication Number Publication Date
US20020103529A1 true US20020103529A1 (en) 2002-08-01

Family

ID=24056948

Family Applications (4)

Application Number Title Priority Date Filing Date
US09/516,753 Expired - Lifetime US7141062B1 (en) 2000-03-01 2000-03-01 Longitudinally flexible stent
US10/040,789 Abandoned US20020103529A1 (en) 2000-03-01 2002-01-09 Longitudinally flexible stent
US10/619,837 Expired - Fee Related US7722658B2 (en) 2000-03-01 2003-07-14 Longitudinally flexible stent
US11/395,751 Expired - Fee Related US8317851B2 (en) 2000-03-01 2006-03-31 Longitudinally flexible stent

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/516,753 Expired - Lifetime US7141062B1 (en) 2000-03-01 2000-03-01 Longitudinally flexible stent

Family Applications After (2)

Application Number Title Priority Date Filing Date
US10/619,837 Expired - Fee Related US7722658B2 (en) 2000-03-01 2003-07-14 Longitudinally flexible stent
US11/395,751 Expired - Fee Related US8317851B2 (en) 2000-03-01 2006-03-31 Longitudinally flexible stent

Country Status (2)

Country Link
US (4) US7141062B1 (en)
KR (1) KR20010035531A (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020055770A1 (en) * 1998-11-20 2002-05-09 Doran Burns P. Flexible and expandable stent
WO2003022172A2 (en) * 2001-09-10 2003-03-20 Medinol, Ltd. Longitudinally flexible stent
US6602284B2 (en) 1999-04-22 2003-08-05 Advanced Cardiovascular Systems, Inc. Variable strength stent
US20040049263A1 (en) * 2000-03-01 2004-03-11 Gregory Pinchasik Longitudinally flexible stent
US6709453B2 (en) 2000-03-01 2004-03-23 Medinol Ltd. Longitudinally flexible stent
US20040093072A1 (en) * 2002-05-06 2004-05-13 Jeff Pappas Endoprosthesis for controlled contraction and expansion
US20040093073A1 (en) * 2002-05-08 2004-05-13 David Lowe Endoprosthesis having foot extensions
US20040106983A1 (en) * 2000-03-01 2004-06-03 Gregory Pinchasik Longitudinally flexible stent
US20040230291A1 (en) * 2000-03-01 2004-11-18 Jacob Richter Longitudinally flexible stent
US20050033399A1 (en) * 1998-12-03 2005-02-10 Jacob Richter Hybrid stent
US20050107865A1 (en) * 2003-05-06 2005-05-19 Anton Clifford Endoprosthesis having foot extensions
US20050182474A1 (en) * 2004-02-13 2005-08-18 Medtronic Vascular, Inc. Coated stent having protruding crowns and elongated struts
US20060015173A1 (en) * 2003-05-06 2006-01-19 Anton Clifford Endoprosthesis having foot extensions
US20060248698A1 (en) * 2005-05-05 2006-11-09 Hanson Brian J Tubular stent and methods of making the same
US20080215133A1 (en) * 2000-03-01 2008-09-04 Jacob Richter Longitudinally flexible stent
US20090157158A1 (en) * 2007-12-13 2009-06-18 Vitezslav Ondracek Self-expanding biodegradable stent
US7621947B2 (en) 2000-03-01 2009-11-24 Medinol, Ltd. Longitudinally flexible stent
US7763064B2 (en) 2004-06-08 2010-07-27 Medinol, Ltd. Stent having struts with reverse direction curvature
US7828835B2 (en) 2000-03-01 2010-11-09 Medinol Ltd. Longitudinally flexible stent
US20100286760A1 (en) * 2009-04-24 2010-11-11 Bradley Beach Flexible devices
US20110022156A1 (en) * 2000-03-01 2011-01-27 Medinol Ltd. Longitudinally flexible stent
US8048146B2 (en) 2003-05-06 2011-11-01 Abbott Laboratories Endoprosthesis having foot extensions
US8382821B2 (en) 1998-12-03 2013-02-26 Medinol Ltd. Helical hybrid stent
US8449597B2 (en) 1995-03-01 2013-05-28 Boston Scientific Scimed, Inc. Longitudinally flexible expandable stent
US8920487B1 (en) 2000-03-01 2014-12-30 Medinol Ltd. Longitudinally flexible stent
US9039755B2 (en) 2003-06-27 2015-05-26 Medinol Ltd. Helical hybrid stent
US20150239032A1 (en) * 2009-09-18 2015-08-27 Medtronic Vascular, Inc. Methods for Forming an Orthogonal End on a Helical Stent
US9155639B2 (en) 2009-04-22 2015-10-13 Medinol Ltd. Helical hybrid stent

