US20010037145A1 - Coated stent - Google Patents

Coated stent Download PDF

Info

Publication number
US20010037145A1
US20010037145A1 US09/887,462 US88746201A US2001037145A1 US 20010037145 A1 US20010037145 A1 US 20010037145A1 US 88746201 A US88746201 A US 88746201A US 2001037145 A1 US2001037145 A1 US 2001037145A1
Authority
US
United States
Prior art keywords
stent
pharmacological
pharmacological agent
coated
base layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/887,462
Inventor
Judy Guruwaiya
Deborra Millare
Steven Wu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US09/887,462 priority Critical patent/US20010037145A1/en
Publication of US20010037145A1 publication Critical patent/US20010037145A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • A61L31/10Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/16Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2/07Stent-grafts
    • A61F2002/072Encapsulated stents, e.g. wire or whole stent embedded in lining
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/91533Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other characterised by the phase between adjacent bands
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0004Rounded shapes, e.g. with rounded corners
    • A61F2230/0013Horseshoe-shaped, e.g. crescent-shaped, C-shaped, U-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/60Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
    • A61L2300/606Coatings
    • A61L2300/608Coatings having two or more layers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2420/00Materials or methods for coatings medical devices
    • A61L2420/08Coatings comprising two or more layers

Definitions

  • This invention relates generally to expandable intraluminal vascular grafts, commonly referred to as stents, and more particularly pertains to the coating of stents with materials that allow for the controlled release of pharmacological agents.
  • Stents are implanted within vessels in an effort to maintain the patency thereof by preventing collapse and/or impeding restenosis.
  • Implantation of a stent is typically accomplished by mounting the stent on the expandable portion of a balloon catheter, maneuvering the catheter through the vasculature so as to position the stent at the treatment site within the body lumen, and inflating the balloon to expand the stent so as to engage the lumen wall.
  • the stent deforms in the expanded configuration allowing the balloon to be deflated and the catheter removed to complete the implantation procedure.
  • the use of self-expanding stents obviates the need for a balloon delivery device. Instead, a constraining sheath that is initially fitted about the stent is simply retracted once the stent is in position adjacent the treatment site.
  • Stents and stent delivery catheters are well known in the art.
  • the success of a stent placement can be assessed by evaluating a number of factors, such as thrombosis, neointimal hyperplasia, smooth muscle cell migration and proliferation following implantation of the stent, injury to the artery wall, overall loss of luminal patency, stent diameter in vivo, thickness of the stent, and leukocyte adhesion to the luminal lining of stented arteries.
  • factors such as thrombosis, neointimal hyperplasia, smooth muscle cell migration and proliferation following implantation of the stent, injury to the artery wall, overall loss of luminal patency, stent diameter in vivo, thickness of the stent, and leukocyte adhesion to the luminal lining of stented arteries.
  • the chief areas of concern are early subacute thrombosis, and eventual restenosis of the blood vessel due to intimal hyperplasia.
  • Therapeutic pharmacological agents have been developed to address some of the concerns associated with the placement of a stent and it is often desirable to provide localized pharmacological treatment of a vessel at the site being supported by the stent. It has been found convenient to utilize the implanted stent for such purpose wherein the stent serves both as a support for the lumen wall as a well as delivery vehicle for the pharmacological agent.
  • the metallic materials typically employed in the construction of stents in order to satisfy the mechanical strength requirements are not generally capable of carrying and releasing drugs.
  • various polymers are known that are quite capable of carrying and releasing drugs, they generally do not have the requisite strength characteristics.
  • the present invention overcomes the shortcomings of the prior art methods for loading a drug onto a stent.
  • the process enables large amounts of one or more drugs to be quickly and easily loaded onto the stent and provides for the subsequent release of such drug at a very controlled rate.
  • a stent constructed in accordance with the present invention is capable of releasing substantially greater dosages of drugs at substantially more controlled release rates than has heretofore been possible.
  • the present invention allows for the drug releasing materials to be applied to any stent construction material.
  • the method of the present invention requires the sequential application of three layers of different materials onto a stent's surfaces.
  • a first layer is applied to all or to selected surfaces of a stent and serves as a base or primer coat which readily adheres to the material of which the stent is constructed and in turn, is able to attract and retain the subsequently applied pharmacological agent.
  • Such pharmacological agent in the form of dry, micronized particles is dusted directly onto all or onto only selected surfaces of the base layer coated stent to form a second layer.
  • a membrane forming polymer is subsequently applied over the coated stent surfaces wherein such polymer is selected for its ability to permit the diffusion of the pharmacological agent therethrough.
  • the base layer material is selected for its ability to form a sticky coating on the particular material used in the construction of the stent. Such first layer may be applied to all or selected surfaces of the stent.
  • the pharmacological material is used in a dry, micronized form which allows the amount of material applied to the base layer to be precisely controlled.
  • the top layer material is selected for its ability to form a membrane over the entire surface of the stent be it the bare stent material, the base layer coat or the pharmacological agent, and for its ability to permit the diffusion of the pharmacological agent therethrough.
  • the amount of pharmacological material deposited in the second layer determines the total dosage that can delivered while the thickness of the top layer determines the rate of delivery.
  • the particular surface or surfaces on which the pharmacological agent is deposited determines where the agent is delivered upon implantation. More specifically, pharmacological material deposited on the exterior surfaces of the stent causes the agent to pass directly into the lumen wall while deposition of the agent on the interior surfaces of the stent causes the agent to be released directly into the blood flow. Alternatively, coating only the upstream edge or only the downstream edge of the stent may be desirable to achieve a specific effect. By selectively coating the stent surfaces with the base layer, the distribution of the pharmacological agent may be controlled accordingly as the dry particles will only adhere to those areas that have the sticky coating.
  • the entire stent may be base coated while the application of the pharmacological agent is precisely controlled by limiting its distribution to only preselected areas.
  • Well known masking techniques may be used for such purpose.
  • the membrane forming material may be applied by any well known technique such as for example by dipping or spraying while material is in its liquid form. Allowing the material to form a continuous membrane completes the fabrication process.
  • FIG. 1 is a perspective view of a stent.
  • FIG. 2 is a greatly enlarged cross-sectional view, such as taken along lines 2 - 2 of FIG. 1, of a stent fabricated in accordance with the present invention.
  • FIG. 3 is a greatly enlarged cross-sectional view of an alternative embodiment stent fabricated in accordance with the present invention.
  • FIG. 4 is a greatly enlarged cross-sectional view of another alternative embodiment stent fabricated in accordance with the present invention.
  • the stent constructed in accordance with the present invention is employed as a drug delivery device which is implanted in the body and may simultaneously serve to support the body lumen at the deployment site.
  • the present invention is not limited to any particular stent configuration or delivery method nor is the construction of the stent structure limited to the use of any particular construction material.
  • FIG. 1 is a perspective view generally depicting a stent 12 . Such view is not intended to represent any particular stent configuration or structure but is merely provided to put into context the cross-sectional views of the various embodiments shown in FIGS. 2 - 4 .
  • FIG. 2 shows an embodiment 14 of the present invention wherein the underlying structure of the stent 16 has a total of three layers of materials coated onto all of its surfaces.
  • a first layer, or base coat 18 is shown applied directly to the surfaces of the stent upon which a second layer, comprising a pharmacological agent 20 , is applied.
  • a third layer, in the form of a continuous membrane 22 encapsulates the entire device.
  • the base coat 18 serves as a primer by readily adhering to the underlying stent's surfaces and then readily accepting and retaining a pharmacological agent applied thereto.
  • the base coat material may consist of vitronectin, fibronectin, gelatin, collagen or the like. Such materials are readily available, are relatively inexpensive and dry to form a sticky coating. The desired stickiness is achieved with the application of a very thin even coating of the base coat on the stent which serves to minimize the overall wall thickness of the device and further has the desirable effect of minimizing the amount of webbing that forms between adjacent structural components of the stent.
  • the base layer may be applied by any of several methods including for example dipping, spraying, sponging or brushing. In the embodiment illustrated in FIG.
  • the underlying stent structure is simply dipped or submerged in the base coat material while in its liquid form to uniformly coat all surfaces of the stent.
  • the dipping solution should not dissolve the drug particles. Upon drying or curing, all exposed surfaces of the stent remain sticky.
  • the pharmacological agent 20 is supplied in the form of dry, micronized particles that readily adhere to the sticky base layer surface.
  • a variety of pharmacological agents are commercially available in such form having a preferred particle size of about 1 to 0.5 microns. Examples of such agents include but are not limited to antibiotic, anti-thrombotic and anti-restenotic drugs.
  • any such micronized agents can be combined in any of various combinations in order to dispense a desired cocktail of pharmacological agents to the patient. For example, a number of different pharmacological agents can be combined in each micronized particle. Alternatively, micronized particles of individual pharmacological agents can be intermixed prior to application to the sticky base layer.
  • different pharmacological agents can be applied to different surfaces of the stent.
  • the micronized particles are applied to all surfaces of the base coated stent wherein such application may be achieved by any of a number of well known methods.
  • the particles may be blown onto the sticky surface or optionally, may simply be rolled in the powder.
  • the former approach allows the total amount of pharmacological agent that is to be applied to the stent to be precisely controlled.
  • the outer membrane 22 encapsulates the entire stent to cover all of its surfaces, including any bare stent structure, any exposed base coating or the layer of micronized drug particles.
  • the material is selected for its membrane forming characteristic and its biocompatiblity as well as its permeability to the pharmacological agent.
  • the chemical composition of the membrane forming polymer and that of the pharmacological agent in combination with the thickness of the applied outer layer will determine the diffusion rate of the pharmacological agent.
  • An example of a suitable material is ethylene vinyl alcohol (EVA) into which the base coated and pharmacological agent carrying stent may simply be dipped. The EVA forms the desired membrane upon curing.
  • EVA ethylene vinyl alcohol
  • fluorocarbon films may be employed to serve as the outer layer in the stent of the present invention.
  • Such films have been successfully used as drug-delivery capsules and are capable of serving a similar function when applied about the exterior of the stent of the present invention.
  • a representative example of such film is described in the paper entitled Development of a Model for rf. PE - CVD - Deposited Fluoropolymer Films Using C 3 F 6 by Jason Christos, et al in the Journal of Undergraduate Research in Engineering, page 52.
  • FIG. 3 illustrates an alternative embodiment 24 of the present invention.
  • the underlying stent structure, base layer, pharmacological agent and outer membrane layer are identified by the same reference numerals employed in FIG. 2.
  • the base layer 18 is again applied to all surfaces of the underlying stent structure 16 while the pharmacological agent 20 is applied to only selected surfaces. This is achieved by masking those areas in which no pharmacological agent is to become adhered to the sticky base layer.
  • only the exterior surface has the pharmacological agent adhered thereto.
  • a second, different pharmacological agent may be applied to the interior surface of the stent such that a single stent serves to dispense a first pharmacological agent into the lumen walls while the second agent is simultaneously dispensed into the blood flow.
  • the outer membrane 22 covers the entire stent.
  • FIG. 4 illustrates another alternative embodiment 26 of the present invention.
  • the underlying stent structure, base layer, pharmacological agent and outer membrane layers are again identified by the same reference numerals employed in FIGS. 2 and 3.
  • the base layer 18 is selectively applied to various surface of the underlying stent structure 16 . This achieved by masking those areas were no base layer and consequently no pharmacological agent 20 is to be present.
  • the illustration shows the base layer as being exclusively applied to the exterior surface of the stent. Any of a variety of masking techniques can be employed to achieve the selective coating pattern.
  • the subsequently applied pharmacological agent in the form of dry, micronized particles only adheres to those surfaces having the sticky base layer coating.
  • the outer membrane forming layer 22 is again applied to all surfaces.
  • the stent In use, the stent is deployed using conventional techniques. Once in position the pharmacological agent gradually diffuses into the adjacent tissue at a rate dictated by the parameters associated with the applied outer membrane. The total dosage that is delivered is of course limited by the total amount of pharmacological agent that had been loaded onto the stent's various surfaces.
  • the pharmacological agent is selected to treat the deployment site and/or locations downstream thereof. For example, deployment in the carotid artery will serve to deliver such agent to the brain.

Abstract

A pharmacological agent is applied to a stent in dry, micronized form over a sticky base coating. A membrane forming polymer, selected for its ability to allow the diffusion of the pharmacological agent therethrough, is applied over the entire stent.

Description

    BACKGROUND OF THE INVENTION
  • This invention relates generally to expandable intraluminal vascular grafts, commonly referred to as stents, and more particularly pertains to the coating of stents with materials that allow for the controlled release of pharmacological agents. [0001]
  • Stents are implanted within vessels in an effort to maintain the patency thereof by preventing collapse and/or impeding restenosis. Implantation of a stent is typically accomplished by mounting the stent on the expandable portion of a balloon catheter, maneuvering the catheter through the vasculature so as to position the stent at the treatment site within the body lumen, and inflating the balloon to expand the stent so as to engage the lumen wall. The stent deforms in the expanded configuration allowing the balloon to be deflated and the catheter removed to complete the implantation procedure. The use of self-expanding stents obviates the need for a balloon delivery device. Instead, a constraining sheath that is initially fitted about the stent is simply retracted once the stent is in position adjacent the treatment site. Stents and stent delivery catheters are well known in the art. [0002]
  • The success of a stent placement can be assessed by evaluating a number of factors, such as thrombosis, neointimal hyperplasia, smooth muscle cell migration and proliferation following implantation of the stent, injury to the artery wall, overall loss of luminal patency, stent diameter in vivo, thickness of the stent, and leukocyte adhesion to the luminal lining of stented arteries. The chief areas of concern are early subacute thrombosis, and eventual restenosis of the blood vessel due to intimal hyperplasia. [0003]
  • Therapeutic pharmacological agents have been developed to address some of the concerns associated with the placement of a stent and it is often desirable to provide localized pharmacological treatment of a vessel at the site being supported by the stent. It has been found convenient to utilize the implanted stent for such purpose wherein the stent serves both as a support for the lumen wall as a well as delivery vehicle for the pharmacological agent. However, the metallic materials typically employed in the construction of stents in order to satisfy the mechanical strength requirements are not generally capable of carrying and releasing drugs. On the other hand, while various polymers are known that are quite capable of carrying and releasing drugs, they generally do not have the requisite strength characteristics. Moreover, the structural and mechanical capabilities of a polymer may be significantly reduced as such polymer is loaded with a drug. A previously devised solution to such dilemma has therefore been the coating of a stent's metallic structure with a drug carrying polymer material in order to provide a stent capable of both supporting adequate mechanical loads as well as delivering drugs. [0004]
  • Various approaches have previously been employed to join drug-carrying polymers to metallic stents including for example dipping, spraying and conforming processes. Additionally, methods have been disclosed wherein the metallic structure of the stent has been formed or treated so as to create a porous surface that enhances the ability to retain the applied materials. However, such methods have generally failed to provide a quick, easy and inexpensive way of loading drugs onto a stent, have been limited insofar as the maximum amount of drug that can be loaded onto a stent and are limited in terms of their ability to control the rate of release of the drug upon implantation of the stent. Additionally, some of the heretofore known methods are highly specific wherein they are substantially limited in terms of which underlying stent material the coating can be applied to. [0005]
  • SUMMARY OF THE INVENTION
  • The present invention overcomes the shortcomings of the prior art methods for loading a drug onto a stent. The process enables large amounts of one or more drugs to be quickly and easily loaded onto the stent and provides for the subsequent release of such drug at a very controlled rate. A stent constructed in accordance with the present invention is capable of releasing substantially greater dosages of drugs at substantially more controlled release rates than has heretofore been possible. Moreover, the present invention allows for the drug releasing materials to be applied to any stent construction material. [0006]
  • The method of the present invention requires the sequential application of three layers of different materials onto a stent's surfaces. A first layer is applied to all or to selected surfaces of a stent and serves as a base or primer coat which readily adheres to the material of which the stent is constructed and in turn, is able to attract and retain the subsequently applied pharmacological agent. Such pharmacological agent, in the form of dry, micronized particles is dusted directly onto all or onto only selected surfaces of the base layer coated stent to form a second layer. A membrane forming polymer is subsequently applied over the coated stent surfaces wherein such polymer is selected for its ability to permit the diffusion of the pharmacological agent therethrough. [0007]
  • The base layer material is selected for its ability to form a sticky coating on the particular material used in the construction of the stent. Such first layer may be applied to all or selected surfaces of the stent. The pharmacological material is used in a dry, micronized form which allows the amount of material applied to the base layer to be precisely controlled. The top layer material is selected for its ability to form a membrane over the entire surface of the stent be it the bare stent material, the base layer coat or the pharmacological agent, and for its ability to permit the diffusion of the pharmacological agent therethrough. The amount of pharmacological material deposited in the second layer determines the total dosage that can delivered while the thickness of the top layer determines the rate of delivery. [0008]
  • The particular surface or surfaces on which the pharmacological agent is deposited determines where the agent is delivered upon implantation. More specifically, pharmacological material deposited on the exterior surfaces of the stent causes the agent to pass directly into the lumen wall while deposition of the agent on the interior surfaces of the stent causes the agent to be released directly into the blood flow. Alternatively, coating only the upstream edge or only the downstream edge of the stent may be desirable to achieve a specific effect. By selectively coating the stent surfaces with the base layer, the distribution of the pharmacological agent may be controlled accordingly as the dry particles will only adhere to those areas that have the sticky coating. Alternatively, the entire stent may be base coated while the application of the pharmacological agent is precisely controlled by limiting its distribution to only preselected areas. Well known masking techniques may be used for such purpose. The membrane forming material may be applied by any well known technique such as for example by dipping or spraying while material is in its liquid form. Allowing the material to form a continuous membrane completes the fabrication process. [0009]
  • These and other features and advantages of the present invention will become apparent from the following detailed description of preferred embodiments which, taken in conjunction with the accompanying drawings, illustrate by way of example the principles of the invention.[0010]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a perspective view of a stent. [0011]
  • FIG. 2 is a greatly enlarged cross-sectional view, such as taken along lines [0012] 2-2 of FIG. 1, of a stent fabricated in accordance with the present invention.
  • FIG. 3 is a greatly enlarged cross-sectional view of an alternative embodiment stent fabricated in accordance with the present invention. [0013]
  • FIG. 4 is a greatly enlarged cross-sectional view of another alternative embodiment stent fabricated in accordance with the present invention.[0014]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The stent constructed in accordance with the present invention is employed as a drug delivery device which is implanted in the body and may simultaneously serve to support the body lumen at the deployment site. The present invention is not limited to any particular stent configuration or delivery method nor is the construction of the stent structure limited to the use of any particular construction material. [0015]
  • FIG. 1 is a perspective view generally depicting a [0016] stent 12. Such view is not intended to represent any particular stent configuration or structure but is merely provided to put into context the cross-sectional views of the various embodiments shown in FIGS. 2-4.
  • FIG. 2 shows an [0017] embodiment 14 of the present invention wherein the underlying structure of the stent 16 has a total of three layers of materials coated onto all of its surfaces. A first layer, or base coat 18 is shown applied directly to the surfaces of the stent upon which a second layer, comprising a pharmacological agent 20, is applied. A third layer, in the form of a continuous membrane 22, encapsulates the entire device.
  • The [0018] base coat 18 serves as a primer by readily adhering to the underlying stent's surfaces and then readily accepting and retaining a pharmacological agent applied thereto. The base coat material may consist of vitronectin, fibronectin, gelatin, collagen or the like. Such materials are readily available, are relatively inexpensive and dry to form a sticky coating. The desired stickiness is achieved with the application of a very thin even coating of the base coat on the stent which serves to minimize the overall wall thickness of the device and further has the desirable effect of minimizing the amount of webbing that forms between adjacent structural components of the stent. The base layer may be applied by any of several methods including for example dipping, spraying, sponging or brushing. In the embodiment illustrated in FIG. 2, the underlying stent structure is simply dipped or submerged in the base coat material while in its liquid form to uniformly coat all surfaces of the stent. The dipping solution should not dissolve the drug particles. Upon drying or curing, all exposed surfaces of the stent remain sticky.
  • The [0019] pharmacological agent 20 is supplied in the form of dry, micronized particles that readily adhere to the sticky base layer surface. A variety of pharmacological agents are commercially available in such form having a preferred particle size of about 1 to 0.5 microns. Examples of such agents include but are not limited to antibiotic, anti-thrombotic and anti-restenotic drugs. Additionally, any such micronized agents can be combined in any of various combinations in order to dispense a desired cocktail of pharmacological agents to the patient. For example, a number of different pharmacological agents can be combined in each micronized particle. Alternatively, micronized particles of individual pharmacological agents can be intermixed prior to application to the sticky base layer. As a further alternative, different pharmacological agents can be applied to different surfaces of the stent. In the particular embodiment illustrated, the micronized particles are applied to all surfaces of the base coated stent wherein such application may be achieved by any of a number of well known methods. For example, the particles may be blown onto the sticky surface or optionally, may simply be rolled in the powder. The former approach allows the total amount of pharmacological agent that is to be applied to the stent to be precisely controlled.
  • The [0020] outer membrane 22 encapsulates the entire stent to cover all of its surfaces, including any bare stent structure, any exposed base coating or the layer of micronized drug particles. The material is selected for its membrane forming characteristic and its biocompatiblity as well as its permeability to the pharmacological agent. The chemical composition of the membrane forming polymer and that of the pharmacological agent in combination with the thickness of the applied outer layer will determine the diffusion rate of the pharmacological agent. An example of a suitable material is ethylene vinyl alcohol (EVA) into which the base coated and pharmacological agent carrying stent may simply be dipped. The EVA forms the desired membrane upon curing.
  • Alternatively, fluorocarbon films may be employed to serve as the outer layer in the stent of the present invention. Such films have been successfully used as drug-delivery capsules and are capable of serving a similar function when applied about the exterior of the stent of the present invention. A representative example of such film is described in the paper entitled [0021] Development of a Model for rf. PE-CVD-Deposited Fluoropolymer Films Using C3F6 by Jason Christos, et al in the Journal of Undergraduate Research in Engineering, page 52.
  • FIG. 3 illustrates an [0022] alternative embodiment 24 of the present invention. The underlying stent structure, base layer, pharmacological agent and outer membrane layer are identified by the same reference numerals employed in FIG. 2. In this particular embodiment, the base layer 18 is again applied to all surfaces of the underlying stent structure 16 while the pharmacological agent 20 is applied to only selected surfaces. This is achieved by masking those areas in which no pharmacological agent is to become adhered to the sticky base layer. In the particular embodiment that is illustrated, only the exterior surface has the pharmacological agent adhered thereto. Alternatively, a second, different pharmacological agent may be applied to the interior surface of the stent such that a single stent serves to dispense a first pharmacological agent into the lumen walls while the second agent is simultaneously dispensed into the blood flow. In either embodiment, the outer membrane 22 covers the entire stent.
  • FIG. 4 illustrates another [0023] alternative embodiment 26 of the present invention. The underlying stent structure, base layer, pharmacological agent and outer membrane layers are again identified by the same reference numerals employed in FIGS. 2 and 3. In this particular embodiment the base layer 18 is selectively applied to various surface of the underlying stent structure 16. This achieved by masking those areas were no base layer and consequently no pharmacological agent 20 is to be present. The illustration shows the base layer as being exclusively applied to the exterior surface of the stent. Any of a variety of masking techniques can be employed to achieve the selective coating pattern. The subsequently applied pharmacological agent in the form of dry, micronized particles, only adheres to those surfaces having the sticky base layer coating. The outer membrane forming layer 22 is again applied to all surfaces.
  • In use, the stent is deployed using conventional techniques. Once in position the pharmacological agent gradually diffuses into the adjacent tissue at a rate dictated by the parameters associated with the applied outer membrane. The total dosage that is delivered is of course limited by the total amount of pharmacological agent that had been loaded onto the stent's various surfaces. The pharmacological agent is selected to treat the deployment site and/or locations downstream thereof. For example, deployment in the carotid artery will serve to deliver such agent to the brain. [0024]
  • While a particular form of the invention has been illustrated and described, it will also be apparent to those skilled in the art that various modifications can be made without departing from the spirit and scope of the invention. Accordingly, it is not intended that the invention be limited except by the appended claims. [0025]

Claims (23)

What is claimed:
1. A method for coating a stent, comprising the steps of:
providing a stent;
applying a base layer of sticky material to selected surfaces of said stent;
applying pharmacological agent in micronized, dry form to selected surfaces coated by said base layer; and
applying a membrane forming polymer coating through which said pharmacological agent is able to diffuse to all surfaces of said stent.
2. The method of
claim 1
, wherein said base layer is applied to all surfaces of said stent.
3. The method of
claim 1
, wherein said stent is masked so as to apply said base layer to only selected surfaces of said stent.
4. The method of
claim 1
, wherein said pharmacological agent is applied to all surfaces having said base layer applied thereto.
5. The method of
claim 1
, wherein said stent is masked so as to apply said pharmacological agent to only selected surfaces coated with said base coat.
6. The method of
claim 1
, wherein a plurality of pharmacological agents are applied to selected surfaces having said base layer applied thereto.
7. The method of
claim 6
, wherein said plurality of pharmacological agents comprises a uniform mixture.
8. The method of
claim 6
, wherein selected pharmacological agents of said plurality of pharmacological agents are applied.
9. The method of
claim 1
, wherein, the base layer is selected from the group consisting of vitronectin, fibronectin, gelatin and collagen.
10. The method of
claim 1
, wherein said base layer is applied by dipping.
11. The method of
claim 1
, wherein said pharmacological agent is applied by rolling said stent in a mass of said pharmacological agent.
12. The method of
claim 1
, wherein said pharmacological agent is applied by blowing said dry, micronized particles onto said stent.
13. The method of
claim 1
, wherein said membrane forming polymer comprises EVa.
14. The method of
claim 1
, wherein said membrane forming polymer comprises a fluoropolymer film.
15. A coated stent, comprising:
an expandable structure;
a base coating of sticky material;
an intermediate coating of pharmacological agent in dry, micronized form; and
an outer coating of membrane forming polymer through which said pharmacological agent is capable of diffusing.
16. The coated stent of
claim 12
, wherein said base coating is present on only selected surfaces of said expandable structure.
17. The coated stent of
claim 12
, wherein said pharmacological agent is present on only selected base coated surfaces.
18. The coated stent of
claim 12
, wherein said intermediate coating comprises a plurality of pharmacological agents.
19. The coated stent of
claim 15
, wherein said plurality of pharmacological agents is homogeneously distributed throughout said intermediate coating.
20. The coated stent of
claim 15
, wherein said plurality of pharmacological agents is heterogeneously distributed throughout said intermediate coating.
21. The coated stent of
claim 17
, wherein said expandable structure has exterior surfaces and interior surfaces and wherein a first of said plurality of pharmacological agents is distributed on said exterior surfaces and a second of said pharmacological agents is distributed on said interior surfaces.
22. The coated stent of
claim 12
, wherein said outer coating comprises EVA.
23. The coated stent of
claim 12
, wherein said outer coating comprises a fluoropolymer film.
US09/887,462 1999-12-08 2001-06-21 Coated stent Abandoned US20010037145A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/887,462 US20010037145A1 (en) 1999-12-08 2001-06-21 Coated stent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/457,195 US6251136B1 (en) 1999-12-08 1999-12-08 Method of layering a three-coated stent using pharmacological and polymeric agents
US09/887,462 US20010037145A1 (en) 1999-12-08 2001-06-21 Coated stent

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/457,195 Continuation US6251136B1 (en) 1999-12-08 1999-12-08 Method of layering a three-coated stent using pharmacological and polymeric agents

Publications (1)

Publication Number Publication Date
US20010037145A1 true US20010037145A1 (en) 2001-11-01