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7815763B2 (en) * 2001-09-28 2010-10-19 Abbott Laboratories Vascular Enterprises Limited Porous membranes for medical implants and methods of manufacture
US7887578B2 (en) 1998-09-05 2011-02-15 Abbott Laboratories Vascular Enterprises Limited Stent having an expandable web structure
US6682554B2 (en) 1998-09-05 2004-01-27 Jomed Gmbh Methods and apparatus for a stent having an expandable web structure
US6755856B2 (en) 1998-09-05 2004-06-29 Abbott Laboratories Vascular Enterprises Limited Methods and apparatus for stenting comprising enhanced embolic protection, coupled with improved protection against restenosis and thrombus formation
US7025777B2 (en) * 2002-07-31 2006-04-11 Unison Therapeutics, Inc. Flexible and conformable stent and method of forming same
US20040054398A1 (en) * 2002-09-13 2004-03-18 Cully Edward H. Stent device with multiple helix construction
DE10243136A1 (en) * 2002-09-17 2004-05-19 Campus Medizin & Technik Gmbh Stent for implantation in or around a hollow organ
US20070239251A1 (en) * 2002-12-31 2007-10-11 Abbott Cardiovascular Systems Inc. Flexible stent
US7316711B2 (en) * 2003-10-29 2008-01-08 Medtronic Vascular, Inc. Intralumenal stent device for use in body lumens of various diameters
GB0419954D0 (en) * 2004-09-08 2004-10-13 Advotek Medical Devices Ltd System for directing therapy
US20070250148A1 (en) * 2005-09-26 2007-10-25 Perry Kenneth E Jr Systems, apparatus and methods related to helical, non-helical or removable stents with rectilinear ends
US20070173925A1 (en) * 2006-01-25 2007-07-26 Cornova, Inc. Flexible expandable stent
US20080097620A1 (en) 2006-05-26 2008-04-24 Nanyang Technological University Implantable article, method of forming same and method for reducing thrombogenicity
US20080215132A1 (en) * 2006-08-28 2008-09-04 Cornova, Inc. Implantable devices having textured surfaces and methods of forming the same
US9622888B2 (en) 2006-11-16 2017-04-18 W. L. Gore & Associates, Inc. Stent having flexibly connected adjacent stent elements
US8128679B2 (en) 2007-05-23 2012-03-06 Abbott Laboratories Vascular Enterprises Limited Flexible stent with torque-absorbing connectors
US8016874B2 (en) 2007-05-23 2011-09-13 Abbott Laboratories Vascular Enterprises Limited Flexible stent with elevated scaffolding properties
US7850726B2 (en) 2007-12-20 2010-12-14 Abbott Laboratories Vascular Enterprises Limited Endoprosthesis having struts linked by foot extensions
US8920488B2 (en) 2007-12-20 2014-12-30 Abbott Laboratories Vascular Enterprises Limited Endoprosthesis having a stable architecture
US8337544B2 (en) 2007-12-20 2012-12-25 Abbott Laboratories Vascular Enterprises Limited Endoprosthesis having flexible connectors
US8277501B2 (en) * 2007-12-21 2012-10-02 Boston Scientific Scimed, Inc. Bi-stable bifurcated stent petal geometry
US8926688B2 (en) 2008-01-11 2015-01-06 W. L. Gore & Assoc. Inc. Stent having adjacent elements connected by flexible webs
US8206635B2 (en) 2008-06-20 2012-06-26 Amaranth Medical Pte. Stent fabrication via tubular casting processes
US8206636B2 (en) 2008-06-20 2012-06-26 Amaranth Medical Pte. Stent fabrication via tubular casting processes
US8882824B2 (en) * 2010-04-20 2014-11-11 Cg Bio Co., Ltd. Expanding vascular stent
EP2446863A1 (en) * 2010-10-29 2012-05-02 Biotronik AG Stent with radially asymmetric force distribution
US20130005218A1 (en) * 2011-06-30 2013-01-03 Abbott Cardiovascular Systems Inc. Apparatus and method for formation of foil-shaped stent struts
JP6429130B2 (en) 2013-03-14 2018-11-28 メディノール リミテッド Helical composite stent
CN105451691B (en) 2013-06-21 2018-07-17 波士顿科学国际有限公司 Holder with deflection connector
US9545263B2 (en) 2014-06-19 2017-01-17 Limflow Gmbh Devices and methods for treating lower extremity vasculature
US10299948B2 (en) 2014-11-26 2019-05-28 W. L. Gore & Associates, Inc. Balloon expandable endoprosthesis
EP3435930B1 (en) 2016-03-31 2022-11-30 Vesper Medical, Inc. Intravascular implants
US10568752B2 (en) 2016-05-25 2020-02-25 W. L. Gore & Associates, Inc. Controlled endoprosthesis balloon expansion
EP4299086A2 (en) 2017-04-10 2024-01-03 LimFlow GmbH Devices for treating lower extremity vasculature
US10849769B2 (en) 2017-08-23 2020-12-01 Vesper Medical, Inc. Non-foreshortening stent
US11357650B2 (en) 2019-02-28 2022-06-14 Vesper Medical, Inc. Hybrid stent
US10271977B2 (en) 2017-09-08 2019-04-30 Vesper Medical, Inc. Hybrid stent
US11628076B2 (en) 2017-09-08 2023-04-18 Vesper Medical, Inc. Hybrid stent
US11364134B2 (en) 2018-02-15 2022-06-21 Vesper Medical, Inc. Tapering stent
US10500078B2 (en) 2018-03-09 2019-12-10 Vesper Medical, Inc. Implantable stent
WO2020076833A1 (en) 2018-10-09 2020-04-16 Limflow Gmbh Devices and methods for catheter alignment
JP2023500067A (en) 2019-11-01 2023-01-04 リムフロウ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Devices and methods for increasing blood perfusion to distal limbs
US20210251783A1 (en) 2020-02-19 2021-08-19 Medinol Ltd. Helical stent with enhanced crimping
CN117693327A (en) 2021-08-17 2024-03-12 美帝诺有限公司 Stents with enhanced low crimp profile