Family

ID=23815807

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/457,195 Expired - Lifetime US6251136B1 (en) 1999-12-08 1999-12-08 Method of layering a three-coated stent using pharmacological and polymeric agents
US09/887,462 Abandoned US20010037145A1 (en) 1999-12-08 2001-06-21 Coated stent

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/457,195 Expired - Lifetime US6251136B1 (en) 1999-12-08 1999-12-08 Method of layering a three-coated stent using pharmacological and polymeric agents

Country Status (1)

Country Link
US (2) US6251136B1 (en)

Cited By (107)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002058753A2 (en) * 2000-12-28 2002-08-01 Advanced Cardiovascular Systems, Inc. Coating for implantable devices and a method of forming the same
US20040054104A1 (en) * 2002-09-05 2004-03-18 Pacetti Stephen D. Coatings for drug delivery devices comprising modified poly(ethylene-co-vinyl alcohol)
US20040086542A1 (en) * 1999-12-23 2004-05-06 Hossainy Syed F.A. Coating for implantable devices and a method of forming the same
US20040138695A1 (en) * 2002-06-18 2004-07-15 Shu-Tung Li Coatings of implants
US20050187376A1 (en) * 2002-09-05 2005-08-25 Pacetti Stephen D. Coating for controlled release of drugs from implantable medical devices
US7022372B1 (en) 2002-11-12 2006-04-04 Advanced Cardiovascular Systems, Inc. Compositions for coating implantable medical devices
US20060088572A1 (en) * 2004-10-21 2006-04-27 Medtronic, Inc. Angiotensin-(1-7) eluting polymer-coated medical device to reduce restenosis and improve endothelial cell function
EP1652495A1 (en) * 2004-10-28 2006-05-03 Cordis Neurovascular, Inc. Expandable stent having a dissolvable portion
US20070026131A1 (en) * 2002-03-27 2007-02-01 Advanced Cardiovascular Systems, Inc. 40-O-(2-hydroxy)ethyl-rapamycin coated stent
US7258891B2 (en) * 2001-06-28 2007-08-21 Advanced Cardiovascular Systems, Inc. Stent mounting assembly and a method of using the same to coat a stent
US7335265B1 (en) 2002-10-08 2008-02-26 Advanced Cardiovascular Systems Inc. Apparatus and method for coating stents
US7645474B1 (en) 2003-07-31 2010-01-12 Advanced Cardiovascular Systems, Inc. Method and system of purifying polymers for use with implantable medical devices
US7648727B2 (en) 2004-08-26 2010-01-19 Advanced Cardiovascular Systems, Inc. Methods for manufacturing a coated stent-balloon assembly
US7648725B2 (en) 2002-12-12 2010-01-19 Advanced Cardiovascular Systems, Inc. Clamp mandrel fixture and a method of using the same to minimize coating defects
US7678143B2 (en) 2000-12-22 2010-03-16 Advanced Cardiovascular Systems, Inc. Ethylene-carboxyl copolymers as drug delivery matrices
US7682647B2 (en) 1999-09-03 2010-03-23 Advanced Cardiovascular Systems, Inc. Thermal treatment of a drug eluting implantable medical device
US7682669B1 (en) 2001-07-30 2010-03-23 Advanced Cardiovascular Systems, Inc. Methods for covalently immobilizing anti-thrombogenic material into a coating on a medical device
US7682648B1 (en) 2000-05-31 2010-03-23 Advanced Cardiovascular Systems, Inc. Methods for forming polymeric coatings on stents
US7691401B2 (en) 2000-09-28 2010-04-06 Advanced Cardiovascular Systems, Inc. Poly(butylmethacrylate) and rapamycin coated stent
US7699889B2 (en) 2004-12-27 2010-04-20 Advanced Cardiovascular Systems, Inc. Poly(ester amide) block copolymers
US7704544B2 (en) 2003-10-07 2010-04-27 Advanced Cardiovascular Systems, Inc. System and method for coating a tubular implantable medical device
US7713637B2 (en) 2006-03-03 2010-05-11 Advanced Cardiovascular Systems, Inc. Coating containing PEGylated hyaluronic acid and a PEGylated non-hyaluronic acid polymer
US7735449B1 (en) 2005-07-28 2010-06-15 Advanced Cardiovascular Systems, Inc. Stent fixture having rounded support structures and method for use thereof
US7749263B2 (en) 2004-10-29 2010-07-06 Abbott Cardiovascular Systems Inc. Poly(ester amide) filler blends for modulation of coating properties
US7758881B2 (en) 2004-06-30 2010-07-20 Advanced Cardiovascular Systems, Inc. Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device
US7758880B2 (en) 2002-12-11 2010-07-20 Advanced Cardiovascular Systems, Inc. Biocompatible polyacrylate compositions for medical applications
US7766884B2 (en) 2004-08-31 2010-08-03 Advanced Cardiovascular Systems, Inc. Polymers of fluorinated monomers and hydrophilic monomers
US7772359B2 (en) 2003-12-19 2010-08-10 Advanced Cardiovascular Systems, Inc. Biobeneficial polyamide/polyethylene glycol polymers for use with drug eluting stents
US7775178B2 (en) 2006-05-26 2010-08-17 Advanced Cardiovascular Systems, Inc. Stent coating apparatus and method
US7776926B1 (en) 2002-12-11 2010-08-17 Advanced Cardiovascular Systems, Inc. Biocompatible coating for implantable medical devices
US7785647B2 (en) 2005-07-25 2010-08-31 Advanced Cardiovascular Systems, Inc. Methods of providing antioxidants to a drug containing product
US7785512B1 (en) 2003-07-31 2010-08-31 Advanced Cardiovascular Systems, Inc. Method and system of controlled temperature mixing and molding of polymers with active agents for implantable medical devices
US7794743B2 (en) 2002-06-21 2010-09-14 Advanced Cardiovascular Systems, Inc. Polycationic peptide coatings and methods of making the same
US7795467B1 (en) 2005-04-26 2010-09-14 Advanced Cardiovascular Systems, Inc. Bioabsorbable, biobeneficial polyurethanes for use in medical devices
US7803394B2 (en) 2002-06-21 2010-09-28 Advanced Cardiovascular Systems, Inc. Polycationic peptide hydrogel coatings for cardiovascular therapy
US7803406B2 (en) 2002-06-21 2010-09-28 Advanced Cardiovascular Systems, Inc. Polycationic peptide coatings and methods of coating implantable medical devices
US7807210B1 (en) 2000-10-31 2010-10-05 Advanced Cardiovascular Systems, Inc. Hemocompatible polymers on hydrophobic porous polymers
US7807211B2 (en) 1999-09-03 2010-10-05 Advanced Cardiovascular Systems, Inc. Thermal treatment of an implantable medical device
US7807722B2 (en) 2003-11-26 2010-10-05 Advanced Cardiovascular Systems, Inc. Biobeneficial coating compositions and methods of making and using thereof
US7820732B2 (en) 2004-04-30 2010-10-26 Advanced Cardiovascular Systems, Inc. Methods for modulating thermal and mechanical properties of coatings on implantable devices
US7823533B2 (en) 2005-06-30 2010-11-02 Advanced Cardiovascular Systems, Inc. Stent fixture and method for reducing coating defects
US7867547B2 (en) 2005-12-19 2011-01-11 Advanced Cardiovascular Systems, Inc. Selectively coating luminal surfaces of stents
US7887871B2 (en) 2003-07-31 2011-02-15 Advanced Cardiovascular Systems, Inc. Method and system for irradiation of a drug eluting implantable medical device
US7892592B1 (en) 2004-11-30 2011-02-22 Advanced Cardiovascular Systems, Inc. Coating abluminal surfaces of stents and other implantable medical devices
US7919075B1 (en) 2002-03-20 2011-04-05 Advanced Cardiovascular Systems, Inc. Coatings for implantable medical devices
US7967998B2 (en) 2003-06-25 2011-06-28 Advanced Cardiocasvular Systems, Inc. Method of polishing implantable medical devices to lower thrombogenecity and increase mechanical stability
US7976891B1 (en) 2005-12-16 2011-07-12 Advanced Cardiovascular Systems, Inc. Abluminal stent coating apparatus and method of using focused acoustic energy
US7985440B2 (en) 2001-06-27 2011-07-26 Advanced Cardiovascular Systems, Inc. Method of using a mandrel to coat a stent
US7985441B1 (en) 2006-05-04 2011-07-26 Yiwen Tang Purification of polymers for coating applications
US7989018B2 (en) 2001-09-17 2011-08-02 Advanced Cardiovascular Systems, Inc. Fluid treatment of a polymeric coating on an implantable medical device
US8003156B2 (en) 2006-05-04 2011-08-23 Advanced Cardiovascular Systems, Inc. Rotatable support elements for stents
US8007775B2 (en) 2004-12-30 2011-08-30 Advanced Cardiovascular Systems, Inc. Polymers containing poly(hydroxyalkanoates) and agents for use with medical articles and methods of fabricating the same
US8017140B2 (en) 2004-06-29 2011-09-13 Advanced Cardiovascular System, Inc. Drug-delivery stent formulations for restenosis and vulnerable plaque
US8017237B2 (en) 2006-06-23 2011-09-13 Abbott Cardiovascular Systems, Inc. Nanoshells on polymers
US8021676B2 (en) 2005-07-08 2011-09-20 Advanced Cardiovascular Systems, Inc. Functionalized chemically inert polymers for coatings
US8029816B2 (en) 2006-06-09 2011-10-04 Abbott Cardiovascular Systems Inc. Medical device coated with a coating containing elastin pentapeptide VGVPG
US8048441B2 (en) 2007-06-25 2011-11-01 Abbott Cardiovascular Systems, Inc. Nanobead releasing medical devices
US8048448B2 (en) 2006-06-15 2011-11-01 Abbott Cardiovascular Systems Inc. Nanoshells for drug delivery
US8052988B2 (en) 2003-11-06 2011-11-08 Advanced Cardiovascular Systems, Inc. Methods for fabricating coatings for drug delivery devices having gradient of hydration
US8052912B2 (en) 2003-12-01 2011-11-08 Advanced Cardiovascular Systems, Inc. Temperature controlled crimping
US8062350B2 (en) 2006-06-14 2011-11-22 Abbott Cardiovascular Systems Inc. RGD peptide attached to bioabsorbable stents
US8067023B2 (en) 2002-06-21 2011-11-29 Advanced Cardiovascular Systems, Inc. Implantable medical devices incorporating plasma polymerized film layers and charged amino acids
US8067025B2 (en) 2006-02-17 2011-11-29 Advanced Cardiovascular Systems, Inc. Nitric oxide generating medical devices
GB2448153B (en) * 2007-04-04 2011-12-28 Camstent Ltd Mbe Coated medical devices
US8110211B2 (en) 2004-09-22 2012-02-07 Advanced Cardiovascular Systems, Inc. Medicated coatings for implantable medical devices including polyacrylates
US8109904B1 (en) 2007-06-25 2012-02-07 Abbott Cardiovascular Systems Inc. Drug delivery medical devices
US8110243B2 (en) 2001-04-24 2012-02-07 Advanced Cardiovascular Systems, Inc. Coating for a stent and a method of forming the same
US8147769B1 (en) 2007-05-16 2012-04-03 Abbott Cardiovascular Systems Inc. Stent and delivery system with reduced chemical degradation
US8182527B2 (en) 2001-05-07 2012-05-22 Cordis Corporation Heparin barrier coating for controlled drug release
US8192752B2 (en) 2003-11-21 2012-06-05 Advanced Cardiovascular Systems, Inc. Coatings for implantable devices including biologically erodable polyesters and methods for fabricating the same
US8197879B2 (en) 2003-09-30 2012-06-12 Advanced Cardiovascular Systems, Inc. Method for selectively coating surfaces of a stent
US8236048B2 (en) 2000-05-12 2012-08-07 Cordis Corporation Drug/drug delivery systems for the prevention and treatment of vascular disease
US8293890B2 (en) 2004-04-30 2012-10-23 Advanced Cardiovascular Systems, Inc. Hyaluronic acid based copolymers
US8304012B2 (en) 2006-05-04 2012-11-06 Advanced Cardiovascular Systems, Inc. Method for drying a stent
US8303651B1 (en) 2001-09-07 2012-11-06 Advanced Cardiovascular Systems, Inc. Polymeric coating for reducing the rate of release of a therapeutic substance from a stent
US8303609B2 (en) 2000-09-29 2012-11-06 Cordis Corporation Coated medical devices
US8309112B2 (en) 2003-12-24 2012-11-13 Advanced Cardiovascular Systems, Inc. Coatings for implantable medical devices comprising hydrophilic substances and methods for fabricating the same
US8357391B2 (en) 2004-07-30 2013-01-22 Advanced Cardiovascular Systems, Inc. Coatings for implantable devices comprising poly (hydroxy-alkanoates) and diacid linkages
US8361539B2 (en) 2001-05-09 2013-01-29 Advanced Cardiovascular Systems, Inc. Methods of forming microparticle coated medical device
US8435550B2 (en) 2002-12-16 2013-05-07 Abbot Cardiovascular Systems Inc. Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device
US8449905B2 (en) 2001-10-22 2013-05-28 Covidien Lp Liquid and low melting coatings for stents
US8506617B1 (en) 2002-06-21 2013-08-13 Advanced Cardiovascular Systems, Inc. Micronized peptide coated stent
US8551512B2 (en) 2004-03-22 2013-10-08 Advanced Cardiovascular Systems, Inc. Polyethylene glycol/poly(butylene terephthalate) copolymer coated devices including EVEROLIMUS
US8568764B2 (en) 2006-05-31 2013-10-29 Advanced Cardiovascular Systems, Inc. Methods of forming coating layers for medical devices utilizing flash vaporization
US8586069B2 (en) 2002-12-16 2013-11-19 Abbott Cardiovascular Systems Inc. Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders
US8597673B2 (en) 2006-12-13 2013-12-03 Advanced Cardiovascular Systems, Inc. Coating of fast absorption or dissolution
US8603634B2 (en) 2004-10-27 2013-12-10 Abbott Cardiovascular Systems Inc. End-capped poly(ester amide) copolymers
US8603530B2 (en) 2006-06-14 2013-12-10 Abbott Cardiovascular Systems Inc. Nanoshell therapy
US8609123B2 (en) 2004-11-29 2013-12-17 Advanced Cardiovascular Systems, Inc. Derivatized poly(ester amide) as a biobeneficial coating
US8673334B2 (en) 2003-05-08 2014-03-18 Abbott Cardiovascular Systems Inc. Stent coatings comprising hydrophilic additives
US8685431B2 (en) 2004-03-16 2014-04-01 Advanced Cardiovascular Systems, Inc. Biologically absorbable coatings for implantable devices based on copolymers having ester bonds and methods for fabricating the same
US8685430B1 (en) 2006-07-14 2014-04-01 Abbott Cardiovascular Systems Inc. Tailored aliphatic polyesters for stent coatings
US8703167B2 (en) 2006-06-05 2014-04-22 Advanced Cardiovascular Systems, Inc. Coatings for implantable medical devices for controlled release of a hydrophilic drug and a hydrophobic drug
US8703169B1 (en) 2006-08-15 2014-04-22 Abbott Cardiovascular Systems Inc. Implantable device having a coating comprising carrageenan and a biostable polymer
US8741378B1 (en) 2001-06-27 2014-06-03 Advanced Cardiovascular Systems, Inc. Methods of coating an implantable device
US8778014B1 (en) 2004-03-31 2014-07-15 Advanced Cardiovascular Systems, Inc. Coatings for preventing balloon damage to polymer coated stents
US8778375B2 (en) 2005-04-29 2014-07-15 Advanced Cardiovascular Systems, Inc. Amorphous poly(D,L-lactide) coating
US9028859B2 (en) 2006-07-07 2015-05-12 Advanced Cardiovascular Systems, Inc. Phase-separated block copolymer coatings for implantable medical devices
US9056155B1 (en) 2007-05-29 2015-06-16 Abbott Cardiovascular Systems Inc. Coatings having an elastic primer layer
US9114198B2 (en) 2003-11-19 2015-08-25 Advanced Cardiovascular Systems, Inc. Biologically beneficial coatings for implantable devices containing fluorinated polymers and methods for fabricating the same
US9339592B2 (en) 2004-12-22 2016-05-17 Abbott Cardiovascular Systems Inc. Polymers of fluorinated monomers and hydrocarbon monomers
US9364498B2 (en) 2004-06-18 2016-06-14 Abbott Cardiovascular Systems Inc. Heparin prodrugs and drug delivery stents formed therefrom
US9561351B2 (en) 2006-05-31 2017-02-07 Advanced Cardiovascular Systems, Inc. Drug delivery spiral coil construct
US9561309B2 (en) 2004-05-27 2017-02-07 Advanced Cardiovascular Systems, Inc. Antifouling heparin coatings
US20170049590A1 (en) * 2015-08-17 2017-02-23 Boston Scientific Scimed, Inc. Radioactive stent
US9580558B2 (en) 2004-07-30 2017-02-28 Abbott Cardiovascular Systems Inc. Polymers containing siloxane monomers
US10076591B2 (en) 2010-03-31 2018-09-18 Abbott Cardiovascular Systems Inc. Absorbable coating for implantable device