Citations (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4733665A (en) * 1985-11-07 1988-03-29 Expandable Grafts Partnership Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US4755593A (en) * 1985-07-24 1988-07-05 Lauren Mark D Novel biomaterial of cross-linked peritoneal tissue
US4886062A (en) * 1987-10-19 1989-12-12 Medtronic, Inc. Intravascular radially expandable stent and method of implant
US5037377A (en) * 1984-11-28 1991-08-06 Medtronic, Inc. Means for improving biocompatibility of implants, particularly of vascular grafts
US5133732A (en) * 1987-10-19 1992-07-28 Medtronic, Inc. Intravascular stent
US5510077A (en) * 1992-03-19 1996-04-23 Dinh; Thomas Q. Method of making an intraluminal stent
US5554182A (en) * 1992-03-19 1996-09-10 Medtronic, Inc. Method for preventing restenosis
US5575818A (en) * 1995-02-14 1996-11-19 Corvita Corporation Endovascular stent with locking ring
US5591224A (en) * 1992-03-19 1997-01-07 Medtronic, Inc. Bioelastomeric stent
US5595571A (en) * 1994-04-18 1997-01-21 Hancock Jaffe Laboratories Biological material pre-fixation treatment
US5653747A (en) * 1992-12-21 1997-08-05 Corvita Corporation Luminal graft endoprostheses and manufacture thereof
US5693085A (en) * 1994-04-29 1997-12-02 Scimed Life Systems, Inc. Stent with collagen
US5733303A (en) * 1994-03-17 1998-03-31 Medinol Ltd. Flexible expandable stent
US5800507A (en) * 1992-03-19 1998-09-01 Medtronic, Inc. Intraluminal stent
US5800508A (en) * 1994-02-09 1998-09-01 Boston Scientific Technology, Inc. Bifurcated endoluminal prosthesis
US5807404A (en) * 1996-09-19 1998-09-15 Medinol Ltd. Stent with variable features to optimize support and method of making such stent
US5836964A (en) * 1996-10-30 1998-11-17 Medinol Ltd. Stent fabrication method
US5855597A (en) * 1997-05-07 1999-01-05 Iowa-India Investments Co. Limited Stent valve and stent graft for percutaneous surgery
US5855600A (en) * 1997-08-01 1999-01-05 Inflow Dynamics Inc. Flexible implantable stent with composite design
US5865723A (en) * 1995-12-29 1999-02-02 Ramus Medical Technologies Method and apparatus for forming vascular prostheses
US5895407A (en) * 1996-08-06 1999-04-20 Jayaraman; Swaminathan Microporous covered stents and method of coating
US5922021A (en) * 1996-04-26 1999-07-13 Jang; G. David Intravascular stent
US5997973A (en) * 1997-11-18 1999-12-07 Hughes Electronics Corporation Articulating thermal membrane with integral hinges
US6013091A (en) * 1997-10-09 2000-01-11 Scimed Life Systems, Inc. Stent configurations
US6053941A (en) * 1994-05-26 2000-04-25 Angiomed Gmbh & Co. Medizintechnik Kg Stent with an end of greater diameter than its main body
US6071365A (en) * 1997-08-13 2000-06-06 Crathern Engineering Co., Inc. Apparatus for and method of wrapping boards
US6120847A (en) * 1999-01-08 2000-09-19 Scimed Life Systems, Inc. Surface treatment method for stent coating
US6132461A (en) * 1998-03-27 2000-10-17 Intratherapeutics, Inc. Stent with dual support structure
US6159237A (en) * 1996-02-14 2000-12-12 Inflow Dynamics, Inc. Implantable vascular and endoluminal stents
US6162245A (en) * 1997-05-07 2000-12-19 Iowa-India Investments Company Limited Stent valve and stent graft
US6179868B1 (en) * 1998-03-27 2001-01-30 Janet Burpee Stent with reduced shortening
US6183353B1 (en) * 1997-06-06 2001-02-06 Cook Incorporated Apparatus for polishing surgical stents
US6190406B1 (en) * 1998-01-09 2001-02-20 Nitinal Development Corporation Intravascular stent having tapered struts
US6193747B1 (en) * 1997-02-17 2001-02-27 Jomed Implantate Gmbh Stent
US6221098B1 (en) * 1997-08-13 2001-04-24 Advanced Cardiovascular Systems, Inc. Stent and catheter assembly and method for treating bifurcations
US6231598B1 (en) * 1997-09-24 2001-05-15 Med Institute, Inc. Radially expandable stent
US6241762B1 (en) * 1998-03-30 2001-06-05 Conor Medsystems, Inc. Expandable medical device with ductile hinges
US6251134B1 (en) * 1999-02-28 2001-06-26 Inflow Dynamics Inc. Stent with high longitudinal flexibility
US6299604B1 (en) * 1998-08-20 2001-10-09 Cook Incorporated Coated implantable medical device
US20010056298A1 (en) * 1995-03-01 2001-12-27 Brown Brian J. Longitudinally flexible expandable stent
US20020007212A1 (en) * 1995-03-01 2002-01-17 Brown Brian J. Longitudinally flexible expandable stent
US6383213B2 (en) * 1999-10-05 2002-05-07 Advanced Cardiovascular Systems, Inc. Stent and catheter assembly and method for treating bifurcations
US20020055770A1 (en) * 1998-11-20 2002-05-09 Doran Burns P. Flexible and expandable stent
US6387120B2 (en) * 1999-12-09 2002-05-14 Advanced Cardiovascular Systems, Inc. Stent and catheter assembly and method for treating bifurcations
US6409753B1 (en) * 1999-10-26 2002-06-25 Scimed Life Systems, Inc. Flexible stent
US6428569B1 (en) * 1999-11-09 2002-08-06 Scimed Life Systems Inc. Micro structure stent configurations
US20020116049A1 (en) * 2000-09-22 2002-08-22 Scimed Life Systems, Inc. Stent
US20020138136A1 (en) * 2001-03-23 2002-09-26 Scimed Life Systems, Inc. Medical device having radio-opacification and barrier layers
US6471980B2 (en) * 2000-12-22 2002-10-29 Avantec Vascular Corporation Intravascular delivery of mycophenolic acid
US6478815B1 (en) * 2000-09-18 2002-11-12 Inflow Dynamics Inc. Vascular and endoluminal stents
US6569180B1 (en) * 2000-06-02 2003-05-27 Avantec Vascular Corporation Catheter having exchangeable balloon
US6602281B1 (en) * 1995-06-05 2003-08-05 Avantec Vascular Corporation Radially expansible vessel scaffold having beams and expansion joints
US6602282B1 (en) * 2000-05-04 2003-08-05 Avantec Vascular Corporation Flexible stent structure
US6648911B1 (en) * 2000-11-20 2003-11-18 Avantec Vascular Corporation Method and device for the treatment of vulnerable tissue site

Family Cites Families (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5183180A (en) * 1990-12-03 1993-02-02 Otto Industries, Inc. Plastic refuse container
CA2380683C (en) 1991-10-28 2006-08-08 Advanced Cardiovascular Systems, Inc. Expandable stents and method for making same
DE4303181A1 (en) 1993-02-04 1994-08-11 Angiomed Ag Implantable catheter
US5464650A (en) 1993-04-26 1995-11-07 Medtronic, Inc. Intravascular stent and method
US5545210A (en) * 1994-09-22 1996-08-13 Advanced Coronary Technology, Inc. Method of implanting a permanent shape memory alloy stent
CA2301351C (en) 1994-11-28 2002-01-22 Advanced Cardiovascular Systems, Inc. Method and apparatus for direct laser cutting of metal stents
JP3303580B2 (en) * 1995-02-23 2002-07-22 日本電気株式会社 Audio coding device
DE19512066A1 (en) 1995-04-01 1996-11-28 Variomed Ag Stent for transluminal implantation e.g. blood vessels
DE19514104C2 (en) 1995-04-13 1997-05-28 Behringwerke Ag Coating for biomaterial that can be introduced into the bloodstream or into the tissue of the human body
US5837313A (en) * 1995-04-19 1998-11-17 Schneider (Usa) Inc Drug release stent coating process
CZ292021B6 (en) 1995-04-26 2003-07-16 Medinol Ltd. Connector for connecting adjacent areas of adjacent segments of an articulated stent and the articulated stent per se
DE19530835A1 (en) 1995-08-22 1997-02-27 Emitec Emissionstechnologie Process for producing a honeycomb body using sheet metal with solder material built up in layers
US6203569B1 (en) * 1996-01-04 2001-03-20 Bandula Wijay Flexible stent
US5695516A (en) * 1996-02-21 1997-12-09 Iso Stent, Inc. Longitudinally elongating balloon expandable stent
WO1997032544A1 (en) 1996-03-05 1997-09-12 Divysio Solutions Ulc. Expandable stent and method for delivery of same
US5697971A (en) * 1996-06-11 1997-12-16 Fischell; Robert E. Multi-cell stent with cells having differing characteristics
US5855897A (en) * 1996-09-13 1999-01-05 E-L Management Corp. Topical composition and method for enhancing lipid barrier synthesis
US5906759A (en) * 1996-12-26 1999-05-25 Medinol Ltd. Stent forming apparatus with stent deforming blades
FR2758253B1 (en) 1997-01-10 1999-04-02 Nycomed Lab Sa IMPLANTABLE DEVICE FOR THE TREATMENT OF A BODY DUCT
US5827321A (en) * 1997-02-07 1998-10-27 Cornerstone Devices, Inc. Non-Foreshortening intraluminal prosthesis
IT1292295B1 (en) 1997-04-29 1999-01-29 Sorin Biomedica Cardio Spa ANGIOPLASTIC STENT
US5843101A (en) * 1997-05-02 1998-12-01 Fry; William R. Disposable clip for temporary vessel occulsion
DE29708879U1 (en) 1997-05-20 1997-07-31 Jomed Implantate Gmbh Coronary stent
US5913895A (en) 1997-06-02 1999-06-22 Isostent, Inc. Intravascular stent with enhanced rigidity strut members
DE59711236D1 (en) * 1997-06-30 2004-02-26 Medex Holding Gmbh Intraluminal implant
NO311781B1 (en) 1997-11-13 2002-01-28 Medinol Ltd Metal multilayer stents
DE19753123B4 (en) 1997-11-29 2006-11-09 B. Braun Melsungen Ag stent
WO1999039660A1 (en) 1998-02-03 1999-08-12 B. Braun Celsa Prosthesis with undulating longitudinal braces
WO1999044543A1 (en) 1998-03-04 1999-09-10 Scimed Life Systems, Inc. Improved stent cell configurations
US7208010B2 (en) * 2000-10-16 2007-04-24 Conor Medsystems, Inc. Expandable medical device for delivery of beneficial agent
DE19822157B4 (en) 1998-05-16 2013-01-10 Abbott Laboratories Vascular Enterprises Ltd. Radially expandable stent for implantation in a body vessel
JP4399585B2 (en) 1998-06-02 2010-01-20 クック インコーポレイティド Multi-sided medical device
DE19829702C1 (en) 1998-07-03 2000-03-16 Heraeus Gmbh W C Radially expandable support device V
US5911754A (en) * 1998-07-24 1999-06-15 Uni-Cath Inc. Flexible stent with effective strut and connector patterns
US6042597A (en) * 1998-10-23 2000-03-28 Scimed Life Systems, Inc. Helical stent design
US6190403B1 (en) * 1998-11-13 2001-02-20 Cordis Corporation Low profile radiopaque stent with increased longitudinal flexibility and radial rigidity
WO2000030563A1 (en) 1998-11-20 2000-06-02 Scimed Life Systems, Inc. Longitudinally flexible expandable stent
DE19900411A1 (en) 1999-01-08 2000-07-13 Lothar Sellin Stent with tubular flexible body has wall consisting of curved ribs joined by connecting pieces
EP1020166A1 (en) 1999-01-12 2000-07-19 Orbus Medical Technologies, Inc. Expandable intraluminal endoprosthesis
WO2000049971A1 (en) 1999-02-26 2000-08-31 Advanced Cardiovascular Systems, Inc. Stent with customized flexibility
US20010047200A1 (en) * 1999-10-13 2001-11-29 Raymond Sun Non-foreshortening intraluminal prosthesis
DE19957063A1 (en) 1999-11-26 2001-08-02 Franz Herbst Stent and method for its manufacture
US7828835B2 (en) 2000-03-01 2010-11-09 Medinol Ltd. Longitudinally flexible stent
US7141062B1 (en) 2000-03-01 2006-11-28 Medinol, Ltd. Longitudinally flexible stent
SG86458A1 (en) 2000-03-01 2002-02-19 Medinol Ltd Longitudinally flexible stent
US7621947B2 (en) * 2000-03-01 2009-11-24 Medinol, Ltd. Longitudinally flexible stent
US6540775B1 (en) * 2000-06-30 2003-04-01 Cordis Corporation Ultraflexible open cell stent
JP5053501B2 (en) 2000-09-22 2012-10-17 ボストン サイエンティフィック リミテッド Flexible and expandable stent
US6740114B2 (en) * 2001-03-01 2004-05-25 Cordis Corporation Flexible stent
US6790227B2 (en) * 2001-03-01 2004-09-14 Cordis Corporation Flexible stent
DE20108765U1 (en) 2001-05-25 2001-10-31 Medinol Ltd Longitudinally flexible stent
DE20108764U1 (en) 2001-05-25 2001-11-29 Medinol Ltd Stent
US20030074051A1 (en) * 2001-10-16 2003-04-17 Kirsten Freislinger Luehrs Flexible stent
US7029493B2 (en) * 2002-01-25 2006-04-18 Cordis Corporation Stent with enhanced crossability
US7763064B2 (en) * 2004-06-08 2010-07-27 Medinol, Ltd. Stent having struts with reverse direction curvature