Families Citing this family (187)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7611533B2 (en) * 1995-06-07 2009-11-03 Cook Incorporated Coated implantable medical device
US6777217B1 (en) * 1996-03-26 2004-08-17 President And Fellows Of Harvard College Histone deacetylases, and uses related thereto
US6433154B1 (en) * 1997-06-12 2002-08-13 Bristol-Myers Squibb Company Functional receptor/kinase chimera in yeast cells
US7713297B2 (en) 1998-04-11 2010-05-11 Boston Scientific Scimed, Inc. Drug-releasing stent with ceramic-containing layer
CA2320259C (en) * 1998-04-27 2006-01-24 Surmodics, Inc. Bioactive agent release coating
US6872225B1 (en) * 1999-05-27 2005-03-29 Biocompatibles Uk Limited Local drug delivery
US6503556B2 (en) * 2000-12-28 2003-01-07 Advanced Cardiovascular Systems, Inc. Methods of forming a coating for a prosthesis
US6338739B1 (en) * 1999-12-22 2002-01-15 Ethicon, Inc. Biodegradable stent
US7169187B2 (en) * 1999-12-22 2007-01-30 Ethicon, Inc. Biodegradable stent
US20030129724A1 (en) 2000-03-03 2003-07-10 Grozinger Christina M. Class II human histone deacetylases, and uses related thereto
US7220276B1 (en) * 2000-03-06 2007-05-22 Surmodics, Inc. Endovascular graft coatings
US6613082B2 (en) * 2000-03-13 2003-09-02 Jun Yang Stent having cover with drug delivery capability
EP1282470B1 (en) * 2000-05-16 2008-08-20 Regents Of The University Of Minnesota High mass throughput particle generation using multiple nozzle spraying
US6451373B1 (en) * 2000-08-04 2002-09-17 Advanced Cardiovascular Systems, Inc. Method of forming a therapeutic coating onto a surface of an implantable prosthesis
US6663662B2 (en) * 2000-12-28 2003-12-16 Advanced Cardiovascular Systems, Inc. Diffusion barrier layer for implantable devices
US8632845B2 (en) * 2000-12-28 2014-01-21 Abbott Cardiovascular Systems Inc. Method of drying bioabsorbable coating over stents
US20050288750A1 (en) * 2003-08-25 2005-12-29 Biophan Technologies, Inc. Medical device with an electrically conductive anti-antenna member
US20050283167A1 (en) * 2003-08-25 2005-12-22 Biophan Technologies, Inc. Medical device with an electrically conductive anti-antenna member
US20050288753A1 (en) * 2003-08-25 2005-12-29 Biophan Technologies, Inc. Medical device with an electrically conductive anti-antenna member
US20070173911A1 (en) * 2001-02-20 2007-07-26 Biophan Technologies, Inc. Medical device with an electrically conductive anti-antenna member
US20050283214A1 (en) * 2003-08-25 2005-12-22 Biophan Technologies, Inc. Medical device with an electrically conductive anti-antenna member
US20070168005A1 (en) * 2001-02-20 2007-07-19 Biophan Technologies, Inc. Medical device with an electrically conductive anti-antenna member
US20070168006A1 (en) * 2001-02-20 2007-07-19 Biophan Technologies, Inc. Medical device with an electrically conductive anti-antenna member
US20020163504A1 (en) * 2001-03-13 2002-11-07 Pallakoff Matthew G. Hand-held device that supports fast text typing
US7771468B2 (en) * 2001-03-16 2010-08-10 Angiotech Biocoatings Corp. Medicated stent having multi-layer polymer coating
AU2002252372A1 (en) * 2001-03-16 2002-10-03 Sts Biopolymers, Inc. Stent with medicated multi-layer hydrid polymer coating
US6780424B2 (en) * 2001-03-30 2004-08-24 Charles David Claude Controlled morphologies in polymer drug for release of drugs from polymer films
US20020161376A1 (en) * 2001-04-27 2002-10-31 Barry James J. Method and system for delivery of coated implants
US7244853B2 (en) 2001-05-09 2007-07-17 President And Fellows Of Harvard College Dioxanes and uses thereof
US7247338B2 (en) * 2001-05-16 2007-07-24 Regents Of The University Of Minnesota Coating medical devices
US20040176837A1 (en) * 2001-05-17 2004-09-09 Atladottir Svava Maria Self-expanding stent and catheter assembly and method for treating bifurcations
US7651695B2 (en) * 2001-05-18 2010-01-26 Advanced Cardiovascular Systems, Inc. Medicated stents for the treatment of vascular disease
US6743462B1 (en) * 2001-05-31 2004-06-01 Advanced Cardiovascular Systems, Inc. Apparatus and method for coating implantable devices
US6712844B2 (en) 2001-06-06 2004-03-30 Advanced Cardiovascular Systems, Inc. MRI compatible stent
AU2002345328A1 (en) 2001-06-27 2003-03-03 Remon Medical Technologies Ltd. Method and device for electrochemical formation of therapeutic species in vivo
US6641611B2 (en) 2001-11-26 2003-11-04 Swaminathan Jayaraman Therapeutic coating for an intravascular implant
US7223282B1 (en) * 2001-09-27 2007-05-29 Advanced Cardiovascular Systems, Inc. Remote activation of an implantable device
US6517889B1 (en) 2001-11-26 2003-02-11 Swaminathan Jayaraman Process for coating a surface of a stent
US20030114919A1 (en) * 2001-12-10 2003-06-19 Mcquiston Jesse Polymeric stent with metallic rings
US6866805B2 (en) 2001-12-27 2005-03-15 Advanced Cardiovascular Systems, Inc. Hybrid intravascular stent
US6709514B1 (en) 2001-12-28 2004-03-23 Advanced Cardiovascular Systems, Inc. Rotary coating apparatus for coating implantable medical devices
US20030139795A1 (en) * 2002-01-23 2003-07-24 Scimed Life Systems, Inc. Stent delivery system loading tool
US20030153971A1 (en) * 2002-02-14 2003-08-14 Chandru Chandrasekaran Metal reinforced biodegradable intraluminal stents
US20030153972A1 (en) * 2002-02-14 2003-08-14 Michael Helmus Biodegradable implantable or insertable medical devices with controlled change of physical properties leading to biomechanical compatibility
AU2003224672B2 (en) 2002-03-08 2010-02-04 Eisai R&D Management Co., Ltd. Macrocyclic compounds useful as pharmaceuticals
GB0206061D0 (en) * 2002-03-14 2002-04-24 Angiomed Ag Metal structure compatible with MRI imaging, and method of manufacturing such a structure
EP2374454B1 (en) 2002-03-22 2016-05-11 Eisai R&D Management Co., Ltd. Hemiasterlin derivatives and uses thereof in the treatment of cancer
US7691461B1 (en) * 2002-04-01 2010-04-06 Advanced Cardiovascular Systems, Inc. Hybrid stent and method of making
US7083822B2 (en) * 2002-04-26 2006-08-01 Medtronic Vascular, Inc. Overlapping coated stents
US20040028716A1 (en) * 2002-06-14 2004-02-12 Marks Andrew R. Use of Y-27632 as an agent to prevent restenosis after coronary artery angioplasty/stent implantation
US7097850B2 (en) * 2002-06-18 2006-08-29 Surmodics, Inc. Bioactive agent release coating and controlled humidity method
US7655038B2 (en) * 2003-02-28 2010-02-02 Biointeractions Ltd. Polymeric network system for medical devices and methods of use
US7438925B2 (en) * 2002-08-26 2008-10-21 Biovention Holdings Ltd. Drug eluting coatings for medical implants
US7326238B1 (en) * 2002-09-30 2008-02-05 Abbott Cardiovascular Systems Inc. Method and apparatus for treating vulnerable plaque
US20060265043A1 (en) * 2002-09-30 2006-11-23 Evgenia Mandrusov Method and apparatus for treating vulnerable plaque
US7087263B2 (en) * 2002-10-09 2006-08-08 Advanced Cardiovascular Systems, Inc. Rare limiting barriers for implantable medical devices
PL376752A1 (en) * 2002-11-07 2006-01-09 Abbott Laboratories Prosthesis having varied concentration of beneficial agent
AU2003291311A1 (en) * 2002-11-07 2004-06-03 Carbon Medical Technologies, Inc. Biocompatible medical device coatings
US8524148B2 (en) * 2002-11-07 2013-09-03 Abbott Laboratories Method of integrating therapeutic agent into a bioerodible medical device
US8221495B2 (en) 2002-11-07 2012-07-17 Abbott Laboratories Integration of therapeutic agent into a bioerodible medical device
US7169178B1 (en) * 2002-11-12 2007-01-30 Advanced Cardiovascular Systems, Inc. Stent with drug coating
US6887266B2 (en) 2002-11-14 2005-05-03 Synecor, Llc Endoprostheses and methods of manufacture
US7285287B2 (en) * 2002-11-14 2007-10-23 Synecor, Llc Carbon dioxide-assisted methods of providing biocompatible intraluminal prostheses
US20040098106A1 (en) * 2002-11-14 2004-05-20 Williams Michael S. Intraluminal prostheses and carbon dioxide-assisted methods of impregnating same with pharmacological agents
US20040098090A1 (en) * 2002-11-14 2004-05-20 Williams Michael S. Polymeric endoprosthesis and method of manufacture
US6982004B1 (en) 2002-11-26 2006-01-03 Advanced Cardiovascular Systems, Inc. Electrostatic loading of drugs on implantable medical devices
US20040111144A1 (en) * 2002-12-06 2004-06-10 Lawin Laurie R. Barriers for polymeric coatings
US7455687B2 (en) * 2002-12-30 2008-11-25 Advanced Cardiovascular Systems, Inc. Polymer link hybrid stent
US7563483B2 (en) * 2003-02-26 2009-07-21 Advanced Cardiovascular Systems Inc. Methods for fabricating a coating for implantable medical devices
US6926919B1 (en) * 2003-02-26 2005-08-09 Advanced Cardiovascular Systems, Inc. Method for fabricating a coating for a medical device
US7001421B2 (en) 2003-02-28 2006-02-21 Medtronic Vascular, Inc. Stent with phenoxy primer coating
US6932930B2 (en) * 2003-03-10 2005-08-23 Synecor, Llc Intraluminal prostheses having polymeric material with selectively modified crystallinity and methods of making same
EP1462801A3 (en) * 2003-03-24 2005-01-05 Tepnel Lifecodes Methods for determining the negative control value for multi-analyte assays
US20040215313A1 (en) * 2003-04-22 2004-10-28 Peiwen Cheng Stent with sandwich type coating
US8246974B2 (en) 2003-05-02 2012-08-21 Surmodics, Inc. Medical devices and methods for producing the same
EP1633320A2 (en) * 2003-05-02 2006-03-15 SurModics, Inc. Implantable controlled release bioactive agent delivery device
US7214383B2 (en) * 2003-06-16 2007-05-08 Bruce Alan Daniels Stent for delivery of drugs to the endothelium
JP2005046611A (en) * 2003-07-01 2005-02-24 Medtronic Vascular Inc Adhesive layer activated by energy for stent coated with polymer containing medicament
US7318945B2 (en) * 2003-07-09 2008-01-15 Medtronic Vascular, Inc. Laminated drug-polymer coated stent having dipped layers
US7056591B1 (en) * 2003-07-30 2006-06-06 Advanced Cardiovascular Systems, Inc. Hydrophobic biologically absorbable coatings for drug delivery devices and methods for fabricating the same
US20050050042A1 (en) * 2003-08-20 2005-03-03 Marvin Elder Natural language database querying
US20050288752A1 (en) * 2003-08-25 2005-12-29 Biophan Technologies, Inc. Medical device with an electrically conductive anti-antenna member
US20050288754A1 (en) * 2003-08-25 2005-12-29 Biophan Technologies, Inc. Medical device with an electrically conductive anti-antenna member
US20050283213A1 (en) * 2003-08-25 2005-12-22 Biophan Technologies, Inc. Medical device with an electrically conductive anti-antenna member
US20050049482A1 (en) * 2003-08-25 2005-03-03 Biophan Technologies, Inc. Electromagnetic radiation transparent device and method of making thereof
US8868212B2 (en) * 2003-08-25 2014-10-21 Medtronic, Inc. Medical device with an electrically conductive anti-antenna member
US20050288756A1 (en) * 2003-08-25 2005-12-29 Biophan Technologies, Inc. Medical device with an electrically conductive anti-antenna member
US7441513B1 (en) 2003-09-26 2008-10-28 Advanced Cardiovascular Systems, Inc. Plasma-generated coating apparatus for medical devices and a method of coating deposition
US7744645B2 (en) * 2003-09-29 2010-06-29 Medtronic Vascular, Inc. Laminated drug-polymer coated stent with dipped and cured layers
US7318932B2 (en) * 2003-09-30 2008-01-15 Advanced Cardiovascular Systems, Inc. Coatings for drug delivery devices comprising hydrolitically stable adducts of poly(ethylene-co-vinyl alcohol) and methods for fabricating the same
US7560492B1 (en) 2003-11-25 2009-07-14 Advanced Cardiovascular Systems, Inc. Polysulfone block copolymers as drug-eluting coating material
US7294123B2 (en) * 2003-12-17 2007-11-13 Corris Neurovascular, Inc. Activatable bioactive vascular occlusive device and method of use
US7803178B2 (en) 2004-01-30 2010-09-28 Trivascular, Inc. Inflatable porous implants and methods for drug delivery
US8137397B2 (en) * 2004-02-26 2012-03-20 Boston Scientific Scimed, Inc. Medical devices
US20050196518A1 (en) * 2004-03-03 2005-09-08 Stenzel Eric B. Method and system for making a coated medical device
US7247159B2 (en) * 2004-04-08 2007-07-24 Cordis Neurovascular, Inc. Activatable bioactive vascular occlusive device