Patent Citations (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5037377A (en) * 1984-11-28 1991-08-06 Medtronic, Inc. Means for improving biocompatibility of implants, particularly of vascular grafts
US4755593A (en) * 1985-07-24 1988-07-05 Lauren Mark D Novel biomaterial of cross-linked peritoneal tissue
US4733665C2 (en) * 1985-11-07 2002-01-29 Expandable Grafts Partnership Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft
US4733665B1 (en) * 1985-11-07 1994-01-11 Expandable Grafts Partnership Expandable intraluminal graft,and method and apparatus for implanting an expandable intraluminal graft
US4733665A (en) * 1985-11-07 1988-03-29 Expandable Grafts Partnership Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US4886062A (en) * 1987-10-19 1989-12-12 Medtronic, Inc. Intravascular radially expandable stent and method of implant
US5133732A (en) * 1987-10-19 1992-07-28 Medtronic, Inc. Intravascular stent
US5628785A (en) * 1992-03-19 1997-05-13 Medtronic, Inc. Bioelastomeric stent
US5571166A (en) * 1992-03-19 1996-11-05 Medtronic, Inc. Method of making an intraluminal stent
US5849034A (en) * 1992-03-19 1998-12-15 Medtronic, Inc. Intraluminal stent
US5591224A (en) * 1992-03-19 1997-01-07 Medtronic, Inc. Bioelastomeric stent
US5510077A (en) * 1992-03-19 1996-04-23 Dinh; Thomas Q. Method of making an intraluminal stent
US5554182A (en) * 1992-03-19 1996-09-10 Medtronic, Inc. Method for preventing restenosis
US5800507A (en) * 1992-03-19 1998-09-01 Medtronic, Inc. Intraluminal stent
US5653747A (en) * 1992-12-21 1997-08-05 Corvita Corporation Luminal graft endoprostheses and manufacture thereof
US5800508A (en) * 1994-02-09 1998-09-01 Boston Scientific Technology, Inc. Bifurcated endoluminal prosthesis
US5733303A (en) * 1994-03-17 1998-03-31 Medinol Ltd. Flexible expandable stent
US5720777A (en) * 1994-04-18 1998-02-24 Hancock Jaffee Laboratories Biological material pre-fixation treatment
US5595571A (en) * 1994-04-18 1997-01-21 Hancock Jaffe Laboratories Biological material pre-fixation treatment
US5843181A (en) * 1994-04-18 1998-12-01 Hancock Jaffe Laboratories Biological material pre-fixation treatment
US5843180A (en) * 1994-04-18 1998-12-01 Hancock Jaffe Laboratories Method of treating a mammal having a defective heart valve
US5693085A (en) * 1994-04-29 1997-12-02 Scimed Life Systems, Inc. Stent with collagen
US6053941A (en) * 1994-05-26 2000-04-25 Angiomed Gmbh & Co. Medizintechnik Kg Stent with an end of greater diameter than its main body
US5575818A (en) * 1995-02-14 1996-11-19 Corvita Corporation Endovascular stent with locking ring
US20020007212A1 (en) * 1995-03-01 2002-01-17 Brown Brian J. Longitudinally flexible expandable stent
US6348065B1 (en) * 1995-03-01 2002-02-19 Scimed Life Systems, Inc. Longitudinally flexible expandable stent
US20010056298A1 (en) * 1995-03-01 2001-12-27 Brown Brian J. Longitudinally flexible expandable stent
US20020177893A1 (en) * 1995-03-01 2002-11-28 Scimed Life Systems, Inc. Longitudinally flexible expandable stent
US6605107B1 (en) * 1995-06-05 2003-08-12 Avantec Vascular Corporation Radially expansible vessel scaffolds mounted over balloons
US6602281B1 (en) * 1995-06-05 2003-08-05 Avantec Vascular Corporation Radially expansible vessel scaffold having beams and expansion joints
US5865723A (en) * 1995-12-29 1999-02-02 Ramus Medical Technologies Method and apparatus for forming vascular prostheses
US6159237A (en) * 1996-02-14 2000-12-12 Inflow Dynamics, Inc. Implantable vascular and endoluminal stents
US5922021A (en) * 1996-04-26 1999-07-13 Jang; G. David Intravascular stent