US7335264B2 (en) * 2004-04-22 2008-02-26 Boston Scientific Scimed, Inc. Differentially coated medical devices, system for differentially coating medical devices, and coating method
US8980300B2 (en) 2004-08-05 2015-03-17 Advanced Cardiovascular Systems, Inc. Plasticizers for coating compositions
US7588642B1 (en) 2004-11-29 2009-09-15 Advanced Cardiovascular Systems, Inc. Abluminal stent coating apparatus and method using a brush assembly
US7632307B2 (en) * 2004-12-16 2009-12-15 Advanced Cardiovascular Systems, Inc. Abluminal, multilayer coating constructs for drug-delivery stents
US20060140867A1 (en) * 2004-12-28 2006-06-29 Helfer Jeffrey L Coated stent assembly and coating materials
SG171690A1 (en) 2005-03-22 2011-06-29 Harvard College Treatment of protein degradation disorders
US20070010741A1 (en) * 2005-05-19 2007-01-11 Biophan Technologies, Inc. Electromagnetic resonant circuit sleeve for implantable medical device
US8840660B2 (en) 2006-01-05 2014-09-23 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US9108217B2 (en) 2006-01-31 2015-08-18 Nanocopoeia, Inc. Nanoparticle coating of surfaces
EP1988941A2 (en) * 2006-01-31 2008-11-12 Nanocopoeia, Inc. Nanoparticle coating of surfaces
WO2007089881A2 (en) 2006-01-31 2007-08-09 Regents Of The University Of Minnesota Electrospray coating of objects
US8089029B2 (en) 2006-02-01 2012-01-03 Boston Scientific Scimed, Inc. Bioabsorbable metal medical device and method of manufacture
US20070190104A1 (en) * 2006-02-13 2007-08-16 Kamath Kalpana R Coating comprising an adhesive polymeric material for a medical device and method of preparing the same
DK2010168T3 (en) 2006-02-14 2014-07-21 Harvard College Histone deacetylase inhibitore
EP1991247B1 (en) 2006-02-14 2015-10-14 President and Fellows of Harvard College Bifunctional histone deacetylase inhibitors
US20070203564A1 (en) * 2006-02-28 2007-08-30 Boston Scientific Scimed, Inc. Biodegradable implants having accelerated biodegradation properties in vivo
US20070224235A1 (en) 2006-03-24 2007-09-27 Barron Tenney Medical devices having nanoporous coatings for controlled therapeutic agent delivery
US8187620B2 (en) 2006-03-27 2012-05-29 Boston Scientific Scimed, Inc. Medical devices comprising a porous metal oxide or metal material and a polymer coating for delivering therapeutic agents
US8048150B2 (en) 2006-04-12 2011-11-01 Boston Scientific Scimed, Inc. Endoprosthesis having a fiber meshwork disposed thereon
US20070254003A1 (en) * 2006-05-01 2007-11-01 Pu Zhou Non-sticky coatings with therapeutic agents for medical devices
EP2019674B1 (en) * 2006-05-03 2016-11-23 The President and Fellows of Harvard College Histone deacetylase and tubulin deacetylase inhibitors
US8815275B2 (en) 2006-06-28 2014-08-26 Boston Scientific Scimed, Inc. Coatings for medical devices comprising a therapeutic agent and a metallic material
US8771343B2 (en) 2006-06-29 2014-07-08 Boston Scientific Scimed, Inc. Medical devices with selective titanium oxide coatings
EP2054537A2 (en) 2006-08-02 2009-05-06 Boston Scientific Scimed, Inc. Endoprosthesis with three-dimensional disintegration control
WO2008033711A2 (en) 2006-09-14 2008-03-20 Boston Scientific Limited Medical devices with drug-eluting coating
JP2010503494A (en) 2006-09-15 2010-02-04 ボストン サイエンティフィック リミテッド Biodegradable endoprosthesis and method for producing the same
CA2663220A1 (en) 2006-09-15 2008-03-20 Boston Scientific Limited Medical devices and methods of making the same
WO2008034048A2 (en) 2006-09-15 2008-03-20 Boston Scientific Limited Bioerodible endoprosthesis with biostable inorganic layers
WO2008034031A2 (en) 2006-09-15 2008-03-20 Boston Scientific Limited Bioerodible endoprostheses and methods of making the same
EP2068962B1 (en) 2006-09-18 2013-01-30 Boston Scientific Limited Endoprostheses
US7981150B2 (en) 2006-11-09 2011-07-19 Boston Scientific Scimed, Inc. Endoprosthesis with coatings
US9040816B2 (en) * 2006-12-08 2015-05-26 Nanocopoeia, Inc. Methods and apparatus for forming photovoltaic cells using electrospray
US8768486B2 (en) * 2006-12-11 2014-07-01 Medtronic, Inc. Medical leads with frequency independent magnetic resonance imaging protection
ES2506144T3 (en) 2006-12-28 2014-10-13 Boston Scientific Limited Bioerodible endoprosthesis and their manufacturing procedure
US8431149B2 (en) 2007-03-01 2013-04-30 Boston Scientific Scimed, Inc. Coated medical devices for abluminal drug delivery
US8070797B2 (en) 2007-03-01 2011-12-06 Boston Scientific Scimed, Inc. Medical device with a porous surface for delivery of a therapeutic agent
US8067054B2 (en) 2007-04-05 2011-11-29 Boston Scientific Scimed, Inc. Stents with ceramic drug reservoir layer and methods of making and using the same
US7976915B2 (en) 2007-05-23 2011-07-12 Boston Scientific Scimed, Inc. Endoprosthesis with select ceramic morphology
US8002823B2 (en) 2007-07-11 2011-08-23 Boston Scientific Scimed, Inc. Endoprosthesis coating
US7942926B2 (en) 2007-07-11 2011-05-17 Boston Scientific Scimed, Inc. Endoprosthesis coating
US9284409B2 (en) 2007-07-19 2016-03-15 Boston Scientific Scimed, Inc. Endoprosthesis having a non-fouling surface
US7931683B2 (en) 2007-07-27 2011-04-26 Boston Scientific Scimed, Inc. Articles having ceramic coated surfaces
US8815273B2 (en) 2007-07-27 2014-08-26 Boston Scientific Scimed, Inc. Drug eluting medical devices having porous layers
US8221822B2 (en) 2007-07-31 2012-07-17 Boston Scientific Scimed, Inc. Medical device coating by laser cladding
WO2009020520A1 (en) 2007-08-03 2009-02-12 Boston Scientific Scimed, Inc. Coating for medical device having increased surface area
US8052745B2 (en) 2007-09-13 2011-11-08 Boston Scientific Scimed, Inc. Endoprosthesis
US8663309B2 (en) 2007-09-26 2014-03-04 Trivascular, Inc. Asymmetric stent apparatus and method
US8066755B2 (en) 2007-09-26 2011-11-29 Trivascular, Inc. System and method of pivoted stent deployment
US8226701B2 (en) 2007-09-26 2012-07-24 Trivascular, Inc. Stent and delivery system for deployment thereof
AU2008308474B2 (en) 2007-10-04 2014-07-24 Trivascular, Inc. Modular vascular graft for low profile percutaneous delivery
US8029554B2 (en) 2007-11-02 2011-10-04 Boston Scientific Scimed, Inc. Stent with embedded material
US7938855B2 (en) 2007-11-02 2011-05-10 Boston Scientific Scimed, Inc. Deformable underlayer for stent
US8216632B2 (en) 2007-11-02 2012-07-10 Boston Scientific Scimed, Inc. Endoprosthesis coating
US8083789B2 (en) 2007-11-16 2011-12-27 Trivascular, Inc. Securement assembly and method for expandable endovascular device
US8328861B2 (en) 2007-11-16 2012-12-11 Trivascular, Inc. Delivery system and method for bifurcated graft
CA2710386A1 (en) * 2007-12-21 2009-07-09 Coda Therapeutics, Inc. Improved medical devices
AU2009217354B2 (en) 2008-02-22 2013-10-10 Covidien Lp Methods and apparatus for flow restoration
JP5581311B2 (en) 2008-04-22 2014-08-27 ボストン サイエンティフィック サイムド,インコーポレイテッド MEDICAL DEVICE HAVING INORGANIC MATERIAL COATING AND MANUFACTURING METHOD THEREOF
US8932346B2 (en) 2008-04-24 2015-01-13 Boston Scientific Scimed, Inc. Medical devices having inorganic particle layers
US7998192B2 (en) 2008-05-09 2011-08-16 Boston Scientific Scimed, Inc. Endoprostheses
US8236046B2 (en) 2008-06-10 2012-08-07 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis
WO2009155328A2 (en) 2008-06-18 2009-12-23 Boston Scientific Scimed, Inc. Endoprosthesis coating
EP2321264B1 (en) 2008-07-23 2016-05-04 President and Fellows of Harvard College Deacetylase inhibitors and uses thereof
US7985252B2 (en) 2008-07-30 2011-07-26 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis
US8382824B2 (en) 2008-10-03 2013-02-26 Boston Scientific Scimed, Inc. Medical implant having NANO-crystal grains with barrier layers of metal nitrides or fluorides
US8231980B2 (en) 2008-12-03 2012-07-31 Boston Scientific Scimed, Inc. Medical implants including iridium oxide
WO2010101901A2 (en) 2009-03-02 2010-09-10 Boston Scientific Scimed, Inc. Self-buffering medical implants
US8071156B2 (en) 2009-03-04 2011-12-06 Boston Scientific Scimed, Inc. Endoprostheses
US8287937B2 (en) 2009-04-24 2012-10-16 Boston Scientific Scimed, Inc. Endoprosthese
WO2011019393A2 (en) 2009-08-11 2011-02-17 President And Fellows Of Harvard College Class- and isoform-specific hdac inhibitors and uses thereof
EP2338534A2 (en) * 2009-12-21 2011-06-29 Biotronik VI Patent AG Medical implant, coating method and implantation method
WO2011091213A2 (en) 2010-01-22 2011-07-28 Acetylon Pharmaceuticals Reverse amide compounds as protein deacetylase inhibitors and methods of use thereof
US8668732B2 (en) 2010-03-23 2014-03-11 Boston Scientific Scimed, Inc. Surface treated bioerodible metal endoprostheses
US8389041B2 (en) 2010-06-17 2013-03-05 Abbott Cardiovascular Systems, Inc. Systems and methods for rotating and coating an implantable device
US20180211813A1 (en) * 2010-08-23 2018-07-26 Exogenesis Corporation Drug delivery system and method of manufacturing thereof
WO2013028529A1 (en) * 2011-08-19 2013-02-28 Exogenesis Corporation Drug delivery system and method of manufacturing thereof
BR112013011868A2 (en) 2010-11-16 2016-08-23 Acetylon Pharmaceuticals Inc hydroxy amide pyrimidine compounds as protein deacetylase inhibitors, pharmaceutical composition and use of said compounds
US8992595B2 (en) 2012-04-04 2015-03-31 Trivascular, Inc. Durable stent graft with tapered struts and stable delivery methods and devices
US9498363B2 (en) 2012-04-06 2016-11-22 Trivascular, Inc. Delivery catheter for endovascular device
US9827401B2 (en) 2012-06-01 2017-11-28 Surmodics, Inc. Apparatus and methods for coating medical devices
MX351261B (en) 2012-06-01 2017-10-06 Surmodics Inc Apparatus and method for coating balloon catheters.
CA2870170C (en) 2012-09-12 2018-06-12 Boston Scientific Scimed, Inc. Adhesive stent coating for anti-migration
WO2014047328A2 (en) 2012-09-19 2014-03-27 Faller Douglas V Pkc delta inhibitors for use as therapeutics
CA2870173C (en) * 2012-10-25 2017-11-28 Boston Scientific Scimed, Inc. Stent having a tacky silicone coating to prevent stent migration
WO2015020676A1 (en) 2013-08-08 2015-02-12 Boston Scientific Scimed, Inc. Dissolvable or degradable adhesive polymer to prevent stent migration
JP2017505817A (en) 2014-02-04 2017-02-23 アボット カーディオバスキュラー システムズ インコーポレイテッド Drug delivery scaffold or stent having a coating based on NOVOLIMUS and lactide so that the binding of NOVOLIMUS to the coating is minimized
EP3256470B1 (en) 2014-12-23 2023-07-26 Dana-Farber Cancer Institute, Inc. Methods to induce targeted protein degradation through bifunctional molecules
WO2017024317A2 (en) 2015-08-06 2017-02-09 Dana-Farber Cancer Institute, Inc. Methods to induce targeted protein degradation through bifunctional molecules
WO2020112816A1 (en) 2018-11-29 2020-06-04 Surmodics, Inc. Apparatus and methods for coating medical devices
US11819590B2 (en) 2019-05-13 2023-11-21 Surmodics, Inc. Apparatus and methods for coating medical devices
CN111759552A (en) 2020-07-06 2020-10-13 苏州莱诺医疗器械有限公司 Absorbable stent system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4278087A (en) * 1980-04-28 1981-07-14 Alza Corporation Device with integrated operations for controlling release of agent
US4952419A (en) * 1987-08-31 1990-08-28 Eli Lilly And Company Method of making antimicrobial coated implants
US5891420A (en) * 1997-04-21 1999-04-06 Aeropharm Technology Limited Environmentally safe triancinolone acetonide aerosol formulations for oral inhalation
US6129905A (en) * 1997-04-21 2000-10-10 Aeropharm Technology, Inc. Aerosol formulations containing a sugar as a dispersant
US6140355A (en) * 1991-12-17 2000-10-31 Alfa Wassermann S.P.A. Pharmaceutical compositions containing rifaximin for treatment of vaginal infections
US6316018B1 (en) * 1997-04-30 2001-11-13 Ni Ding Drug-releasing coatings for medical devices
US6355058B1 (en) * 1999-12-30 2002-03-12 Advanced Cardiovascular Systems, Inc. Stent with radiopaque coating consisting of particles in a binder
US6358556B1 (en) * 1995-04-19 2002-03-19 Boston Scientific Corporation Drug release stent coating
US6368658B1 (en) * 1999-04-19 2002-04-09 Scimed Life Systems, Inc. Coating medical devices using air suspension