US5895407A (en) * 1996-08-06 1999-04-20 Jayaraman; Swaminathan Microporous covered stents and method of coating
US5807404A (en) * 1996-09-19 1998-09-15 Medinol Ltd. Stent with variable features to optimize support and method of making such stent
US5836964A (en) * 1996-10-30 1998-11-17 Medinol Ltd. Stent fabrication method
US6193747B1 (en) * 1997-02-17 2001-02-27 Jomed Implantate Gmbh Stent
US5855597A (en) * 1997-05-07 1999-01-05 Iowa-India Investments Co. Limited Stent valve and stent graft for percutaneous surgery
US6162245A (en) * 1997-05-07 2000-12-19 Iowa-India Investments Company Limited Stent valve and stent graft
US6183353B1 (en) * 1997-06-06 2001-02-06 Cook Incorporated Apparatus for polishing surgical stents
US5855600A (en) * 1997-08-01 1999-01-05 Inflow Dynamics Inc. Flexible implantable stent with composite design
US6221098B1 (en) * 1997-08-13 2001-04-24 Advanced Cardiovascular Systems, Inc. Stent and catheter assembly and method for treating bifurcations
US6071365A (en) * 1997-08-13 2000-06-06 Crathern Engineering Co., Inc. Apparatus for and method of wrapping boards
US6231598B1 (en) * 1997-09-24 2001-05-15 Med Institute, Inc. Radially expandable stent
US20040088043A1 (en) * 1997-10-03 2004-05-06 Avantec Vascular Corporation Radially expansible vessel scaffold having modified radiopacity
US6416538B1 (en) * 1997-10-09 2002-07-09 Scimed Life Systems, Inc. Stent configurations
US6013091A (en) * 1997-10-09 2000-01-11 Scimed Life Systems, Inc. Stent configurations
US5997973A (en) * 1997-11-18 1999-12-07 Hughes Electronics Corporation Articulating thermal membrane with integral hinges
US6190406B1 (en) * 1998-01-09 2001-02-20 Nitinal Development Corporation Intravascular stent having tapered struts
US6179868B1 (en) * 1998-03-27 2001-01-30 Janet Burpee Stent with reduced shortening
US6132461A (en) * 1998-03-27 2000-10-17 Intratherapeutics, Inc. Stent with dual support structure
US6241762B1 (en) * 1998-03-30 2001-06-05 Conor Medsystems, Inc. Expandable medical device with ductile hinges
US6299604B1 (en) * 1998-08-20 2001-10-09 Cook Incorporated Coated implantable medical device
US20020055770A1 (en) * 1998-11-20 2002-05-09 Doran Burns P. Flexible and expandable stent
US6120847A (en) * 1999-01-08 2000-09-19 Scimed Life Systems, Inc. Surface treatment method for stent coating
US6251134B1 (en) * 1999-02-28 2001-06-26 Inflow Dynamics Inc. Stent with high longitudinal flexibility
US6383213B2 (en) * 1999-10-05 2002-05-07 Advanced Cardiovascular Systems, Inc. Stent and catheter assembly and method for treating bifurcations
US6409753B1 (en) * 1999-10-26 2002-06-25 Scimed Life Systems, Inc. Flexible stent
US6428569B1 (en) * 1999-11-09 2002-08-06 Scimed Life Systems Inc. Micro structure stent configurations
US6387120B2 (en) * 1999-12-09 2002-05-14 Advanced Cardiovascular Systems, Inc. Stent and catheter assembly and method for treating bifurcations
US6602282B1 (en) * 2000-05-04 2003-08-05 Avantec Vascular Corporation Flexible stent structure
US6569180B1 (en) * 2000-06-02 2003-05-27 Avantec Vascular Corporation Catheter having exchangeable balloon
US6478815B1 (en) * 2000-09-18 2002-11-12 Inflow Dynamics Inc. Vascular and endoluminal stents
US20020116049A1 (en) * 2000-09-22 2002-08-22 Scimed Life Systems, Inc. Stent
US6648911B1 (en) * 2000-11-20 2003-11-18 Avantec Vascular Corporation Method and device for the treatment of vulnerable tissue site
US6471980B2 (en) * 2000-12-22 2002-10-29 Avantec Vascular Corporation Intravascular delivery of mycophenolic acid
US20020138136A1 (en) * 2001-03-23 2002-09-26 Scimed Life Systems, Inc. Medical device having radio-opacification and barrier layers

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8801773B2 (en) 1995-03-01 2014-08-12 Boston Scientific Scimed, Inc. Flexible and expandable stent
US8728147B2 (en) 1995-03-01 2014-05-20 Boston Scientific Limited Longitudinally flexible expandable stent
US8449597B2 (en) 1995-03-01 2013-05-28 Boston Scientific Scimed, Inc. Longitudinally flexible expandable stent
US8142489B2 (en) 1995-03-01 2012-03-27 Boston Scientific Scimed, Inc. Flexible and expandable stent
US20080319531A1 (en) * 1995-03-01 2008-12-25 Boston Scientific Scimed, Inc. Flexible and expandable stent
US20020055770A1 (en) * 1998-11-20 2002-05-09 Doran Burns P. Flexible and expandable stent
US6896696B2 (en) 1998-11-20 2005-05-24 Scimed Life Systems, Inc. Flexible and expandable stent
US20050033399A1 (en) * 1998-12-03 2005-02-10 Jacob Richter Hybrid stent
US8382821B2 (en) 1998-12-03 2013-02-26 Medinol Ltd. Helical hybrid stent
US6602284B2 (en) 1999-04-22 2003-08-05 Advanced Cardiovascular Systems, Inc. Variable strength stent
US20100228339A1 (en) * 2000-03-01 2010-09-09 Medinol, Ltd. Longitudinally flexible stent
US7141062B1 (en) 2000-03-01 2006-11-28 Medinol, Ltd. Longitudinally flexible stent
US9968471B1 (en) 2000-03-01 2018-05-15 Medinol Ltd. Longitudinally flexible stent
US20040106983A1 (en) * 2000-03-01 2004-06-03 Gregory Pinchasik Longitudinally flexible stent
US9161849B1 (en) 2000-03-01 2015-10-20 Medinol Ltd. Longitudinally flexible stent
US8920487B1 (en) 2000-03-01 2014-12-30 Medinol Ltd. Longitudinally flexible stent
US20060178724A1 (en) * 2000-03-01 2006-08-10 Gregory Pinchasik Longitudinally flexible stent
US6723119B2 (en) 2000-03-01 2004-04-20 Medinol Ltd. Longitudinally flexible stent
US8202312B2 (en) 2000-03-01 2012-06-19 Medinol Ltd. Longitudinally flexible stent
US7828835B2 (en) 2000-03-01 2010-11-09 Medinol Ltd. Longitudinally flexible stent
US20080215133A1 (en) * 2000-03-01 2008-09-04 Jacob Richter Longitudinally flexible stent
US8496699B2 (en) 2000-03-01 2013-07-30 Medinol Ltd. Longitudinally flexible stent
US20040049263A1 (en) * 2000-03-01 2004-03-11 Gregory Pinchasik Longitudinally flexible stent
US7621947B2 (en) 2000-03-01 2009-11-24 Medinol, Ltd. Longitudinally flexible stent
US20040230291A1 (en) * 2000-03-01 2004-11-18 Jacob Richter Longitudinally flexible stent
US20110022156A1 (en) * 2000-03-01 2011-01-27 Medinol Ltd. Longitudinally flexible stent
US7722658B2 (en) 2000-03-01 2010-05-25 Medinol Ltd. Longitudinally flexible stent
US7758627B2 (en) 2000-03-01 2010-07-20 Medinol, Ltd. Longitudinally flexible stent
US6709453B2 (en) 2000-03-01 2004-03-23 Medinol Ltd. Longitudinally flexible stent
US8317851B2 (en) 2000-03-01 2012-11-27 Medinol Ltd. Longitudinally flexible stent
WO2003022172A2 (en) * 2001-09-10 2003-03-20 Medinol, Ltd. Longitudinally flexible stent
WO2003022172A3 (en) * 2001-09-10 2003-09-18 Medinol Ltd Longitudinally flexible stent
US20040093072A1 (en) * 2002-05-06 2004-05-13 Jeff Pappas Endoprosthesis for controlled contraction and expansion