Family Cites Families (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4281669A (en) 1975-05-09 1981-08-04 Macgregor David C Pacemaker electrode with porous system
FR2374910A1 (en) 1976-10-23 1978-07-21 Choay Sa PREPARATION BASED ON HEPARIN, INCLUDING LIPOSOMES, PROCESS FOR OBTAINING IT AND MEDICINAL PRODUCTS CONTAINING SUCH PREPARATIONS
US4299613A (en) 1979-02-22 1981-11-10 Environmental Chemicals, Inc. Controlled release of trace nutrients
US4241046A (en) 1978-11-30 1980-12-23 Papahadjopoulos Demetrios P Method of encapsulating biologically active materials in lipid vesicles
US4400374A (en) 1979-06-22 1983-08-23 Environmental Chemicals, Inc. Controlled release of compounds utilizing a plastic matrix
US4346028A (en) 1979-12-14 1982-08-24 Monsanto Company Asbestiform crystalline calcium sodium or lithium phosphate, preparation and compositions
EP0032622B1 (en) 1979-12-20 1985-08-14 Dennis Chapman Polymerisable phospholipids and polymers thereof, methods for their preparation, methods for their use in coating substrates and forming liposomes and the resulting coated substrates and liposome compositions
US4441215A (en) 1980-11-17 1984-04-10 Kaster Robert L Vascular graft
GB8401534D0 (en) 1984-01-20 1984-02-22 Royal Free Hosp School Med Biocompatible surfaces
US5197977A (en) 1984-01-30 1993-03-30 Meadox Medicals, Inc. Drug delivery collagen-impregnated synthetic vascular graft
US4633873A (en) 1984-04-26 1987-01-06 American Cyanamid Company Surgical repair mesh
US4879135A (en) 1984-07-23 1989-11-07 University Of Medicine And Dentistry Of New Jersey Drug bonded prosthesis and process for producing same
GB8428109D0 (en) 1984-11-07 1984-12-12 Biocompatibles Ltd Biocompatible surfaces
ES8705239A1 (en) 1984-12-05 1987-05-01 Medinvent Sa A device for implantation and a method of implantation in a vessel using such device.
US4678660A (en) 1984-12-07 1987-07-07 Deseret Medical, Inc. Thermoplastic polyurethane anticoagulant alloy coating
US4718907A (en) 1985-06-20 1988-01-12 Atrium Medical Corporation Vascular prosthesis having fluorinated coating with varying F/C ratio
GB8527071D0 (en) 1985-11-04 1985-12-11 Biocompatibles Ltd Plastics
US4733665C2 (en) 1985-11-07 2002-01-29 Expandable Grafts Partnership Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft
GB8618334D0 (en) 1986-07-28 1986-09-03 Biocompatibles Ltd Polyesters
DE3608158A1 (en) 1986-03-12 1987-09-17 Braun Melsungen Ag VESSELED PROSTHESIS IMPREGNATED WITH CROSSLINED GELATINE AND METHOD FOR THE PRODUCTION THEREOF
US4878906A (en) 1986-03-25 1989-11-07 Servetus Partnership Endoprosthesis for repairing a damaged vessel
US5350395A (en) 1986-04-15 1994-09-27 Yock Paul G Angioplasty apparatus facilitating rapid exchanges
US4723549A (en) 1986-09-18 1988-02-09 Wholey Mark H Method and apparatus for dilating blood vessels
US4722335A (en) 1986-10-20 1988-02-02 Vilasi Joseph A Expandable endotracheal tube
IT1196836B (en) 1986-12-12 1988-11-25 Sorin Biomedica Spa Polymeric or metal alloy prosthesis with biocompatible carbon coating
US4816339A (en) 1987-04-28 1989-03-28 Baxter International Inc. Multi-layered poly(tetrafluoroethylene)/elastomer materials useful for in vivo implantation
US5059211A (en) 1987-06-25 1991-10-22 Duke University Absorbable vascular stent
US5128408A (en) 1987-11-16 1992-07-07 Toyo Boseki Kabushiki Kaisha Gas-permeable material with excellent compatibility with blood
US4877030A (en) 1988-02-02 1989-10-31 Andreas Beck Device for the widening of blood vessels
US5192311A (en) 1988-04-25 1993-03-09 Angeion Corporation Medical implant and method of making
JP2836878B2 (en) 1988-08-24 1998-12-14 スリピアン,マービン,ジェイ Intraluminal sealing with biodegradable polymer material
US5085629A (en) 1988-10-06 1992-02-04 Medical Engineering Corporation Biodegradable stent
US5163958A (en) 1989-02-02 1992-11-17 Cordis Corporation Carbon coated tubular endoprosthesis
US5289831A (en) 1989-03-09 1994-03-01 Vance Products Incorporated Surface-treated stent, catheter, cannula, and the like
NZ228382A (en) 1989-03-17 1992-08-26 Carter Holt Harvey Plastic Pro Drug administering coil-like device for insertion in body cavity of animal
US5108755A (en) 1989-04-27 1992-04-28 Sri International Biodegradable composites for internal medical use
US5061254A (en) 1989-06-21 1991-10-29 Becton, Dickinson And Company Thermoplastic elastomeric hydrophilic polyetherurethane expandable catheter
US5015238A (en) 1989-06-21 1991-05-14 Becton, Dickinson And Company Expandable obturator and catheter assembly including same
IT1230047B (en) 1989-07-04 1991-09-27 Giovanni Brotzu VASCULAR PROSTHESIS CONTAINING IN THE WALL INGLOBAN MICROCAPS HORMONE-PRODUCING CELLS.
US5084065A (en) 1989-07-10 1992-01-28 Corvita Corporation Reinforced graft assembly
EP0408245B1 (en) 1989-07-13 1994-03-02 American Medical Systems, Inc. Stent placement instrument
US5649951A (en) 1989-07-25 1997-07-22 Smith & Nephew Richards, Inc. Zirconium oxide and zirconium nitride coated stents
US5135516A (en) 1989-12-15 1992-08-04 Boston Scientific Corporation Lubricious antithrombogenic catheters, guidewires and coatings
DK0441516T3 (en) 1990-02-08 1995-06-12 Howmedica Inflatable catheter
US5545208A (en) 1990-02-28 1996-08-13 Medtronic, Inc. Intralumenal drug eluting prosthesis
US5156623A (en) 1990-04-16 1992-10-20 Olympus Optical Co., Ltd. Sustained release material and method of manufacturing the same
US5290271A (en) 1990-05-14 1994-03-01 Jernberg Gary R Surgical implant and method for controlled release of chemotherapeutic agents
EP0528993A1 (en) 1990-05-18 1993-03-03 STACK, Richard S. Intraluminal stent
US5279594A (en) 1990-05-23 1994-01-18 Jackson Richard R Intubation devices with local anesthetic effect for medical use
US5236447A (en) 1990-06-29 1993-08-17 Nissho Corporation Artificial tubular organ
DK0546021T3 (en) 1990-08-28 1996-03-18 Meadox Medicals Inc Self-supporting woven blood vessel graft
US5163952A (en) 1990-09-14 1992-11-17 Michael Froix Expandable polymeric stent with memory and delivery apparatus and method
US5180366A (en) 1990-10-10 1993-01-19 Woods W T Apparatus and method for angioplasty and for preventing re-stenosis
JPH0717314Y2 (en) 1990-10-18 1995-04-26 ソン ホーヨン Self-expanding intravascular stent
US5163951A (en) 1990-12-27 1992-11-17 Corvita Corporation Mesh composite graft
US5145684A (en) 1991-01-25 1992-09-08 Sterling Drug Inc. Surface modified drug nanoparticles
US5383925A (en) 1992-09-14 1995-01-24 Meadox Medicals, Inc. Three-dimensional braided soft tissue prosthesis
US5743875A (en) 1991-05-15 1998-04-28 Advanced Cardiovascular Systems, Inc. Catheter shaft with an oblong transverse cross-section
US5356433A (en) 1991-08-13 1994-10-18 Cordis Corporation Biocompatible metal surfaces
US5151105A (en) 1991-10-07 1992-09-29 Kwan Gett Clifford Collapsible vessel sleeve implant
US5234457A (en) 1991-10-09 1993-08-10 Boston Scientific Corporation Impregnated stent
US5282860A (en) 1991-10-16 1994-02-01 Olympus Optical Co., Ltd. Stent tube for medical use
CA2086642C (en) 1992-01-09 2004-06-15 Randall E. Morris Method of treating hyperproliferative vascular disease
US5236457A (en) 1992-02-27 1993-08-17 Zimmer, Inc. Method of making an implant having a metallic porous surface
US5599352A (en) 1992-03-19 1997-02-04 Medtronic, Inc. Method of making a drug eluting stent
US5306250A (en) 1992-04-02 1994-04-26 Indiana University Foundation Method and apparatus for intravascular drug delivery
US5383927A (en) 1992-05-07 1995-01-24 Intervascular Inc. Non-thromogenic vascular prosthesis
US5383928A (en) 1992-06-10 1995-01-24 Emory University Stent sheath for local drug delivery
US5342621A (en) 1992-09-15 1994-08-30 Advanced Cardiovascular Systems, Inc. Antithrombogenic surface
US5342348A (en) 1992-12-04 1994-08-30 Kaplan Aaron V Method and device for treating and enlarging body lumens
EP0604022A1 (en) 1992-12-22 1994-06-29 Advanced Cardiovascular Systems, Inc. Multilayered biodegradable stent and method for its manufacture
US5630840A (en) 1993-01-19 1997-05-20 Schneider (Usa) Inc Clad composite stent
US5607463A (en) * 1993-03-30 1997-03-04 Medtronic, Inc. Intravascular medical device
US5441515A (en) 1993-04-23 1995-08-15 Advanced Cardiovascular Systems, Inc. Ratcheting stent
US5464650A (en) 1993-04-26 1995-11-07 Medtronic, Inc. Intravascular stent and method
EP0696185B1 (en) * 1993-04-28 1998-08-12 Focal, Inc. Apparatus, product and use related to intraluminal photothermoforming
US5886026A (en) * 1993-07-19 1999-03-23 Angiotech Pharmaceuticals Inc. Anti-angiogenic compositions and methods of use
US5380299A (en) 1993-08-30 1995-01-10 Med Institute, Inc. Thrombolytic treated intravascular medical device
US5891108A (en) 1994-09-12 1999-04-06 Cordis Corporation Drug delivery stent
EP1181904B1 (en) 1994-10-17 2009-06-24 Kabushikikaisha Igaki Iryo Sekkei Stent for liberating drug
EP0814729B1 (en) 1995-03-10 2000-08-09 Impra, Inc. Endoluminal encapsulated stent and methods of manufacture
US5768507A (en) 1995-09-29 1998-06-16 Cirrus Logic, Inc. Method and apparatus for overcoming a slope overload condition while using differential pulse code modulation scheme
US5876433A (en) * 1996-05-29 1999-03-02 Ethicon, Inc. Stent and method of varying amounts of heparin coated thereon to control treatment
US5797887A (en) * 1996-08-27 1998-08-25 Novovasc Llc Medical device with a surface adapted for exposure to a blood stream which is coated with a polymer containing a nitrosyl-containing organo-metallic compound which releases nitric oxide from the coating to mediate platelet aggregation
US5843172A (en) 1997-04-15 1998-12-01 Advanced Cardiovascular Systems, Inc. Porous medicated stent
US5891507A (en) 1997-07-28 1999-04-06 Iowa-India Investments Company Limited Process for coating a surface of a metallic stent