US20100063581A1 (en) * 2002-05-06 2010-03-11 Jeff Pappas Endoprosthesis For Controlled Contraction And Expansion
US7637935B2 (en) 2002-05-06 2009-12-29 Abbott Laboratories Endoprosthesis for controlled contraction and expansion
US8075610B2 (en) 2002-05-06 2011-12-13 Abbott Laboratories Endoprosthesis for controlled contraction and expansion
US7985249B2 (en) 2002-05-08 2011-07-26 Abbott Laboratories Corporation Endoprosthesis having foot extensions
US20040093073A1 (en) * 2002-05-08 2004-05-13 David Lowe Endoprosthesis having foot extensions
US7128756B2 (en) 2002-05-08 2006-10-31 Abbott Laboratories Endoprosthesis having foot extensions
US8048146B2 (en) 2003-05-06 2011-11-01 Abbott Laboratories Endoprosthesis having foot extensions
US8109991B2 (en) 2003-05-06 2012-02-07 Abbot Laboratories Endoprosthesis having foot extensions
US8915954B2 (en) 2003-05-06 2014-12-23 Abbott Laboratories Endoprosthesis having foot extensions
US20060015173A1 (en) * 2003-05-06 2006-01-19 Anton Clifford Endoprosthesis having foot extensions
US20050107865A1 (en) * 2003-05-06 2005-05-19 Anton Clifford Endoprosthesis having foot extensions
US9603731B2 (en) 2003-06-27 2017-03-28 Medinol Ltd. Helical hybrid stent
US10363152B2 (en) 2003-06-27 2019-07-30 Medinol Ltd. Helical hybrid stent
US9456910B2 (en) 2003-06-27 2016-10-04 Medinol Ltd. Helical hybrid stent
US9039755B2 (en) 2003-06-27 2015-05-26 Medinol Ltd. Helical hybrid stent
US20050182474A1 (en) * 2004-02-13 2005-08-18 Medtronic Vascular, Inc. Coated stent having protruding crowns and elongated struts
US7763064B2 (en) 2004-06-08 2010-07-27 Medinol, Ltd. Stent having struts with reverse direction curvature
US20060248698A1 (en) * 2005-05-05 2006-11-09 Hanson Brian J Tubular stent and methods of making the same
US20090157158A1 (en) * 2007-12-13 2009-06-18 Vitezslav Ondracek Self-expanding biodegradable stent
US9155639B2 (en) 2009-04-22 2015-10-13 Medinol Ltd. Helical hybrid stent
US20100286760A1 (en) * 2009-04-24 2010-11-11 Bradley Beach Flexible devices
US9421601B2 (en) * 2009-09-18 2016-08-23 Medtronic Vascular, Inc. Methods for forming an orthogonal end on a helical stent
US20150239032A1 (en) * 2009-09-18 2015-08-27 Medtronic Vascular, Inc. Methods for Forming an Orthogonal End on a Helical Stent

Also Published As

Publication number Publication date
US7722658B2 (en) 2010-05-25
US7141062B1 (en) 2006-11-28
US8317851B2 (en) 2012-11-27
KR20010035531A (en) 2001-05-07
US20040106983A1 (en) 2004-06-03
US20060178724A1 (en) 2006-08-10

Similar Documents

Publication Publication Date Title
US7141062B1 (en) Longitudinally flexible stent
US6709453B2 (en) Longitudinally flexible stent
US7828835B2 (en) Longitudinally flexible stent
CA2439088C (en) Longitudinally flexible stent
US7621947B2 (en) Longitudinally flexible stent
US8202312B2 (en) Longitudinally flexible stent
EP1424963A2 (en) Longitudinally flexible stent
US8496699B2 (en) Longitudinally flexible stent
AU2002304380A1 (en) Longitudinally flexible stent

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: EXPRESSLY ABANDONED -- DURING EXAMINATION