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4278087A (en) * 1980-04-28 1981-07-14 Alza Corporation Device with integrated operations for controlling release of agent
US4952419A (en) * 1987-08-31 1990-08-28 Eli Lilly And Company Method of making antimicrobial coated implants
US6140355A (en) * 1991-12-17 2000-10-31 Alfa Wassermann S.P.A. Pharmaceutical compositions containing rifaximin for treatment of vaginal infections
US6358556B1 (en) * 1995-04-19 2002-03-19 Boston Scientific Corporation Drug release stent coating
US5891420A (en) * 1997-04-21 1999-04-06 Aeropharm Technology Limited Environmentally safe triancinolone acetonide aerosol formulations for oral inhalation
US6129905A (en) * 1997-04-21 2000-10-10 Aeropharm Technology, Inc. Aerosol formulations containing a sugar as a dispersant
US6316018B1 (en) * 1997-04-30 2001-11-13 Ni Ding Drug-releasing coatings for medical devices
US6368658B1 (en) * 1999-04-19 2002-04-09 Scimed Life Systems, Inc. Coating medical devices using air suspension
US6355058B1 (en) * 1999-12-30 2002-03-12 Advanced Cardiovascular Systems, Inc. Stent with radiopaque coating consisting of particles in a binder

Cited By (158)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7682647B2 (en) 1999-09-03 2010-03-23 Advanced Cardiovascular Systems, Inc. Thermal treatment of a drug eluting implantable medical device
US7807211B2 (en) 1999-09-03 2010-10-05 Advanced Cardiovascular Systems, Inc. Thermal treatment of an implantable medical device
US6908624B2 (en) 1999-12-23 2005-06-21 Advanced Cardiovascular Systems, Inc. Coating for implantable devices and a method of forming the same
US20040086542A1 (en) * 1999-12-23 2004-05-06 Hossainy Syed F.A. Coating for implantable devices and a method of forming the same
US6790228B2 (en) 1999-12-23 2004-09-14 Advanced Cardiovascular Systems, Inc. Coating for implantable devices and a method of forming the same
US8236048B2 (en) 2000-05-12 2012-08-07 Cordis Corporation Drug/drug delivery systems for the prevention and treatment of vascular disease
US7682648B1 (en) 2000-05-31 2010-03-23 Advanced Cardiovascular Systems, Inc. Methods for forming polymeric coatings on stents
US7691401B2 (en) 2000-09-28 2010-04-06 Advanced Cardiovascular Systems, Inc. Poly(butylmethacrylate) and rapamycin coated stent
US8303609B2 (en) 2000-09-29 2012-11-06 Cordis Corporation Coated medical devices
US7807210B1 (en) 2000-10-31 2010-10-05 Advanced Cardiovascular Systems, Inc. Hemocompatible polymers on hydrophobic porous polymers
US7678143B2 (en) 2000-12-22 2010-03-16 Advanced Cardiovascular Systems, Inc. Ethylene-carboxyl copolymers as drug delivery matrices
WO2002058753A3 (en) * 2000-12-28 2003-01-16 Advanced Cardiovascular System Coating for implantable devices and a method of forming the same
US7820190B2 (en) 2000-12-28 2010-10-26 Advanced Cardiovascular Systems, Inc. Coating for implantable devices and a method of forming the same
WO2002058753A2 (en) * 2000-12-28 2002-08-01 Advanced Cardiovascular Systems, Inc. Coating for implantable devices and a method of forming the same
US8110243B2 (en) 2001-04-24 2012-02-07 Advanced Cardiovascular Systems, Inc. Coating for a stent and a method of forming the same
US8182527B2 (en) 2001-05-07 2012-05-22 Cordis Corporation Heparin barrier coating for controlled drug release
US8603536B2 (en) 2001-05-09 2013-12-10 Advanced Cardiovascular Systems, Inc. Microparticle coated medical device
US8361539B2 (en) 2001-05-09 2013-01-29 Advanced Cardiovascular Systems, Inc. Methods of forming microparticle coated medical device
US8741378B1 (en) 2001-06-27 2014-06-03 Advanced Cardiovascular Systems, Inc. Methods of coating an implantable device
US7985440B2 (en) 2001-06-27 2011-07-26 Advanced Cardiovascular Systems, Inc. Method of using a mandrel to coat a stent
US10064982B2 (en) 2001-06-27 2018-09-04 Abbott Cardiovascular Systems Inc. PDLLA stent coating
US7258891B2 (en) * 2001-06-28 2007-08-21 Advanced Cardiovascular Systems, Inc. Stent mounting assembly and a method of using the same to coat a stent
US7682669B1 (en) 2001-07-30 2010-03-23 Advanced Cardiovascular Systems, Inc. Methods for covalently immobilizing anti-thrombogenic material into a coating on a medical device
US8303651B1 (en) 2001-09-07 2012-11-06 Advanced Cardiovascular Systems, Inc. Polymeric coating for reducing the rate of release of a therapeutic substance from a stent
US7989018B2 (en) 2001-09-17 2011-08-02 Advanced Cardiovascular Systems, Inc. Fluid treatment of a polymeric coating on an implantable medical device
US8449905B2 (en) 2001-10-22 2013-05-28 Covidien Lp Liquid and low melting coatings for stents
US9333279B2 (en) 2001-10-22 2016-05-10 Covidien Lp Coated stent comprising an HMG-CoA reductase inhibitor
US8900618B2 (en) 2001-10-22 2014-12-02 Covidien Lp Liquid and low melting coatings for stents
US7919075B1 (en) 2002-03-20 2011-04-05 Advanced Cardiovascular Systems, Inc. Coatings for implantable medical devices
US8563025B2 (en) 2002-03-20 2013-10-22 Advanced Cardiovascular Systems, Inc. Coatings for implantable medical devices
US8173199B2 (en) 2002-03-27 2012-05-08 Advanced Cardiovascular Systems, Inc. 40-O-(2-hydroxy)ethyl-rapamycin coated stent
US20070026131A1 (en) * 2002-03-27 2007-02-01 Advanced Cardiovascular Systems, Inc. 40-O-(2-hydroxy)ethyl-rapamycin coated stent
US8961588B2 (en) 2002-03-27 2015-02-24 Advanced Cardiovascular Systems, Inc. Method of coating a stent with a release polymer for 40-O-(2-hydroxy)ethyl-rapamycin
US20040138695A1 (en) * 2002-06-18 2004-07-15 Shu-Tung Li Coatings of implants
US7901703B2 (en) 2002-06-21 2011-03-08 Advanced Cardiovascular Systems, Inc. Polycationic peptides for cardiovascular therapy
US7875286B2 (en) 2002-06-21 2011-01-25 Advanced Cardiovascular Systems, Inc. Polycationic peptide coatings and methods of coating implantable medical devices
US8506617B1 (en) 2002-06-21 2013-08-13 Advanced Cardiovascular Systems, Inc. Micronized peptide coated stent
US8067023B2 (en) 2002-06-21 2011-11-29 Advanced Cardiovascular Systems, Inc. Implantable medical devices incorporating plasma polymerized film layers and charged amino acids
US7794743B2 (en) 2002-06-21 2010-09-14 Advanced Cardiovascular Systems, Inc. Polycationic peptide coatings and methods of making the same
US9084671B2 (en) 2002-06-21 2015-07-21 Advanced Cardiovascular Systems, Inc. Methods of forming a micronized peptide coated stent
US7803406B2 (en) 2002-06-21 2010-09-28 Advanced Cardiovascular Systems, Inc. Polycationic peptide coatings and methods of coating implantable medical devices
US7803394B2 (en) 2002-06-21 2010-09-28 Advanced Cardiovascular Systems, Inc. Polycationic peptide hydrogel coatings for cardiovascular therapy
US7732535B2 (en) 2002-09-05 2010-06-08 Advanced Cardiovascular Systems, Inc. Coating for controlled release of drugs from implantable medical devices
US20050187376A1 (en) * 2002-09-05 2005-08-25 Pacetti Stephen D. Coating for controlled release of drugs from implantable medical devices
US20040054104A1 (en) * 2002-09-05 2004-03-18 Pacetti Stephen D. Coatings for drug delivery devices comprising modified poly(ethylene-co-vinyl alcohol)
US8042487B2 (en) 2002-10-08 2011-10-25 Advanced Cardiovascular Systems, Inc. System for coating stents
US7556837B2 (en) 2002-10-08 2009-07-07 Advanced Cardiovascular Systems, Inc. Method for coating stents
US20080110396A1 (en) * 2002-10-08 2008-05-15 Hossainy Syed F System for Coating Stents
US20080107795A1 (en) * 2002-10-08 2008-05-08 Hossainy Syed F Method for Coating Stents
US7335265B1 (en) 2002-10-08 2008-02-26 Advanced Cardiovascular Systems Inc. Apparatus and method for coating stents
US7022372B1 (en) 2002-11-12 2006-04-04 Advanced Cardiovascular Systems, Inc. Compositions for coating implantable medical devices
US8871236B2 (en) 2002-12-11 2014-10-28 Abbott Cardiovascular Systems Inc. Biocompatible polyacrylate compositions for medical applications
US8871883B2 (en) 2002-12-11 2014-10-28 Abbott Cardiovascular Systems Inc. Biocompatible coating for implantable medical devices
US7776926B1 (en) 2002-12-11 2010-08-17 Advanced Cardiovascular Systems, Inc. Biocompatible coating for implantable medical devices
US7758880B2 (en) 2002-12-11 2010-07-20 Advanced Cardiovascular Systems, Inc. Biocompatible polyacrylate compositions for medical applications
US8986726B2 (en) 2002-12-11 2015-03-24 Abbott Cardiovascular Systems Inc. Biocompatible polyacrylate compositions for medical applications
US8647655B2 (en) 2002-12-11 2014-02-11 Abbott Cardiovascular Systems Inc. Biocompatible polyacrylate compositions for medical applications
US7648725B2 (en) 2002-12-12 2010-01-19 Advanced Cardiovascular Systems, Inc. Clamp mandrel fixture and a method of using the same to minimize coating defects
US8586069B2 (en) 2002-12-16 2013-11-19 Abbott Cardiovascular Systems Inc. Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders
US8435550B2 (en) 2002-12-16 2013-05-07 Abbot Cardiovascular Systems Inc. Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device
US8673334B2 (en) 2003-05-08 2014-03-18 Abbott Cardiovascular Systems Inc. Stent coatings comprising hydrophilic additives
US9175162B2 (en) 2003-05-08 2015-11-03 Advanced Cardiovascular Systems, Inc. Methods for forming stent coatings comprising hydrophilic additives
US7967998B2 (en) 2003-06-25 2011-06-28 Advanced Cardiocasvular Systems, Inc. Method of polishing implantable medical devices to lower thrombogenecity and increase mechanical stability
US7645474B1 (en) 2003-07-31 2010-01-12 Advanced Cardiovascular Systems, Inc. Method and system of purifying polymers for use with implantable medical devices
US7887871B2 (en) 2003-07-31 2011-02-15 Advanced Cardiovascular Systems, Inc. Method and system for irradiation of a drug eluting implantable medical device
US7785512B1 (en) 2003-07-31 2010-08-31 Advanced Cardiovascular Systems, Inc. Method and system of controlled temperature mixing and molding of polymers with active agents for implantable medical devices
US8197879B2 (en) 2003-09-30 2012-06-12 Advanced Cardiovascular Systems, Inc. Method for selectively coating surfaces of a stent
US7704544B2 (en) 2003-10-07 2010-04-27 Advanced Cardiovascular Systems, Inc. System and method for coating a tubular implantable medical device
US8052988B2 (en) 2003-11-06 2011-11-08 Advanced Cardiovascular Systems, Inc. Methods for fabricating coatings for drug delivery devices having gradient of hydration
US8231962B2 (en) 2003-11-06 2012-07-31 Advanced Cardiovascular Systems, Inc. Coatings for drug delivery devices having gradient of hydration
US8277926B2 (en) 2003-11-06 2012-10-02 Advanced Cardiovascular Systems, Inc. Methods for fabricating coatings for drug delivery devices having gradient of hydration
US9114198B2 (en) 2003-11-19 2015-08-25 Advanced Cardiovascular Systems, Inc. Biologically beneficial coatings for implantable devices containing fluorinated polymers and methods for fabricating the same
US8192752B2 (en) 2003-11-21 2012-06-05 Advanced Cardiovascular Systems, Inc. Coatings for implantable devices including biologically erodable polyesters and methods for fabricating the same
US7807722B2 (en) 2003-11-26 2010-10-05 Advanced Cardiovascular Systems, Inc. Biobeneficial coating compositions and methods of making and using thereof
US8052912B2 (en) 2003-12-01 2011-11-08 Advanced Cardiovascular Systems, Inc. Temperature controlled crimping
USRE45744E1 (en) 2003-12-01 2015-10-13 Abbott Cardiovascular Systems Inc. Temperature controlled crimping
US7772359B2 (en) 2003-12-19 2010-08-10 Advanced Cardiovascular Systems, Inc. Biobeneficial polyamide/polyethylene glycol polymers for use with drug eluting stents
US7786249B2 (en) 2003-12-19 2010-08-31 Advanced Cardiovascular Systems, Inc. Biobeneficial polyamide/polyethylene glycol polymers for use with drug eluting stents
US8309112B2 (en) 2003-12-24 2012-11-13 Advanced Cardiovascular Systems, Inc. Coatings for implantable medical devices comprising hydrophilic substances and methods for fabricating the same
US8685431B2 (en) 2004-03-16 2014-04-01 Advanced Cardiovascular Systems, Inc. Biologically absorbable coatings for implantable devices based on copolymers having ester bonds and methods for fabricating the same
US8551512B2 (en) 2004-03-22 2013-10-08 Advanced Cardiovascular Systems, Inc. Polyethylene glycol/poly(butylene terephthalate) copolymer coated devices including EVEROLIMUS
US8778014B1 (en) 2004-03-31 2014-07-15 Advanced Cardiovascular Systems, Inc. Coatings for preventing balloon damage to polymer coated stents
US7820732B2 (en) 2004-04-30 2010-10-26 Advanced Cardiovascular Systems, Inc. Methods for modulating thermal and mechanical properties of coatings on implantable devices
US8293890B2 (en) 2004-04-30 2012-10-23 Advanced Cardiovascular Systems, Inc. Hyaluronic acid based copolymers
US9101697B2 (en) 2004-04-30 2015-08-11 Abbott Cardiovascular Systems Inc. Hyaluronic acid based copolymers
US9561309B2 (en) 2004-05-27 2017-02-07 Advanced Cardiovascular Systems, Inc. Antifouling heparin coatings
US9364498B2 (en) 2004-06-18 2016-06-14 Abbott Cardiovascular Systems Inc. Heparin prodrugs and drug delivery stents formed therefrom
US9375445B2 (en) 2004-06-18 2016-06-28 Abbott Cardiovascular Systems Inc. Heparin prodrugs and drug delivery stents formed therefrom
US8017140B2 (en) 2004-06-29 2011-09-13 Advanced Cardiovascular System, Inc. Drug-delivery stent formulations for restenosis and vulnerable plaque
US7758881B2 (en) 2004-06-30 2010-07-20 Advanced Cardiovascular Systems, Inc. Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device
US8357391B2 (en) 2004-07-30 2013-01-22 Advanced Cardiovascular Systems, Inc. Coatings for implantable devices comprising poly (hydroxy-alkanoates) and diacid linkages
US8586075B2 (en) 2004-07-30 2013-11-19 Abbott Cardiovascular Systems Inc. Coatings for implantable devices comprising poly(hydroxy-alkanoates) and diacid linkages
US9580558B2 (en) 2004-07-30 2017-02-28 Abbott Cardiovascular Systems Inc. Polymers containing siloxane monomers
US8758801B2 (en) 2004-07-30 2014-06-24 Abbott Cardiocascular Systems Inc. Coatings for implantable devices comprising poly(hydroxy-alkanoates) and diacid linkages
US7648727B2 (en) 2004-08-26 2010-01-19 Advanced Cardiovascular Systems, Inc. Methods for manufacturing a coated stent-balloon assembly
US7766884B2 (en) 2004-08-31 2010-08-03 Advanced Cardiovascular Systems, Inc. Polymers of fluorinated monomers and hydrophilic monomers
US8110211B2 (en) 2004-09-22 2012-02-07 Advanced Cardiovascular Systems, Inc. Medicated coatings for implantable medical devices including polyacrylates
US20060088572A1 (en) * 2004-10-21 2006-04-27 Medtronic, Inc. Angiotensin-(1-7) eluting polymer-coated medical device to reduce restenosis and improve endothelial cell function
US7176261B2 (en) * 2004-10-21 2007-02-13 Medtronic, Inc. Angiotensin-(1-7) eluting polymer-coated medical device to reduce restenosis and improve endothelial cell function
US8603634B2 (en) 2004-10-27 2013-12-10 Abbott Cardiovascular Systems Inc. End-capped poly(ester amide) copolymers
US9067000B2 (en) 2004-10-27 2015-06-30 Abbott Cardiovascular Systems Inc. End-capped poly(ester amide) copolymers
EP1652495A1 (en) * 2004-10-28 2006-05-03 Cordis Neurovascular, Inc. Expandable stent having a dissolvable portion
US20060095112A1 (en) * 2004-10-28 2006-05-04 Jones Donald K Expandable stent having a dissolvable portion
US7147659B2 (en) 2004-10-28 2006-12-12 Cordis Neurovascular, Inc. Expandable stent having a dissolvable portion
US20070073381A1 (en) * 2004-10-28 2007-03-29 Jones Donald K Expandable stent having a dissolvable portion
US20080281394A1 (en) * 2004-10-28 2008-11-13 Jones Donald K Covered stent having a dissolvable portion
US7749263B2 (en) 2004-10-29 2010-07-06 Abbott Cardiovascular Systems Inc. Poly(ester amide) filler blends for modulation of coating properties
US8609123B2 (en) 2004-11-29 2013-12-17 Advanced Cardiovascular Systems, Inc. Derivatized poly(ester amide) as a biobeneficial coating
US7892592B1 (en) 2004-11-30 2011-02-22 Advanced Cardiovascular Systems, Inc. Coating abluminal surfaces of stents and other implantable medical devices
US9339592B2 (en) 2004-12-22 2016-05-17 Abbott Cardiovascular Systems Inc. Polymers of fluorinated monomers and hydrocarbon monomers
US7699889B2 (en) 2004-12-27 2010-04-20 Advanced Cardiovascular Systems, Inc. Poly(ester amide) block copolymers
US8007775B2 (en) 2004-12-30 2011-08-30 Advanced Cardiovascular Systems, Inc. Polymers containing poly(hydroxyalkanoates) and agents for use with medical articles and methods of fabricating the same
US7795467B1 (en) 2005-04-26 2010-09-14 Advanced Cardiovascular Systems, Inc. Bioabsorbable, biobeneficial polyurethanes for use in medical devices
US8778375B2 (en) 2005-04-29 2014-07-15 Advanced Cardiovascular Systems, Inc. Amorphous poly(D,L-lactide) coating
US7823533B2 (en) 2005-06-30 2010-11-02 Advanced Cardiovascular Systems, Inc. Stent fixture and method for reducing coating defects
US8021676B2 (en) 2005-07-08 2011-09-20 Advanced Cardiovascular Systems, Inc. Functionalized chemically inert polymers for coatings
US7785647B2 (en) 2005-07-25 2010-08-31 Advanced Cardiovascular Systems, Inc. Methods of providing antioxidants to a drug containing product
US7735449B1 (en) 2005-07-28 2010-06-15 Advanced Cardiovascular Systems, Inc. Stent fixture having rounded support structures and method for use thereof
US7976891B1 (en) 2005-12-16 2011-07-12 Advanced Cardiovascular Systems, Inc. Abluminal stent coating apparatus and method of using focused acoustic energy
US7867547B2 (en) 2005-12-19 2011-01-11 Advanced Cardiovascular Systems, Inc. Selectively coating luminal surfaces of stents
US8067025B2 (en) 2006-02-17 2011-11-29 Advanced Cardiovascular Systems, Inc. Nitric oxide generating medical devices
US7713637B2 (en) 2006-03-03 2010-05-11 Advanced Cardiovascular Systems, Inc. Coating containing PEGylated hyaluronic acid and a PEGylated non-hyaluronic acid polymer
US8741379B2 (en) 2006-05-04 2014-06-03 Advanced Cardiovascular Systems, Inc. Rotatable support elements for stents
US8003156B2 (en) 2006-05-04 2011-08-23 Advanced Cardiovascular Systems, Inc. Rotatable support elements for stents
US8465789B2 (en) 2006-05-04 2013-06-18 Advanced Cardiovascular Systems, Inc. Rotatable support elements for stents
US8069814B2 (en) 2006-05-04 2011-12-06 Advanced Cardiovascular Systems, Inc. Stent support devices
US8596215B2 (en) 2006-05-04 2013-12-03 Advanced Cardiovascular Systems, Inc. Rotatable support elements for stents
US7985441B1 (en) 2006-05-04 2011-07-26 Yiwen Tang Purification of polymers for coating applications
US8304012B2 (en) 2006-05-04 2012-11-06 Advanced Cardiovascular Systems, Inc. Method for drying a stent
US8637110B2 (en) 2006-05-04 2014-01-28 Advanced Cardiovascular Systems, Inc. Rotatable support elements for stents
US20120291703A1 (en) * 2006-05-26 2012-11-22 Advanced Cardiovascular Systems, Inc. Stent coating apparatus
US8616152B2 (en) * 2006-05-26 2013-12-31 Abbott Cardiovascular Systems Inc. Stent coating apparatus
US7775178B2 (en) 2006-05-26 2010-08-17 Advanced Cardiovascular Systems, Inc. Stent coating apparatus and method
US9561351B2 (en) 2006-05-31 2017-02-07 Advanced Cardiovascular Systems, Inc. Drug delivery spiral coil construct
US8568764B2 (en) 2006-05-31 2013-10-29 Advanced Cardiovascular Systems, Inc. Methods of forming coating layers for medical devices utilizing flash vaporization
US8703167B2 (en) 2006-06-05 2014-04-22 Advanced Cardiovascular Systems, Inc. Coatings for implantable medical devices for controlled release of a hydrophilic drug and a hydrophobic drug
US8778376B2 (en) 2006-06-09 2014-07-15 Advanced Cardiovascular Systems, Inc. Copolymer comprising elastin pentapeptide block and hydrophilic block, and medical device and method of treating
US8029816B2 (en) 2006-06-09 2011-10-04 Abbott Cardiovascular Systems Inc. Medical device coated with a coating containing elastin pentapeptide VGVPG
US8114150B2 (en) 2006-06-14 2012-02-14 Advanced Cardiovascular Systems, Inc. RGD peptide attached to bioabsorbable stents
US8062350B2 (en) 2006-06-14 2011-11-22 Abbott Cardiovascular Systems Inc. RGD peptide attached to bioabsorbable stents
US8603530B2 (en) 2006-06-14 2013-12-10 Abbott Cardiovascular Systems Inc. Nanoshell therapy
US8808342B2 (en) 2006-06-14 2014-08-19 Abbott Cardiovascular Systems Inc. Nanoshell therapy
US8118863B2 (en) 2006-06-14 2012-02-21 Abbott Cardiovascular Systems Inc. RGD peptide attached to bioabsorbable stents
US8048448B2 (en) 2006-06-15 2011-11-01 Abbott Cardiovascular Systems Inc. Nanoshells for drug delivery
US8293367B2 (en) 2006-06-23 2012-10-23 Advanced Cardiovascular Systems, Inc. Nanoshells on polymers
US8592036B2 (en) 2006-06-23 2013-11-26 Abbott Cardiovascular Systems Inc. Nanoshells on polymers
US8017237B2 (en) 2006-06-23 2011-09-13 Abbott Cardiovascular Systems, Inc. Nanoshells on polymers
US9028859B2 (en) 2006-07-07 2015-05-12 Advanced Cardiovascular Systems, Inc. Phase-separated block copolymer coatings for implantable medical devices
US8685430B1 (en) 2006-07-14 2014-04-01 Abbott Cardiovascular Systems Inc. Tailored aliphatic polyesters for stent coatings
US8703169B1 (en) 2006-08-15 2014-04-22 Abbott Cardiovascular Systems Inc. Implantable device having a coating comprising carrageenan and a biostable polymer
US8597673B2 (en) 2006-12-13 2013-12-03 Advanced Cardiovascular Systems, Inc. Coating of fast absorption or dissolution
GB2448153B (en) * 2007-04-04 2011-12-28 Camstent Ltd Mbe Coated medical devices
US8147769B1 (en) 2007-05-16 2012-04-03 Abbott Cardiovascular Systems Inc. Stent and delivery system with reduced chemical degradation
US9056155B1 (en) 2007-05-29 2015-06-16 Abbott Cardiovascular Systems Inc. Coatings having an elastic primer layer
US8109904B1 (en) 2007-06-25 2012-02-07 Abbott Cardiovascular Systems Inc. Drug delivery medical devices
US8048441B2 (en) 2007-06-25 2011-11-01 Abbott Cardiovascular Systems, Inc. Nanobead releasing medical devices
US10076591B2 (en) 2010-03-31 2018-09-18 Abbott Cardiovascular Systems Inc. Absorbable coating for implantable device
US20170049590A1 (en) * 2015-08-17 2017-02-23 Boston Scientific Scimed, Inc. Radioactive stent

Also Published As

Publication number Publication date
US6251136B1 (en) 2001-06-26

Similar Documents

Publication Publication Date Title
US6251136B1 (en) Method of layering a three-coated stent using pharmacological and polymeric agents
US7955640B2 (en) Laminated drug-polymer coated stent having dipped layers
US8001925B2 (en) Drug-polymer coated stent
EP1518570B1 (en) Preparation process for a laminated drug-polymer coated stent with dipped and cured layers
US20050033414A1 (en) Drug-eluting stent with multi-layer coatings
US6979348B2 (en) Reflowed drug-polymer coated stent and method thereof
EP1517713B1 (en) Stent coatings with sustained drug release rate
US6287628B1 (en) Porous prosthesis and a method of depositing substances into the pores
US6602287B1 (en) Stent with anti-thrombogenic coating
JP4044190B2 (en) Method for producing drug-releasing coating
CA2501016C (en) Intraluminal prostheses and carbon dioxide-assisted methods of impregnating same with pharmacological agents
US6818247B1 (en) Ethylene vinyl alcohol-dimethyl acetamide composition and a method of coating a stent
US20020032477A1 (en) Drug release coated stent
EP1680047A1 (en) Medicated stent having multi-layer polymer coating
JP2011510703A (en) Ordered coatings for drug eluting stents and medical devices
EP1737509A1 (en) Method and system for coating tubular medical devices
JP2001517543A (en) Coated medical implant, method for manufacturing the same and use thereof for preventing restenosis
US20060275341A1 (en) Thin foam coating comprising discrete, closed-cell capsules
WO2002013883A2 (en) Drug-eluting membrane for coronary artery stent
JP2003033439A (en) Coating stent and method for producing the same

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION