US20010002000A1 - Method and apparatus for providing a conductive, amorphous non-stick coating - Google Patents

Method and apparatus for providing a conductive, amorphous non-stick coating Download PDF

Info

Publication number
US20010002000A1
US20010002000A1 US09/071,371 US7137198A US2001002000A1 US 20010002000 A1 US20010002000 A1 US 20010002000A1 US 7137198 A US7137198 A US 7137198A US 2001002000 A1 US2001002000 A1 US 2001002000A1
Authority
US
United States
Prior art keywords
ceramic coating
coating
wear
compatible
bio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/071,371
Other versions
US6270831B2 (en
Inventor
B. Ajit Kumar
Pratap Khanwilkar
Don B. Olsen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Utah Research Foundation UURF
World Heart Corp USA
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US09/071,371 priority Critical patent/US6270831B2/en
Application filed by Individual filed Critical Individual
Assigned to MEDQUEST PRODUCTS, INC. reassignment MEDQUEST PRODUCTS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KHANWILKAR, PRATAP, KUMAR, B. AJIT, OLSEN, DON B.
Assigned to MEDQUEST PRODUCTS, INC., UTAH, UNIVERSITY OF reassignment MEDQUEST PRODUCTS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GURUSWAMY, SIVARAMAM, KHANWILKAR, PRATAP, KUMAR, AJIT B., OLSEN, DON B.
Assigned to UTAH, UNIVERSITY OF RESEARCH FOUNDATION reassignment UTAH, UNIVERSITY OF RESEARCH FOUNDATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: UTAH, UNIVERSITY OF
Publication of US20010002000A1 publication Critical patent/US20010002000A1/en
Publication of US6270831B2 publication Critical patent/US6270831B2/en
Application granted granted Critical
Assigned to WORLD HEART CORPORATION reassignment WORLD HEART CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MEDQUEST PRODUCTS, INC.
Assigned to ABIOMED, INC. reassignment ABIOMED, INC. SECURITY AGREEMENT Assignors: WORLD HEART INC.
Assigned to WORLD HEART INC. reassignment WORLD HEART INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: ABIOMED, INC.
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/20Type thereof
    • A61M60/247Positive displacement blood pumps
    • A61M60/253Positive displacement blood pumps including a displacement member directly acting on the blood
    • A61M60/268Positive displacement blood pumps including a displacement member directly acting on the blood the displacement member being flexible, e.g. membranes, diaphragms or bladders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/855Constructional details other than related to driving of implantable pumps or pumping devices
    • A61M60/871Energy supply devices; Converters therefor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00831Material properties
    • A61B2017/0088Material properties ceramic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00059Material properties
    • A61B2018/00071Electrical conductivity
    • A61B2018/00077Electrical conductivity high, i.e. electrically conducting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00107Coatings on the energy applicator
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00107Coatings on the energy applicator
    • A61B2018/00119Coatings on the energy applicator with metal oxide nitride
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00107Coatings on the energy applicator
    • A61B2018/00148Coatings on the energy applicator with metal

Definitions

  • This invention pertains to a method for providing a conductive, non-stick coating at or near room-temperature to many materials which can benefit therefrom. More specifically, the present invention pertains to a method and apparatus for applying the conductive, non-stick coating to different materials, as well as presenting various embodiments which can take advantage of the coating's properties including bio-compatibility, flexibility, radio-opacity, diffusion resistance, wear and corrosion resistance, hardness, ability to be hydrophobic or hydrophilic, adherence to multiple materials, sterilizability, and chemical inertness and stability.
  • the present invention was originally developed as a result to improve electrosurgical instruments used in cauterization and other medical procedures, as well as to provide a bio-compatible coating for long-term implantable blood pumps.
  • prior U.S. patents have been issued for various electrosurgical blades which apply a non-stick coating to a cutting edge thereof. These blades typically suffered from small openings in the non-stick coating which were sometimes intentionally allowed to form in order to ensure electrical conductivity along the cutting edge. Exposing the metallic surface of the blade disadvantageously resulted in charred tissue sticking to these areas. The result was that the blade quickly became non-conductive and consequently unusable.
  • Teflon The non-stick coating of the '807 patent is also specifically described as Teflon (TM).
  • Teflon The nature of Teflon (TM) is such that it requires a high current to be used in cutting and cauterization. This is because electrical current must pass through the Teflon (TM) to the tissue. However, this constant passage of current eventually breaks down the Teflon (TM), leaving small holes or other imperfections in the Teflon (TM) coating. Charred tissue then begins to adhere to the exposed metal beneath the Teflon (TM) coating. Furthermore, electrical current will no longer be uniform across the blade because the current will tend to concentrate at locations where the metal is exposed.
  • stents can cause infection and thrombosis, and have lubricity problems. Stents also clot up after some period of time, and the body can form scar tissue around the stent. A bio-compatible coating having greater lubricity and which is flexible enough to expand with the stent when deployed. Stents also tend to stick to the catheter that is used to insert them.
  • Catheters also have lubricity problems. They can be difficult to insert, especially when they are long. They are also hard to extract because they can become stuck.
  • Present coatings that are used on catheters usually do not remain on the catheter, and either have the property of bio-compatibility or lubricity, but not both.
  • Nonbio-compatible coatings are usually inflexible and cannot be applied to flexing plastics such as catheters. Friction during insertion also removes biological and polymeric coatings, and they also wash off when exposed to flowing fluids, such as blood.
  • the tip of the catheter and the insertions site also tend to be the site of blood clots.
  • radio-opaque metal band to denote the catheter position using X-ray imaging.
  • This band disadvantageously causes crimping of the catheter.
  • the metal band is also known to slip along the length of the catheter, thereby causing false readings of the catheter position in the body.
  • the metal band providing radio-opacity is also typically large. This can result in insertion and extraction problems for the catheter.
  • the metal band can also irritate and damage the inner surface of the vessel through which the catheter is inserted.
  • Guide wires used to install catheters also have problems of lubricity because they provide a frictional surface which resists entry into and passage through tissue.
  • Needles such as those used in dialysis and for diabetics which are of large diameter can also cause substantial pain during insertion and cause significant tissue damage.
  • Silicone-based medical devices such as inhaler seals, laryngechtomy prostheses, and nasal tampons have several major problems.
  • the solid silicone is sticky and rubbery, and thus these devices are hard to insert and withdraw due to lubricity problems. Some of these devices are also subject to infection and thrombosis.
  • Trocars are also medical devices which would benefit from a bio-compatible coating having a high degree of lubricity. Trocars are used to introduce larger-sized implants and/or surgical tools, especially for minimally invasive surgery. Like needles, they have friction problems and can cause damage at the site of insertion.
  • Soft tissue implants such as breast, penile, and testicular implants, as well as devices such as pulsatile mechanical blood pumps suffer from diffusion problems.
  • breast implants huge liability has been incurred from silicone leaking out and causing potential systemic harm to the body.
  • blood pumps their pumping gases and fluids leak out, with potentially harmful side effects, as well as inconvenience caused by additional implanted hardware to replace lost fluids and added cost and inconvenience to the patient who has to make repeated trips to the hospital.
  • body fluids leak in, causing the corrosion of components which eventually cause device failure.
  • Implantable electrodes, leads, and sensors such as those of pacemakers and defibrillators.
  • Drug containers also have problems of corrosion and chemical reactions, especially with the newer and more potent drugs, as well as of diffusion of drugs through the container, including the rubber stoppers used as the caps of some drug containers.
  • Electrodes especially those used for esophageal pacing, fetal monitoring, spinal epidural, and for ablation have problems of assuring electrical conductivity to the skin.
  • Non-medical devices have other problems as well that could be solved by a coating as described above.
  • magnets have hydrogen embrittlement and subsequent degradation problems. These problems are acute in the new high-strength rare-earth magnets (e.g. Neodymium Iron Boron). This happens because hydrogen diffuses into the material and causes failure. Hydrogen embrittlement is also a problem in the aircraft industry with titanium and other structural materials.
  • Disk drives might also benefit from the present invention. Specifically, EMI problems and friction problems could be eliminated with a coating like the present invention.
  • Integrated circuits suffer from problems of moisture and ion ingress which can result in failure of the circuit. Another problem is the diffusion of gold used in the gold/titanium ohmic contacts.
  • Magnetic media could also substantially benefit from such a coating.
  • the degradation over time is often the result of high humidity conditions and physical wear of the material from contact with a read or write head.
  • Fiber optic conduits could also benefit because they suffer from the diffusion of gases and other fluids which causes their optical properties to degrade.
  • Superconducting and photo diodes also suffer from diffusion barrier problems.
  • Fluid valves and solenoids also having sticking problems. Their moving parts tend to stick to their static components, resulting in intermittent or terminal component failure.
  • RFID radio frequency interference
  • the present invention provides in a preferred embodiment a ceramic coating which is conductive, flexible and provides a surface which functions as if it were lubricated.
  • the manufacturing process produces a coating of titanium nitride on a surface of a desired substrate material.
  • the coating is amorphous, enabling the substrate to bend if desired.
  • One aspect of the invention is the considerably improved durability of the ceramic coating. Unlike other coatings, the present invention does not burn away, flake or scrape off after repeated exposure to heat and abrasion from sharp edges.
  • FIG. 1 is a schematic diagram of a sputtering chamber used in the direct sputtering manufacturing process of the present invention.
  • FIG. 2 is a diagram of the components of a pulsatile blood pump, showing where diffusion of gases and liquids occurs which leads to failure or reduced performance of the pump, and possible health consequences to the patient.
  • FIG. 3 is a cross-sectional diagram of the presently preferred embodiment for a diffusion barrier in medical devices.
  • the present invention is comprised of a method of applying the conductive, non-stick coating, at or near room temperature, as well as the particular materials which can benefit from the coating in their normal use.
  • devices, instruments and various apparati can take advantage of being coated. These devices include those which can benefit from a conductive wear resistant coating which can also provide the benefits of being conductive and amorphous (and thus flexible).
  • the conductive, non-stick coating is a ceramic coating.
  • the ceramic coating is composed of titanium nitride (TiN) which is applied over the substrate by any appropriate method, such as those to be discussed later.
  • the ceramic coating of the present invention can be applied in relatively thin layers to substrates, typically on the order of Angstroms.
  • the ceramic coating composed of TiN is composed of TiN.
  • TiN As the ceramic coating
  • transition metal nitrides which might be used in the present invention.
  • These ceramic coating materials include titanium nitride, among others. These materials are classified in terms of properties of hardness, corrosion resistance, color and high spectral reflectance (smoothness). What is important to the preferred embodiment of the present invention is that the material selected for the ceramic coating 104 have the desirable characteristics of TiN.
  • the coating (a) be conductive, (b) act amorphous after application to the electrosurgical instrument, and (c) have a high degree of lubricity to thereby flow smoothly through tissue being cut/cauterized.
  • TiN can be used alone or in combination with other materials having desirable characteristics. These other materials might also include other conductive (transition metal nitrides) or non-conductive ceramics.
  • Titanium Nitride is a ceramic whose crystalline form is well known for its advantageous properties of hardness, wear resistance, inertness, lubricity, biocompatibility, diffusion resistance, corrosion resistance and thermal stability in such applications where a low friction interface is needed to protect moving parts from wear. While it is the properties of electrical as well as thermal conductivity jointly with lubricity which make it attractive as a suitable coating for an electrosurgical blade, it is often the case that only one or two of the characteristics of the coating are used by the other embodiments of the present invention.
  • the preferred process of applying the coating to different substrates is the process of sputtering.
  • the TiN can be applied using sputtering at room or near-room temperatures, significantly simplifying the manufacturing process.
  • TiN can also be applied with high dimensional accuracy to obtain an even coating thickness along all surfaces. As TiN can be applied at thicknesses in the Angstrom level, the coated part's dimensions are not materially affected.
  • TiN exhibits a very high load carrying capacity and toughness. TiN also has excellent adhesion qualities so that it does not spall, even under plastic deformation of the surface. The high toughness and excellent adhesion properties are due to a metallurgical bonding between some substrates and the TiN coating. In particular, the TiN coating bonds well with other metals such as steel and stainless steel.
  • TiN advantageously has high hardness and low friction coefficients (referred to as lubricity). This property of lubricity enables the conductive, non-stick coating to glide through tissue for extended periods of time between cleaning. But unlike Teflon (TM) coatings, TiN will not burn off or wear away quickly from repeated use to leave a substrate exposed. The ceramic TiN either has no wear, or wears substantially less than, for example, the Teflon (TM) coating used in the prior art because Teflon (TM) burns away, and peels off the substrate. Consequently, the present invention has a longer useful lifespan.
  • lubricity enables the conductive, non-stick coating to glide through tissue for extended periods of time between cleaning. But unlike Teflon (TM) coatings, TiN will not burn off or wear away quickly from repeated use to leave a substrate exposed. The ceramic TiN either has no wear, or wears substantially less than, for example, the Teflon (TM) coating used in the prior art because Teflon (TM) burns away, and
  • the TiN ceramic coating of the present invention also has great flexibility.
  • the coating process allows the TiN to be applied on surfaces which are not normally able to receive such a coating. This includes surface materials such as plastics, magnets, semiconductors, and other heat-sensitive materials including aluminum.
  • the present invention also has a much stronger bond between a base metal substrate and its ceramic coating. This bond extends down to the molecular level. More specifically, there is a metallurgical bonding between a metallic substrate and the TiN coating. What is created is defined as an interfacial nanometer layer consisting of both the base metal substrate and the TiN ceramic coating. This interfacial zone is created in the first stage of the coating process when TiN is sputtered onto the base metal substrate.
  • the TiN ceramic coating can be referred to as an amorphous bond, having no crystalline structure subject to fracturing.
  • the amorphous TiN ceramic coating can therefore flex integrally with the base metal substrate to which it is attached.
  • the ceramic coating includes biocompatibility, a continuous coating, a smooth coating, a non-stick coating (reduces friction and eliminates galling and seizing), it is aesthetically appealing, corrosion resistant, wear resistant, fatigue resistant, sterilizable, generally radio opaque, applicable to flexible surfaces, adheres to a variety of surfaces which comprises different materials including composites, is applicable as a room-temperature process, does not introduce residual stresses, is conductive, is conformal and thin, and can act as a diffusion barrier.
  • the potential benefits are increased head life and longevity of the media, improved quality of audio or video reproduction, less wear on the media, and the ability to coat plastics and thereby replace metal heads.
  • the coating can be applied to aluminum, while Teflon (TM) cannot, it will resist scratching and chipping better, it will result in a pot or pan with a longer life, it is non-stick, and metal spoons, spatulas and other metal utensils can be used without fear of damaging the coating.
  • TM Teflon
  • the coating should provide longer life, reduced fouling and improved performance, particularly in the two cycle oil-mix variety.
  • the TiN ceramic coating of the present invention provides many unique advantages over the prior art.
  • the TiN ceramic coating does not significantly wear or burn off, thereby providing improved reliability and durability, and not evolving by-product gases.
  • the TiN ceramic coating can also be repeatedly cleaned so that the device which is coated can be reused many times.
  • many different sterilization techniques can be used without damaging the TiN coating.
  • the substrate can be stainless steel, other materials can also be used. These other materials might also be conductive metals such as titanium, but can also include non-conductive materials such as plastics.
  • the TiN ceramic coating is applied to a stainless steel blade using a room temperature direct sputtering process.
  • Sputtering is a room or relatively low temperature process by which a controlled thin film of Titanium Nitride is uniformly deposited on the stainless steel blade or any other substrate.
  • the sputtering process itself is relatively simple, and has numerous advantages for the present invention.
  • the sputtering process does not change the characteristics of the base metal substrate or the TiN ceramic coating.
  • the other advantages become obvious with an examination of the sputtering process.
  • the first form of sputtering is known as direct sputtering. This means that the sputtering is done directly from a TiN source.
  • TiN sources are available commercially, and pure TiN can be coated onto a base metal substrate using radio frequency sources in a non-reactive atmosphere.
  • Another method of applying TiN to a base metal substrate is through the process of reactive sputtering.
  • the reactive atmosphere must be composed of nitrogen.
  • the titanium reacts with the nitrogen atmosphere to form titanium nitride.
  • the TiN then coats the surface of the stainless steel.
  • the process of both direct and reactive sputtering involves much of the same equipment as shown in FIG. 1.
  • the sputtering takes place in a stainless steel chamber 10 .
  • the stainless steel chamber 10 has dimensions of approximately 18 inches in diameter and 12 inches in height.
  • the actual sputtering function is accomplished by sputtering guns 12 which are generally located at the top of the stainless steel chamber 10 .
  • the sputtering guns 12 are capable of movement in both the horizontal and vertical directions as desired.
  • the sputtering system described above is accomplished using standard equipment readily available for manufacturing.
  • An example of the direct sputtering process is as follows.
  • the stainless steel chamber 10 is evacuated of ambient air through evacuation port 14 .
  • An inert gas such as argon is then fed into the stainless steel chamber 10 through a gas port 16 .
  • the argon gas is ionized using the cathode 18 and the anode 20 to generate an ion flux 22 which strikes the Titanium Nitride 24 .
  • the impact of the ion flux 22 will eject TiN sputtered flux 26 which travels and adheres to the base substrate 30 . It is important to note that there are other sputtering processes well known to those skilled in the art which are also appropriate for applying the TiN ceramic coating 26 .
  • sputtering times may vary, experimentally it has been determined that the sputtering time is generally 1 to 1.5 hours to generate a TiN ceramic coating 26 on the base metal substrate 30 which is approximately 0.5 microns thick. Generally it has been found that the sputtering process applies the TiN ceramic coating 26 according to a linear function, so the application time is easily adjusted accordingly to obtain the desired thickness.
  • the 0.5 micrometer thick TiN coating thus corresponds to a TiN deposition rate of approximately 1 angstrom thickness being added every second.
  • sputtering is a momentum transfer process. It is a process wherein constituent atoms of the material are ejected from surface of a target because of momentum exchange associated with bombardment by energetic particles.
  • the bombarding species are generally ions of heavy inert gas, usually argon.
  • Sputtering may be used for both surface etching and/or coating. The flux of sputtered atoms that may collide repeatedly with the working gas atoms before reaching the substrate where they condense to form a coating of the target material.
  • a key difference between coating on metals and coating on plastics is that plasma is used to modify and/or pretreat the surface of the plastic to a greater extent on plastics than on metals.
  • a plasma treatment can be given in a separate chamber or by using the same sputtering machine used for coating at lower energy levels at which plasma forms but no or minimal sputtering occurs. This pre-treatment helps the coating adhere better to the plastic substrate.
  • the plastic surface is in contact with the plasma, and plasma ion bombardment on the surface modifies the plastic surface by plasma etching which is more conducive to receiving the target atoms.
  • the bombardment effects will give the target atoms enough energy to get into the surface layers of the plastic, thereby giving excellent bonding of the coating with the substrate.
  • the flux of sputtered material leaving the target will be identical in composition to the target.
  • the quality of the coating depends on the sputter emission directions, the gas phase transport, and the substrate-sticking coefficient of the constituents. Because the coating target material transfers to vapor phase by a mechanical process (momentum transfer) rather than by a chemical or thermal process, the heating of the substrate can be controlled by carefully adjusting the conditions (keeping sputtering energy levels and thus temperatures low). This adjustment makes it possible to coat plastic surfaces at room or near room temperature without damaging the substrate.
  • TiN also differs from other state of the art coatings for base metals in that it does not evolve dangerous gases. When heated, TiN does not evolve any gases.
  • the advantages of the present invention become more obvious.
  • mechanical devices which can benefit from the present invention include blood pumps such as Ventricular Assist Devices, Artificial Hearts, Intra-Aortic Balloon Pumps and Impellers.
  • the coating is applied to most plastic, metallic and ceramic components including magnets which can be coated at the room or near room temperature process to thereby not affect the magnetic properties.
  • the coating provides such advantageous features as bio-compatibility including non-toxicity, even when the underlying material might not be bio-compatible.
  • the coating can also function as corrosion resistance, and even as a diffusion barrier.
  • the coating of the present invention be applied to the blood-contacting surfaces, but also to the exterior of implanted device.
  • Such devices include balloons such as epitaxis, catheter, occluder, intra-aortic balloons and angioplasty balloons.
  • the coating can also be disposed on diaphragms, volume displacement chambers, and associated fluid paths in plastic tubes.
  • the coating can also be used on bearings and bearing components. These components include balls, pivots, and inner and outer races used in actuators for medical devices. The result is a reduction in wear and thus increased lifespan of the medical devices.
  • catheters especially those used in long-term indwelling procedures, cardiotomy and cerebrovascular, and those needing a safer and more reliable radio-opaque covering or marker.
  • Soft-tissue implants include intravaginal and colostomy pouches, breast implants, penile and testicular implants.
  • Valves of the type used in hearts can also be improved by the coating disposed on disks and struts.
  • Existing stents made from metal, ceramic and plastic and used for an annulplasty ring can be coated to provide the desired flexible and bio-compatible outer covering.
  • Shunts such as a dialysis shunt, an A-V shunt, a central nervous system shunt, an endolymphatic shunt tube, a peritoneal shunt and a hydrocephalys shunt can also be coated.
  • Silicone-based medical devices including inhaler seals, valves for laryngechtomy prostheses, nasal tampons, and tubes can also be coated.
  • the present invention can also serve to coat a plastic sheath covering current-carrying loads, as well as the leads themselves, connectors, feedthroughs for any implanted, electrically powered device such as a pacemaker, defibrillator, cardioverter, bipotential electrodes and leads, neural stimulators such as a cerebellar, brain, cranial, nerve and spinal cord device.
  • a pacemaker defibrillator
  • cardioverter bipotential electrodes and leads
  • neural stimulators such as a cerebellar, brain, cranial, nerve and spinal cord device.
  • the implanted devices can also be optical or cochlear in nature.
  • Other devices that can benefit include arterial filters, vascular grafts, varicose vein cuffs, as well as intracardiac, pledget, pericardial and epicardial patches.
  • Contraceptive and Ob/Gyn devices include a plug prostheses, tubal occlusion devices (band, clip, insert and valve), urethal devices such as a stent, dilator and a catheter, IUDs and diaphragm.
  • Other devices include an angiographic and other guide wire.
  • Sensors and transducers which are of the implantable variety as well as the non-implantable short-term variety can be coated. These include those used in measuring blood flow, blood pressure, vascular access devices, those which can be protected with a conductive layer of the coating, a catheter tip pressure transducer, and an invasive glucose sensor.
  • the coating itself can be used as sensing material which detects changes in its property such as conductivity as a function of the thing being measured.
  • Occluders include those used in patent ductus arteriosus.
  • a tracheotomy tube can also be coated.
  • hermetically sealed cans and other enclosures having a plastic-based substrate can be coated, including those used to encase electronics of any type, for actuators, sensors and fluids.
  • Surgical instruments and devices can also be coated.
  • Such devices include catheters of all types, needles, trocars, feeding/breathing tubes, transfusion tubes, clips, surgical staples, electrosurgical instruments, pumps, as well as knives, scalpels, scissors, clamps, coagulators, dilators, retractors, examination gloves, non-absorbable sutures and ligatures, microtomes, surgical meshes, tonsil dissectors, and vascular clamps, stereotaxis instruments and accessories, and heat exchangers.
  • Measuring and analytical devices include blood measuring and evaluating devices, blood collection systems, containers for blood and other sensitive fluids, linings, tubes and blood-contacting surfaces of laboratory instruments, and coatings for leads used in such things as an EEG, ECG, etc.
  • One particularly important medical application of the present invention is in diffusion barriers.
  • Many implantable devices such as a blood pump, as well as soft-tissue implants (breast, penile and testicular) have diffusion barriers containing fluids.
  • the diffusion barriers are supposed to prevent the passage of working fluids (such as a lubricating oil) from within the medical device to the body.
  • body fluids blood
  • diffusion barriers are soft membranes which are disadvantageously permeable to gases and fluids.
  • the present invention functions as a diffusion barrier to prevent or at least reduce the passage of gases and fluids through the permeable membranes.
  • FIG. 2 is a blood pump 40 .
  • the blood pump 40 has a pumping chamber 42 in which is disposed a polyurethane membrane 44 which functions as a diaphragm. On one side of the membrane 44 is blood 46 . On the other side of the membrane 44 is a working fluid 48 of the blood pump 40 .
  • the pumping chamber 42 is coupled via an energy converter 50 to a volume displacement chamber 52 . Within the volume displacement chamber 52 is the working fluid 48 of the blood pump 40 .
  • the arrows 54 indicate that diffusion occurs through the membrane 44 between the blood 46 and the working fluid 48 in the pumping chamber 42 , and between the working fluid 48 and tissues 56 which surround the volume displacement chamber 52 .
  • the working fluid 48 of the blood pump 40 is typically some of type of lubricating oil such as silicone oil. Obviously, it is desirable to prevent blood 46 and working fluid 48 from passing through the flexible membrane 44 .
  • Allowing diffusion is detrimental to the pulsatile pumps for several reasons.
  • the membranes used in these chambers also allow body fluids into the device. These body fluids contain ions and moisture which cause corrosion and wear of the blood pump's energy converter, thus leading to eventual failure of the pump due to short-circuiting or corrosion.
  • the present invention advantageously reduces diffusion of working fluids and blood through the membrane by coating the membrane with a flexible, bio-compatible, corrosion resistant ceramic coating.
  • FIG. 3 is a cross-sectional profile view of the presently preferred embodiment of a membrane 60 to be used in a pumping mechanism.
  • a layer of the ceramic coating 62 is disposed between two layers 64 and 66 of the membranes.
  • polyurethane is used for the membranes 64 and 66 .
  • the thickness of the ceramic coating 62 has experimentally been determined to be within the range of approximately 5000 to 10,000 angstroms.
  • the ceramic coating 62 is deposited on one of the polyurethane membranes 64 or 66 after vacuum forming or solution casting. During sputtering, the polyurethane surface is energized by the argon plasma. Accordingly, the ions of the ceramic coating material will actively bond with the surface, thus creating a diffusion layer which is amorphous.
  • the second layer of polyurethane will form an active surface while heated during vacuum forming.
  • the polymer will be in a liquid phase, enabling the polyurethane to enter surface micro-irregularities of the ceramic coating. This bonding will prevent surface delamination.
  • amorphous Titanium Nitride is insert, fatigue resistance, bio-compatible, corrosion resistant and lightweight. Furthermore, TiN is hydrophobic, and thus prevents the diffusion of any liquids through its surface. It is possible to also make the surface hydrophilic by appropriate surface plasma treatments. Diffusion occurs predominantly along grain boundaries. Since the amorphous nature of the TiN coating does not have any grain boundaries, diffusion through the TiN ceramic layer 62 is greatly reduced.
  • Ceramics of the family of TiN can be used as the diffusion barrier. These ceramics include Aluminum Oxide, Titanium Carbide, Silicon Carbide, Silicon Nitride, Boron Nitride and Zirconia.
  • the advantages of these ceramics is that like TiN, they provide an amorphous coating through sputtering, they also inhibit permeability of gases and fluids, they can be deposited at room or near-room temperature, they can be applied to multiple materials to thereby provide a same coating on different parts and materials of the pump, and they are all bio-compatible.

Abstract

A conductive, non-stick coating is provided using a ceramic material which is conductive, flexible and provides a surface which exhibits the property of lubricity. A room or near room temperature manufacturing process produces a coating of titanium nitride on a substrate, where the coating is amorphous if the substrate is a solid material including plastics, composites, metals, magnets, and ceramics, enabling the substrate to bend without damaging the coating. The coating can also be applied as a conformal coating on a variety of substrate shapes, depending upon the application. The coating is bio-compatible and can be applied to a variety of medical devices.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0001]
  • This invention pertains to a method for providing a conductive, non-stick coating at or near room-temperature to many materials which can benefit therefrom. More specifically, the present invention pertains to a method and apparatus for applying the conductive, non-stick coating to different materials, as well as presenting various embodiments which can take advantage of the coating's properties including bio-compatibility, flexibility, radio-opacity, diffusion resistance, wear and corrosion resistance, hardness, ability to be hydrophobic or hydrophilic, adherence to multiple materials, sterilizability, and chemical inertness and stability. [0002]
  • 2. State of the Art [0003]
  • The present invention was originally developed as a result to improve electrosurgical instruments used in cauterization and other medical procedures, as well as to provide a bio-compatible coating for long-term implantable blood pumps. For example, prior U.S. patents have been issued for various electrosurgical blades which apply a non-stick coating to a cutting edge thereof. These blades typically suffered from small openings in the non-stick coating which were sometimes intentionally allowed to form in order to ensure electrical conductivity along the cutting edge. Exposing the metallic surface of the blade disadvantageously resulted in charred tissue sticking to these areas. The result was that the blade quickly became non-conductive and consequently unusable. [0004]
  • In an attempt to improve the blade, Blanch was granted U.S. Pat. No. 4,785,807 (the '807 patent) for teaching an electrosurgical blade which has a cutting edge of the blade which is abraded or etched, and a coat of a non-stick fluorinated hydrocarbon material which is applied over the etched cutting edge. A coating of non-stick material covers the surface area of the cutting blade and is intended to eliminate or reduce the clinging of charred tissue to the blade. By eliminating the small openings in the non-stick coating of previous blades, the blade better inhibited the build up of charred tissue. However, one drawback in the principle of the '807 patent is that the non-stick coating is not particularly durable, and will wear off after repeated usage. This is true partly because the non-stick and non-conductive coating has the properties of an insulator and had to be kept thin in order to enable the radio-frequency energy to pass through the non-stick coating to the tissue to cut and/or cauterize. [0005]
  • Another drawback of the blade described in the '807 patent is that the non-stick coating is not flexible. This inability to bend the electrosurgical blade seriously limits the options of the surgeon in the surgical procedures in which the blade can be used. Furthermore, bending the electrosurgical blade causes the non-stick coating to fracture. The electrosurgical blade then begins to rapidly build up charred tissue because of exposed etched metal of the blade, and any advantages of the non-stick coating are lost. [0006]
  • The non-stick coating of the '807 patent is also specifically described as Teflon (TM). The nature of Teflon (TM) is such that it requires a high current to be used in cutting and cauterization. This is because electrical current must pass through the Teflon (TM) to the tissue. However, this constant passage of current eventually breaks down the Teflon (TM), leaving small holes or other imperfections in the Teflon (TM) coating. Charred tissue then begins to adhere to the exposed metal beneath the Teflon (TM) coating. Furthermore, electrical current will no longer be uniform across the blade because the current will tend to concentrate at locations where the metal is exposed. [0007]
  • Another problem in the state of the art electrosurgical blades which utilize Teflon (TM) is that when heated, Teflon disadvantageously breaks down and evolves fluorine as a gas. This gas is hazardous to the patient and the surgical team. [0008]
  • The information above introduces some of the problems of other non-stick coatings. However, the problems are associated specifically with the issues which are involved when using the non-stick coating for electrosurgical instruments. There are actually numerous other embodiments of the present invention which are able to take advantage of the characteristics of the conductive, non-stick coating which was originally developed to solve problems relating to electrosurgical instruments, blood pumps, and other medical devices. [0009]
  • There are also other problems with state of the art medical devices which are made from materials which do not react well or ideally with body tissue. For example, stents can cause infection and thrombosis, and have lubricity problems. Stents also clot up after some period of time, and the body can form scar tissue around the stent. A bio-compatible coating having greater lubricity and which is flexible enough to expand with the stent when deployed. Stents also tend to stick to the catheter that is used to insert them. [0010]
  • Catheters also have lubricity problems. They can be difficult to insert, especially when they are long. They are also hard to extract because they can become stuck. Present coatings that are used on catheters usually do not remain on the catheter, and either have the property of bio-compatibility or lubricity, but not both. Nonbio-compatible coatings are usually inflexible and cannot be applied to flexing plastics such as catheters. Friction during insertion also removes biological and polymeric coatings, and they also wash off when exposed to flowing fluids, such as blood. The tip of the catheter and the insertions site also tend to be the site of blood clots. These problems are exacerbated for balloon catheters in which the balloon sticks to the tissue or tears, releasing potentially dangerous gases into the body. [0011]
  • It is also of interest to recognize that most catheters use a radio-opaque metal band to denote the catheter position using X-ray imaging. This band disadvantageously causes crimping of the catheter. The metal band is also known to slip along the length of the catheter, thereby causing false readings of the catheter position in the body. The metal band providing radio-opacity is also typically large. This can result in insertion and extraction problems for the catheter. The metal band can also irritate and damage the inner surface of the vessel through which the catheter is inserted. [0012]
  • Guide wires used to install catheters also have problems of lubricity because they provide a frictional surface which resists entry into and passage through tissue. [0013]
  • The installation of a shunt is a painful process because of the friction of the tissue. Furthermore, state of the art shunts are also limited in their useful lifespan because they tend to have bio-compatibility problems. [0014]
  • Needles such as those used in dialysis and for diabetics which are of large diameter can also cause substantial pain during insertion and cause significant tissue damage. [0015]
  • Silicone-based medical devices such as inhaler seals, laryngechtomy prostheses, and nasal tampons have several major problems. The solid silicone is sticky and rubbery, and thus these devices are hard to insert and withdraw due to lubricity problems. Some of these devices are also subject to infection and thrombosis. [0016]
  • Trocars are also medical devices which would benefit from a bio-compatible coating having a high degree of lubricity. Trocars are used to introduce larger-sized implants and/or surgical tools, especially for minimally invasive surgery. Like needles, they have friction problems and can cause damage at the site of insertion. [0017]
  • Soft tissue implants such as breast, penile, and testicular implants, as well as devices such as pulsatile mechanical blood pumps suffer from diffusion problems. In the case of breast implants, huge liability has been incurred from silicone leaking out and causing potential systemic harm to the body. In the case of blood pumps, their pumping gases and fluids leak out, with potentially harmful side effects, as well as inconvenience caused by additional implanted hardware to replace lost fluids and added cost and inconvenience to the patient who has to make repeated trips to the hospital. Also, body fluids leak in, causing the corrosion of components which eventually cause device failure. These corrosion problems are also faced by implantable electrodes, leads, and sensors such as those of pacemakers and defibrillators. Drug containers also have problems of corrosion and chemical reactions, especially with the newer and more potent drugs, as well as of diffusion of drugs through the container, including the rubber stoppers used as the caps of some drug containers. [0018]
  • It is also mentioned that syringe components such as plungers often get stuck or caught while pulling in fluid. Often, excessive force is used while expelling fluids. These situations all combine to reduce patient safety because of increased risk of injury. [0019]
  • These are also similar problems to contraceptive and OB/Gyn devices which have problems with infection, thrombosis, tissue growth and friction causing irritation and subsequent trauma to surrounding tissue. Likewise, grafts and cuffs such as vascular grafts and varicose vein cuffs have problems with infection and thrombosis. Electrodes, especially those used for esophageal pacing, fetal monitoring, spinal epidural, and for ablation have problems of assuring electrical conductivity to the skin. [0020]
  • A different problem is raised by electro medical devices which suffer from failures caused by inadequate electromagnetic interference (EMI) shielding. Often, this failure relates to the use of plastic and other non-metallic parts in the electrical assembly that cannot be easily shielded. [0021]
  • Non-medical devices have other problems as well that could be solved by a coating as described above. For example, magnets have hydrogen embrittlement and subsequent degradation problems. These problems are acute in the new high-strength rare-earth magnets (e.g. Neodymium Iron Boron). This happens because hydrogen diffuses into the material and causes failure. Hydrogen embrittlement is also a problem in the aircraft industry with titanium and other structural materials. [0022]
  • Another problem that could be solved with a coating as described above is the sticking inside of a mold. The molded part sometimes sticks to the mold, destroying the part or the mold. Molds are presently made primarily of metal or ceramics, which makes then very expensive to make. [0023]
  • Disk drives might also benefit from the present invention. Specifically, EMI problems and friction problems could be eliminated with a coating like the present invention. [0024]
  • Another industry which could benefit from such a coating is in footwear. Polyurethane-based soccer shoes suffer from degradation of the polymer caused by high humidity conditions and subsequent diffusion of water vapor across the membranes used in the shoe. [0025]
  • Integrated circuits suffer from problems of moisture and ion ingress which can result in failure of the circuit. Another problem is the diffusion of gold used in the gold/titanium ohmic contacts. [0026]
  • Magnetic media could also substantially benefit from such a coating. The degradation over time is often the result of high humidity conditions and physical wear of the material from contact with a read or write head. [0027]
  • Fiber optic conduits could also benefit because they suffer from the diffusion of gases and other fluids which causes their optical properties to degrade. Superconducting and photo diodes also suffer from diffusion barrier problems. [0028]
  • Fluid valves and solenoids also having sticking problems. Their moving parts tend to stick to their static components, resulting in intermittent or terminal component failure. [0029]
  • All of the problems described above can be alleviated to some degree, and even altogether eliminated in many cases by a coating which has the characteristics of being conductive, having a high degree of lubricity, providing bio-compatibility, flexibility, radio-opacity, diffusion resistance, wear and corrosion resistance, hardness, ability to be hydrophobic or hydrophilic, adherence to multiple materials, sterilizability, and chemical inertness and stability. [0030]
  • OBJECTS AND SUMMARY OF THE INVENTION
  • It is an object of the present invention to provide a conductive, non-stick coating which can be applied to materials which can benefit from exhibiting the property of having a surface which functions as if lubricated. [0031]
  • It is another object to provide a conductive, non-stick coating which has a non-stick coating which will not burn off, wear away or scrape away after repeated exposure to heat, friction and sharp edges. [0032]
  • It is another object to provide a conductive, non-stick coating which can flex with the material on which it is applied. [0033]
  • It is another object to provide a conductive, non-stick coating which is a ceramic. [0034]
  • It is another object to provide a conductive, non-stick coating which uses a conductive ceramic as the non-stick coating. [0035]
  • It is another object to provide a conductive, non-stick coating which is an amorphous ceramic coating that can flex without breaking or detaching itself from a substrate to which the coating is applied. [0036]
  • It is another object to provide a coating which can be applied to temperature-sensitive components which can also provide EMI and radio frequency interference (RFI) shielding. [0037]
  • It is another object to increase diffusion resistance for fluids and gases using the coating which is also flexible enough to prevent diffusion on flexing objects. [0038]
  • It is another object to provide a coating which can adhere to a plurality of different materials of an assembly so as to provide uniform protection. [0039]
  • It is another object to provide a coating which is chemically insert and stable so as to be usable in environments where it is important that the coating be non-reactive. [0040]
  • It is another object to provide a conductive, non-stick coating which uses transition metal nitrides, carbides and oxides as the ceramic coating. [0041]
  • It is another object to provide a conductive, non-stick coating which has the ceramic coating applied through sputtering to produce an amorphous ceramic coating. [0042]
  • It is another object to provide a conductive, non-stick coating which is cost effective to produce, and simple and efficient to apply to various substrate surfaces, including metals, plastics, composites, ceramics, semiconductors, magnets, and tissues. [0043]
  • It is another object to provide a conductive, non-stick coating which is radio-opaque, bio-compatible, diffusion resistant, corrosion resistant, sterilizable, and adherent in nature. [0044]
  • It is another object to provide a conductive, non-stick coating at or near room temperature, which permits the coating to be applied to many heat-sensitive materials and substrates such as plastics, semiconductors, magnets, and tissues. [0045]
  • In accordance with these and other objects of the present invention, the advantages of the invention will become more fully apparent from the description and claims which follow, or may be learned by the practice of the invention. [0046]
  • The present invention provides in a preferred embodiment a ceramic coating which is conductive, flexible and provides a surface which functions as if it were lubricated. The manufacturing process produces a coating of titanium nitride on a surface of a desired substrate material. The coating is amorphous, enabling the substrate to bend if desired. [0047]
  • One aspect of the invention is the considerably improved durability of the ceramic coating. Unlike other coatings, the present invention does not burn away, flake or scrape off after repeated exposure to heat and abrasion from sharp edges. [0048]
  • These and other objects, features, advantages and alternative aspects of the present invention will become apparent to those skilled in the art from a consideration of the following detailed description taken in combination with the accompanying drawings. [0049]
  • DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic diagram of a sputtering chamber used in the direct sputtering manufacturing process of the present invention. [0050]
  • FIG. 2 is a diagram of the components of a pulsatile blood pump, showing where diffusion of gases and liquids occurs which leads to failure or reduced performance of the pump, and possible health consequences to the patient. [0051]
  • FIG. 3 is a cross-sectional diagram of the presently preferred embodiment for a diffusion barrier in medical devices. [0052]
  • DETAILED DESCRIPTION OF THE INVENTION
  • Reference will now be made to the drawings in which the various elements of the present invention will be given numerical designations and in which the invention will be discussed so as to enable one skilled in the art to make and use the invention. It is to be understood that the following description is only exemplary of the principles of the present invention, and should not be viewed as narrowing the claims which follow. [0053]
  • The present invention is comprised of a method of applying the conductive, non-stick coating, at or near room temperature, as well as the particular materials which can benefit from the coating in their normal use. In other words, devices, instruments and various apparati can take advantage of being coated. These devices include those which can benefit from a conductive wear resistant coating which can also provide the benefits of being conductive and amorphous (and thus flexible). [0054]
  • Specifically, the conductive, non-stick coating is a ceramic coating. In the preferred embodiment, the ceramic coating is composed of titanium nitride (TiN) which is applied over the substrate by any appropriate method, such as those to be discussed later. [0055]
  • Advantageously, the ceramic coating of the present invention can be applied in relatively thin layers to substrates, typically on the order of Angstroms. [0056]
  • Most important to the present invention are the properties of the ceramic coating composed of TiN. It should also be mentioned that while the preferred embodiment uses TiN as the ceramic coating, there are other ceramics from the family of ceramics known as transition metal nitrides which might be used in the present invention. These ceramic coating materials include titanium nitride, among others. These materials are classified in terms of properties of hardness, corrosion resistance, color and high spectral reflectance (smoothness). What is important to the preferred embodiment of the present invention is that the material selected for the ceramic coating [0057] 104 have the desirable characteristics of TiN. In electrosurgical instruments, it is appreciated that the most important of these characteristics are that the coating (a) be conductive, (b) act amorphous after application to the electrosurgical instrument, and (c) have a high degree of lubricity to thereby flow smoothly through tissue being cut/cauterized. It should also be realized that TiN can be used alone or in combination with other materials having desirable characteristics. These other materials might also include other conductive (transition metal nitrides) or non-conductive ceramics.
  • Although never applied in an amorphous form by others using a room-temperature process in any of the applications to be described, Titanium Nitride is a ceramic whose crystalline form is well known for its advantageous properties of hardness, wear resistance, inertness, lubricity, biocompatibility, diffusion resistance, corrosion resistance and thermal stability in such applications where a low friction interface is needed to protect moving parts from wear. While it is the properties of electrical as well as thermal conductivity jointly with lubricity which make it attractive as a suitable coating for an electrosurgical blade, it is often the case that only one or two of the characteristics of the coating are used by the other embodiments of the present invention. [0058]
  • The preferred process of applying the coating to different substrates is the process of sputtering. However, it is helpful to know at this stage that advantageously, the TiN can be applied using sputtering at room or near-room temperatures, significantly simplifying the manufacturing process. TiN can also be applied with high dimensional accuracy to obtain an even coating thickness along all surfaces. As TiN can be applied at thicknesses in the Angstrom level, the coated part's dimensions are not materially affected. Furthermore, TiN exhibits a very high load carrying capacity and toughness. TiN also has excellent adhesion qualities so that it does not spall, even under plastic deformation of the surface. The high toughness and excellent adhesion properties are due to a metallurgical bonding between some substrates and the TiN coating. In particular, the TiN coating bonds well with other metals such as steel and stainless steel. [0059]
  • Most importantly, however, TiN advantageously has high hardness and low friction coefficients (referred to as lubricity). This property of lubricity enables the conductive, non-stick coating to glide through tissue for extended periods of time between cleaning. But unlike Teflon (TM) coatings, TiN will not burn off or wear away quickly from repeated use to leave a substrate exposed. The ceramic TiN either has no wear, or wears substantially less than, for example, the Teflon (TM) coating used in the prior art because Teflon (TM) burns away, and peels off the substrate. Consequently, the present invention has a longer useful lifespan. [0060]
  • Most advantageously, the TiN ceramic coating of the present invention also has great flexibility. The coating process allows the TiN to be applied on surfaces which are not normally able to receive such a coating. This includes surface materials such as plastics, magnets, semiconductors, and other heat-sensitive materials including aluminum. The present invention also has a much stronger bond between a base metal substrate and its ceramic coating. This bond extends down to the molecular level. More specifically, there is a metallurgical bonding between a metallic substrate and the TiN coating. What is created is defined as an interfacial nanometer layer consisting of both the base metal substrate and the TiN ceramic coating. This interfacial zone is created in the first stage of the coating process when TiN is sputtered onto the base metal substrate. In other words, it is accurate to state that the TiN ceramic coating can be referred to as an amorphous bond, having no crystalline structure subject to fracturing. The amorphous TiN ceramic coating can therefore flex integrally with the base metal substrate to which it is attached. [0061]
  • When examining the potential applications of the non-stick coating of the present invention, the list is impressive, and ranges from simple devices to high-tech equipment. The following list is only provided as an example of applications. Items which can benefit from the ceramic coating of the present invention include scissors, knives, drill bits, reamers, saw blades, pliers, end mills, wire cutters, precision coining dies, rollers, pins, screws, bore gauges, stamp metal forming tools, extrusion dies, spool lips for spinning reels, counter bores, taps broaches, gear cutters, bearings bushings, gears, splines, actuators, push rods, cams, cam shafts, hobs, punches, valve stems, router bits, engine parts, blanking dies, resistance welding electrodes, scrapers, gouges, countersinks, counterbores, silicon wafers and chips, pump plungers, embroidery needles, VLSI semiconductors, compressor blades/vanes, jewelry, door hardware, writing instruments, eyeglass frames, shafts and seals, marine hardware, plumbing fixtures, slitters, aerospace components, plastic molds, dental instruments and devices, food processing equipment, key duplicators, forming dies, cutting tools, granulator blades, powdered metal dies, seaming rolls, burnishers, engravers, minting devices, razor blades, toy components, umbrellas, optical fibers, integrated circuits, video/audio heads, video/audio tapes, computer floppy disks, packaging, solar cells, kitchen utensils, window panes, golf clubs, bicycle components, reflectors, spark plugs, lamp shades, key chains, piston rings, fluid pumps, super conducting thin films, photo diodes, light emitting diodes, diode lasers, electrodes, electrochemical cells, thermolytic coolers, nuclear fuel pellets, magnetic recording media and heads, fluid valves, solenoids, disk drives, circuits to provide protection from EMI, circuit boards, belts, footwear, UV adhesives, tubing, casters, filters, paper products, actuators, fishing equipment, etc. [0062]
  • Some of the specific benefits which are provided by the ceramic coating include biocompatibility, a continuous coating, a smooth coating, a non-stick coating (reduces friction and eliminates galling and seizing), it is aesthetically appealing, corrosion resistant, wear resistant, fatigue resistant, sterilizable, generally radio opaque, applicable to flexible surfaces, adheres to a variety of surfaces which comprises different materials including composites, is applicable as a room-temperature process, does not introduce residual stresses, is conductive, is conformal and thin, and can act as a diffusion barrier. [0063]
  • Other applications include using the coating for integrated circuits. Specifically, integrated circuits currently use a titanium gold two-step process for the circuit. The coating should result in higher yield production, better purity, a higher diffusion barrier, equal or improved conductivity, applied in a one-step process instead of two, and should result in less expensive operation. [0064]
  • Regarding audio/video recording equipment and media, the potential benefits are increased head life and longevity of the media, improved quality of audio or video reproduction, less wear on the media, and the ability to coat plastics and thereby replace metal heads. [0065]
  • Regarding kitchen utensils such as pots and pans, the coating can be applied to aluminum, while Teflon (TM) cannot, it will resist scratching and chipping better, it will result in a pot or pan with a longer life, it is non-stick, and metal spoons, spatulas and other metal utensils can be used without fear of damaging the coating. [0066]
  • Regarding plastic gears, the potential benefits are improved wear, less weight, lower costs, maintaining of dimensional accuracy, and longer life. [0067]
  • Regarding razor blades, there should be less skin irritation, lower costs of producing blades, improved quality, and a large marketing advantage. [0068]
  • Regarding spark plugs, the coating should provide longer life, reduced fouling and improved performance, particularly in the two cycle oil-mix variety. [0069]
  • In summary, the TiN ceramic coating of the present invention provides many unique advantages over the prior art. The TiN ceramic coating does not significantly wear or burn off, thereby providing improved reliability and durability, and not evolving by-product gases. Advantageously, the TiN ceramic coating can also be repeatedly cleaned so that the device which is coated can be reused many times. Furthermore, many different sterilization techniques can be used without damaging the TiN coating. [0070]
  • While the invention teaches that the substrate can be stainless steel, other materials can also be used. These other materials might also be conductive metals such as titanium, but can also include non-conductive materials such as plastics. [0071]
  • A final advantage in these non-medical applications described above concerns the manufacturing process for applying the ceramic coating. In a preferred embodiment, the TiN ceramic coating is applied to a stainless steel blade using a room temperature direct sputtering process. Sputtering is a room or relatively low temperature process by which a controlled thin film of Titanium Nitride is uniformly deposited on the stainless steel blade or any other substrate. [0072]
  • The sputtering process itself is relatively simple, and has numerous advantages for the present invention. For example, the sputtering process does not change the characteristics of the base metal substrate or the TiN ceramic coating. The other advantages become obvious with an examination of the sputtering process. [0073]
  • There are two forms of sputtering which are described herein. The first form of sputtering is known as direct sputtering. This means that the sputtering is done directly from a TiN source. TiN sources are available commercially, and pure TiN can be coated onto a base metal substrate using radio frequency sources in a non-reactive atmosphere. [0074]
  • Another method of applying TiN to a base metal substrate is through the process of reactive sputtering. In this process, the reactive atmosphere must be composed of nitrogen. The titanium reacts with the nitrogen atmosphere to form titanium nitride. The TiN then coats the surface of the stainless steel. [0075]
  • The process of both direct and reactive sputtering involves much of the same equipment as shown in FIG. 1. The sputtering takes place in a stainless steel chamber [0076] 10. In this preferred embodiment, the stainless steel chamber 10 has dimensions of approximately 18 inches in diameter and 12 inches in height. The actual sputtering function is accomplished by sputtering guns 12 which are generally located at the top of the stainless steel chamber 10. The sputtering guns 12 are capable of movement in both the horizontal and vertical directions as desired.
  • The sputtering system described above is accomplished using standard equipment readily available for manufacturing. An example of the direct sputtering process is as follows. The stainless steel chamber [0077] 10 is evacuated of ambient air through evacuation port 14. An inert gas such as argon is then fed into the stainless steel chamber 10 through a gas port 16. The argon gas is ionized using the cathode 18 and the anode 20 to generate an ion flux 22 which strikes the Titanium Nitride 24. The impact of the ion flux 22 will eject TiN sputtered flux 26 which travels and adheres to the base substrate 30. It is important to note that there are other sputtering processes well known to those skilled in the art which are also appropriate for applying the TiN ceramic coating 26.
  • While sputtering times may vary, experimentally it has been determined that the sputtering time is generally 1 to 1.5 hours to generate a TiN [0078] ceramic coating 26 on the base metal substrate 30 which is approximately 0.5 microns thick. Generally it has been found that the sputtering process applies the TiN ceramic coating 26 according to a linear function, so the application time is easily adjusted accordingly to obtain the desired thickness. The 0.5 micrometer thick TiN coating thus corresponds to a TiN deposition rate of approximately 1 angstrom thickness being added every second.
  • The process above has described the application process for applying the ceramic coating to a metallic substrate. In general, it is important to understand that sputtering is a momentum transfer process. It is a process wherein constituent atoms of the material are ejected from surface of a target because of momentum exchange associated with bombardment by energetic particles. The bombarding species are generally ions of heavy inert gas, usually argon. Sputtering may be used for both surface etching and/or coating. The flux of sputtered atoms that may collide repeatedly with the working gas atoms before reaching the substrate where they condense to form a coating of the target material. [0079]
  • A key difference between coating on metals and coating on plastics is that plasma is used to modify and/or pretreat the surface of the plastic to a greater extent on plastics than on metals. For coating certain plastics such as silicone, a plasma treatment can be given in a separate chamber or by using the same sputtering machine used for coating at lower energy levels at which plasma forms but no or minimal sputtering occurs. This pre-treatment helps the coating adhere better to the plastic substrate. For the pre-treatment of plastics to be coated, the plastic surface is in contact with the plasma, and plasma ion bombardment on the surface modifies the plastic surface by plasma etching which is more conducive to receiving the target atoms. This promotes a dense, fine-grained amorphous structure on the surface depending on the process conditions such as pressure and power. The bombardment effects will give the target atoms enough energy to get into the surface layers of the plastic, thereby giving excellent bonding of the coating with the substrate. The flux of sputtered material leaving the target will be identical in composition to the target. [0080]
  • The quality of the coating depends on the sputter emission directions, the gas phase transport, and the substrate-sticking coefficient of the constituents. Because the coating target material transfers to vapor phase by a mechanical process (momentum transfer) rather than by a chemical or thermal process, the heating of the substrate can be controlled by carefully adjusting the conditions (keeping sputtering energy levels and thus temperatures low). This adjustment makes it possible to coat plastic surfaces at room or near room temperature without damaging the substrate. [0081]
  • While the presently preferred method of application of the ceramic to the substrate is through sputtering, it should be apparent that there are other methods. These include such methods as CVD and plasma deposition. Therefore, the application method of sputtering should not be considered limiting in the present invention. [0082]
  • It should be mentioned that TiN also differs from other state of the art coatings for base metals in that it does not evolve dangerous gases. When heated, TiN does not evolve any gases. [0083]
  • While the presently preferred embodiment of the invention emphasize the amorphous coating of a ceramic on the base metal substrate, it should also be realized that crystalline coatings can also be used. [0084]
  • The materials to which the ceramic coating of the present invention is applied above are generally considered those which are found specifically in non-medical applications. However, the obvious benefits of the present invention to the medical industry should be examined carefully because of the substantial benefits that can result. [0085]
  • From a short list of the medical devices, implants and instruments which can be coated with the ceramic coating of the present invention, the advantages of the present invention become more obvious. First, mechanical devices which can benefit from the present invention include blood pumps such as Ventricular Assist Devices, Artificial Hearts, Intra-Aortic Balloon Pumps and Impellers. The coating is applied to most plastic, metallic and ceramic components including magnets which can be coated at the room or near room temperature process to thereby not affect the magnetic properties. Furthermore, the coating provides such advantageous features as bio-compatibility including non-toxicity, even when the underlying material might not be bio-compatible. The coating can also function as corrosion resistance, and even as a diffusion barrier. [0086]
  • Not only can the coating of the present invention be applied to the blood-contacting surfaces, but also to the exterior of implanted device. Such devices include balloons such as epitaxis, catheter, occluder, intra-aortic balloons and angioplasty balloons. The coating can also be disposed on diaphragms, volume displacement chambers, and associated fluid paths in plastic tubes. [0087]
  • When addressing motors, the coating can also be used on bearings and bearing components. These components include balls, pivots, and inner and outer races used in actuators for medical devices. The result is a reduction in wear and thus increased lifespan of the medical devices. [0088]
  • Other medical devices that can benefit are catheters, especially those used in long-term indwelling procedures, cardiotomy and cerebrovascular, and those needing a safer and more reliable radio-opaque covering or marker. Soft-tissue implants include intravaginal and colostomy pouches, breast implants, penile and testicular implants. [0089]
  • Valves of the type used in hearts can also be improved by the coating disposed on disks and struts. Existing stents made from metal, ceramic and plastic and used for an annulplasty ring can be coated to provide the desired flexible and bio-compatible outer covering. [0090]
  • Shunts such as a dialysis shunt, an A-V shunt, a central nervous system shunt, an endolymphatic shunt tube, a peritoneal shunt and a hydrocephalys shunt can also be coated. [0091]
  • Silicone-based medical devices including inhaler seals, valves for laryngechtomy prostheses, nasal tampons, and tubes can also be coated. [0092]
  • The present invention can also serve to coat a plastic sheath covering current-carrying loads, as well as the leads themselves, connectors, feedthroughs for any implanted, electrically powered device such as a pacemaker, defibrillator, cardioverter, bipotential electrodes and leads, neural stimulators such as a cerebellar, brain, cranial, nerve and spinal cord device. The implanted devices can also be optical or cochlear in nature. [0093]
  • Other devices that can benefit include arterial filters, vascular grafts, varicose vein cuffs, as well as intracardiac, pledget, pericardial and epicardial patches. Contraceptive and Ob/Gyn devices include a plug prostheses, tubal occlusion devices (band, clip, insert and valve), urethal devices such as a stent, dilator and a catheter, IUDs and diaphragm. Other devices include an angiographic and other guide wire. [0094]
  • Sensors and transducers which are of the implantable variety as well as the non-implantable short-term variety can be coated. These include those used in measuring blood flow, blood pressure, vascular access devices, those which can be protected with a conductive layer of the coating, a catheter tip pressure transducer, and an invasive glucose sensor. The coating itself can be used as sensing material which detects changes in its property such as conductivity as a function of the thing being measured. [0095]
  • Occluders include those used in patent ductus arteriosus. A tracheotomy tube can also be coated. [0096]
  • Finally, hermetically sealed cans and other enclosures having a plastic-based substrate can be coated, including those used to encase electronics of any type, for actuators, sensors and fluids. [0097]
  • Surgical instruments and devices can also be coated. Such devices include catheters of all types, needles, trocars, feeding/breathing tubes, transfusion tubes, clips, surgical staples, electrosurgical instruments, pumps, as well as knives, scalpels, scissors, clamps, coagulators, dilators, retractors, examination gloves, non-absorbable sutures and ligatures, microtomes, surgical meshes, tonsil dissectors, and vascular clamps, stereotaxis instruments and accessories, and heat exchangers. [0098]
  • There are also various orthopedic devices that can be coated, such as synthetic ligaments and tendons, fallopian tube replacements, ear prostheses, Stiennman Pins, bone plates and skull plates. [0099]
  • Measuring and analytical devices include blood measuring and evaluating devices, blood collection systems, containers for blood and other sensitive fluids, linings, tubes and blood-contacting surfaces of laboratory instruments, and coatings for leads used in such things as an EEG, ECG, etc. [0100]
  • Other devices that can be coated are syringes, plungers, intra ocular lenses, drug containers and packaging. [0101]
  • It should ne be surprising that the preceding pages do not represent an exhaustive list of all of the possible medical devices, instruments and applications of the present invention, but it serves to suggest many of the applications. [0102]
  • One particularly important medical application of the present invention is in diffusion barriers. Many implantable devices such as a blood pump, as well as soft-tissue implants (breast, penile and testicular) have diffusion barriers containing fluids. The diffusion barriers are supposed to prevent the passage of working fluids (such as a lubricating oil) from within the medical device to the body. Likewise, body fluids (blood) are not supposed to enter into the medical device. However, it is the case that diffusion barriers are soft membranes which are disadvantageously permeable to gases and fluids. The present invention functions as a diffusion barrier to prevent or at least reduce the passage of gases and fluids through the permeable membranes. [0103]
  • To understand the nature of the problem, it is helpful to look at a diagram of a pulsatile blood pump. FIG. 2 is a blood pump [0104] 40. The blood pump 40 has a pumping chamber 42 in which is disposed a polyurethane membrane 44 which functions as a diaphragm. On one side of the membrane 44 is blood 46. On the other side of the membrane 44 is a working fluid 48 of the blood pump 40. The pumping chamber 42 is coupled via an energy converter 50 to a volume displacement chamber 52. Within the volume displacement chamber 52 is the working fluid 48 of the blood pump 40.
  • The arrows [0105] 54 indicate that diffusion occurs through the membrane 44 between the blood 46 and the working fluid 48 in the pumping chamber 42, and between the working fluid 48 and tissues 56 which surround the volume displacement chamber 52. It should be remembered that the working fluid 48 of the blood pump 40 is typically some of type of lubricating oil such as silicone oil. Obviously, it is desirable to prevent blood 46 and working fluid 48 from passing through the flexible membrane 44.
  • Presently, existing pulsatile pumps accept diffusion of blood and working fluids, and simply try to treat the symptoms of the problem. In other words, the pulsatile pumps are often provided with a priming port for receiving gas or working fluids. [0106]
  • Allowing diffusion is detrimental to the pulsatile pumps for several reasons. First, providing a priming port enables contaminants to enter into the device, thus increasing the chances of infection. Second, the passage of blood into the pumping mechanism increases speed of corrosion of internal components, and thus increases the chances of failure of the device. [0107]
  • There remain unanswered questions regarding the long-term health effects of silicone. It is reported that connective tissue diseases and breast cancer are one result. However, it is obviously prudent to reduce the introduction of silicone oils into the blood stream. [0108]
  • It has been determined experimentally that some pulsatile blood pump devices will lose between 10 and 15 cc's of silicone oil into the body per year. The loss of this volume of working fluid is also detrimental to the operation of the device because it reduces the stroke volume, for example, by 15% to 25%. Such a loss in stroke volume is likely to be an unacceptably high loss. However, electrohydraulic pumps are not the only ones whose performance suffers from diffusion. Pusher-plate devices are also susceptible to failure. [0109]
  • Referring to the volume displacement chambers, the membranes used in these chambers also allow body fluids into the device. These body fluids contain ions and moisture which cause corrosion and wear of the blood pump's energy converter, thus leading to eventual failure of the pump due to short-circuiting or corrosion. [0110]
  • Previous attempts to reduce permeability of the membrane have failed to stop diffusion. For example, multiple membrane layers or different membrane materials have been tried. Unfortunately, none of these attempts have succeeded. [0111]
  • The present invention advantageously reduces diffusion of working fluids and blood through the membrane by coating the membrane with a flexible, bio-compatible, corrosion resistant ceramic coating. [0112]
  • FIG. 3 is a cross-sectional profile view of the presently preferred embodiment of a membrane [0113] 60 to be used in a pumping mechanism. In the presently preferred embodiment, a layer of the ceramic coating 62 is disposed between two layers 64 and 66 of the membranes. In this embodiment, polyurethane is used for the membranes 64 and 66.
  • The thickness of the [0114] ceramic coating 62 has experimentally been determined to be within the range of approximately 5000 to 10,000 angstroms. The ceramic coating 62 is deposited on one of the polyurethane membranes 64 or 66 after vacuum forming or solution casting. During sputtering, the polyurethane surface is energized by the argon plasma. Accordingly, the ions of the ceramic coating material will actively bond with the surface, thus creating a diffusion layer which is amorphous.
  • The second layer of polyurethane will form an active surface while heated during vacuum forming. During solution casting, the polymer will be in a liquid phase, enabling the polyurethane to enter surface micro-irregularities of the ceramic coating. This bonding will prevent surface delamination. [0115]
  • Because amorphous Titanium Nitride is insert, fatigue resistance, bio-compatible, corrosion resistant and lightweight. Furthermore, TiN is hydrophobic, and thus prevents the diffusion of any liquids through its surface. It is possible to also make the surface hydrophilic by appropriate surface plasma treatments. Diffusion occurs predominantly along grain boundaries. Since the amorphous nature of the TiN coating does not have any grain boundaries, diffusion through the TiN [0116] ceramic layer 62 is greatly reduced.
  • When examining other materials to use as a diffusion barrier coating between the polyurethane layers, it is observed that gold can also be sputtered. However, gold is likely to fail due to its low fatigue resistance under continuous flexing and stretching conditions of the membrane in a blood pump. Furthermore, gold is relatively expensive compared to TiN. Silver and copper are corrosive and hence cannot be used in this medical application. [0117]
  • However, it is possible that other ceramics of the family of TiN can be used as the diffusion barrier. These ceramics include Aluminum Oxide, Titanium Carbide, Silicon Carbide, Silicon Nitride, Boron Nitride and Zirconia. The advantages of these ceramics is that like TiN, they provide an amorphous coating through sputtering, they also inhibit permeability of gases and fluids, they can be deposited at room or near-room temperature, they can be applied to multiple materials to thereby provide a same coating on different parts and materials of the pump, and they are all bio-compatible. [0118]
  • It is to be understood that the above-described embodiments are only illustrative of the application of the principles of the present invention. Numerous modifications and alternative arrangements may be devised by those skilled in the art without departing from the spirit and scope of the present invention. [0119]

Claims (65)

What is claimed is:
1. A method for providing a wear-resistant ceramic coating on a substrate material which is used in an abrasive environment, such that the substrate material is not deformed during a process of applying the wear-resistant ceramic coating, said method comprising the steps of:
(1) selecting the ceramic coating from the group of ceramics consisting of transition metal nitrides which are both amorphous and conductive; and
(2) using a generally room temperature application process to apply the wear-resistant ceramic coating to the substrate material such that the substrate material is not deformed.
2. The method as defined in
claim 1
wherein the method further comprises the step of applying a wear-resistant ceramic coating which is amorphous.
3. The method as defined in
claim 1
wherein the method further comprises the step of applying at least two ceramic materials which are transition metal nitrides.
4. The method as defined in
claim 1
wherein the method further comprises the step of applying (i) at least one ceramic to the substrate material which is a transition metal nitride, and (ii) at least one material which is not a transition metal nitride.
5. The method as defined in
claim 1
wherein the method further comprises the step of applying a wear-resistant ceramic coating which is conductive to thereby facilitate propagation of electrical energy along the substrate material.
6. The method as defined in
claim 1
wherein the method further comprises the step of applying a wear-resistant ceramic coating which is not worn away by application of RF energy thereto, by abrasion or by repeated sterilization thereof.
7. The method as defined in
claim 1
wherein the method further comprises the step of deforming the substrate material from a resting state, and wherein the wear-resistant ceramic coating is flexible so as to be deformed with the substrate material without damage to the wear-resistant ceramic coating.
8. The method as defined in
claim 1
wherein the method further comprises the step of depositing the wear-resistant ceramic coating on the substrate material using a room or near room temperature sputtering process.
9. The method as defined in
claim 1
wherein the method further comprises the step of applying the wear-resistant ceramic coating as a continuous coating over the substrate material.
10. The method as defined in
claim 1
wherein the method further comprises the step of applying the wear-resistant ceramic coating as a corrosion resistant coating over the substrate material.
11. The method as defined in
claim 1
wherein the method further comprises the step of applying the wear-resistant ceramic coating as a fatigue resistant coating over the substrate material.
12. The method as defined in
claim 1
wherein the method further comprises the step of applying the wear-resistant ceramic coating as a sterilizable and biocompatible coating over the substrate material.
13. The method as defined in
claim 1
wherein the method further comprises the step of applying the wear-resistant ceramic coating as a radio frequency opaque coating over the substrate material.
14. The method as defined in
claim 1
wherein the method further comprises the step of applying the wear-resistant ceramic coating as a conformal coating over the substrate material.
15. The method as defined in
claim 1
wherein the method further comprises the step of applying the wear-resistant ceramic coating as a generally smooth and non-stick coating over the substrate material.
16. The method as defined in
claim 1
wherein the method further comprises the step of depositing the wear-resistant ceramic coating using room or near room temperature sputtering.
17. The method of manufacturing as defined in
claim 16
wherein the method comprises the further step of sputtering titanium nitride onto the substrate material.
18. The method as defined in
claim 1
wherein the method further comprises the step of selecting the substrate material for the substrate materials consisting of plastics, glass, ceramics, metals, composites, magnetic materials and semiconductors.
19. The method as defined in
claim 1
wherein the method further comprises the step of applying the wear-resistant ceramic coating as shielding against electro magnetic interference.
20. The method as defined in
claim 1
wherein the method further comprises the step of applying the wear-resistant ceramic coating as shielding against radio frequency interference.
21. The method as defined in
claim 1
wherein the method further comprises the step of applying the wear-resistant ceramic coating as a chemically inert, non-reactive and stable coating.
22. The method as defined in
claim 1
wherein the method further comprises the step of applying the wear-resistant ceramic coating as a diffusion barrier, wherein the diffusion barrier reduces a passing of fluids and gases therethrough.
23. The method as defined in
claim 22
wherein the method further comprises the step of selecting as the diffusion barrier a bio-compatible coating which is amorphous, to thereby enable the diffusion barrier to flex without damaging the bio-compatible coating.
24. The method as defined in
claim 22
wherein the method further comprises the step of terminating any exchange of gases or fluids through the diffusion barrier, thereby eliminating any exchange of gases or fluids.
25. The method as defined in
claim 22
wherein the method further comprises the step of forming the diffusion barrier on an otherwise permeable membrane which otherwise enables an exchange of fluids and gases therethrough.
26. The method as defined in
claim 1
wherein the method further comprises the step of applying an adherent ceramic coating which readily couples to the substrate material.
27. The method as defined in
claim 1
wherein the method further comprises the steps of:
(1) providing a plurality of different substrate materials in a single assembly; and
(2) applying the ceramic coating to the plurality of different substrate materials of the single assembly such that the ceramic coating is applied to all surfaces thereof.
28. The method as defined in
claim 18
wherein the magnetic materials are selected from the group of magnetic materials consisting of magnetic tape, ceramic magnets, rare-earth magnets, and metallic magnets, wherein the magnetic materials are thereby protected from moisture which can damage the magnetic materials.
29. The method as defined in
claim 1
wherein the method further comprises the step of applying the wear-resistant ceramic coating to components of a storage unit for a computer, wherein the storage unit includes a magnetic media which is caused to rotate, said wear-resistant ceramic coating reducing friction of movable components thereof.
30. The method as defined in
claim 29
wherein the method further comprises the step of at least partially coating the storage unit with the ceramic coating to thereby provide protection from EMI and RFI.
31. A method for providing a wear-resistant ceramic coating on a semiconductor material which is used as part of an integrated circuit, such that the semiconductor material achieves increased conductivity and reduces diffusion of components thereof, said method comprising the steps of:
(1) selecting the ceramic coating from the group of ceramics consisting of transition metal nitrides which are both amorphous and conductive; and
(2) using a generally room temperature application process to apply the ceramic coating to the semiconductor material such that the semiconductor material is more conductive and so that there is reduced diffusion between elements of the semiconductor material.
32. A method for providing a wear-resistant ceramic coating on a magnetic material which can be damaged by application of thermal energy, such that the magnetic material retains its magnetic properties during a process of applying the wear-resistant ceramic coating, said method comprising the steps of:
(1) selecting the ceramic coating from the group of ceramics consisting of transition metal nitrides which are both amorphous and conductive; and
(2) using a generally room temperature application process to apply the wear-resistant ceramic coating to the magnetic material such that the magnetic material is not deformed.
33. A method for providing a wear-resistant ceramic coating on a heat-sensitive material which is used in an abrasive environment, such that the heat-sensitive material is not deformed during a process of applying the wear-resistant ceramic coating, said method comprising the steps of:
(1) selecting the ceramic coating from the group of ceramics consisting of transition metal nitrides which are both amorphous and conductive; and
(2) using a generally room temperature application process to apply the wear-resistant ceramic coating to the heat-sensitive material such that the heat-sensitive material is not deformed.
33. A method for providing a wear-resistant ceramic coating on a material which is used in an environment which is detrimental to the material, such that the material is covered with a continuous, smooth and fatigue resistant ceramic coating after an application process thereof, said method comprising the steps of:
(1) selecting the ceramic coating from the group of ceramics consisting of transition metal nitrides which are both amorphous and conductive; and
(2) using a generally room temperature application process to apply the wear-resistant ceramic coating to the material such that to thereby enhance properties of wear resistance, lubricity and strength.
34. The method as defined in
claim 33
wherein the material is selected from the group of products including kitchen utensils, gears, spark plugs, molds, plumbing fixtures, eyeglass frames, cutting instruments, moisture barriers, sporting goods, writing instruments, drilling instruments, fasteners, bearings, bushings, electrical devices, semiconductors, jewelry, engine components, toys, packaging, optical instruments, fuel cells, and recording media.
35. A method for providing a wear-resistant ceramic coating on a ceramic material which can be damaged by application of thermal energy, such that the ceramic material retains its properties during a process of applying the wear-resistant ceramic coating, said method comprising the steps of:
(1) selecting the ceramic coating from the group of ceramics consisting of transition metal nitrides which are both amorphous and conductive; and
(2) using a generally room temperature application process to apply the wear-resistant ceramic coating to the ceramic material such that the ceramic material is not deformed.
36. An audio system including a playback head for use in reading data from an analog media which is disposed in contact with the audio playback head and moved thereover during playback, said audio playback head comprising:
the audio playback head which is capable of generating electrical signals in response to the analog media being moved thereover, said electrical signals being indicative of acoustical signals recorded on the analog media;
a wear-resistant ceramic coating disposed on the audio playback head to thereby increase resistance to wear thereof and to thereby extend a usable life of the audio playback head.
37. The audio playback head as defined in
claim 36
wherein the audio playback head is capable of recording analog signals to the analog medium.
38. The audio playback head as defined in
claim 36
wherein the audio playback head is capable of playback of video data stored as analog data on the analog medium.
39. A container for use in cooking wherein the cooking container is exposed to heat to thereby heat the cooking container and food contents therein, said cooking container comprising:
an outer surface;
an inner surface on which the food contents are disposed to thereby enable transfer of heat from the inner surface to the food contents; and
a wear-resistant and non-stick ceramic coating disposed on the inner surface to thereby enable metal utensils to be used in movement of the food contents without damaging the inner surface of the cooking container.
40. A plastic gear for use in applications where weight is relevant, said plastic gear comprising:
a generally circular disk having a plurality of splines on an outer edge thereof, wherein the plurality of splines are designed so as to mesh with splines of another device to thereby transmit or receive force thereby;
a wear-resistant ceramic coating disposed on the plurality of splines to thereby provide enhance wear-resistance, maintain dimensional accuracy, and improve a useful lifespan thereof.
41. A razor blade for use in shaving, wherein said blade is relatively longer lasting because it is coated with a wear-resistant ceramic coating having improved lubricity, said razor blade comprising:
a substrate having at least one cutting edge, wherein the substrate is designed for being pulled across skin to thereby remove hair from the skin; and
a continuous ceramic coating disposed on the substrate to thereby cover the at least one cutting edge with an amorphous coating which resists wear caused by cutting hair, and which can flex with the substrate without damaging the continuity of the continuous ceramic coating.
42. A spark plug for use in generating an electrical spark for igniting a mixture of fuel and air in an internal-combustion engine, said spark plug comprising:
a first electrode for carrying an electrical charge from a power source;
a second electrode for receiving the electrical charge from the power source;
an electrically conductive, non-stick ceramic coating disposed on the first and the second electrodes to thereby increase conductivity and provide a surface which is resistant to a build-up of materials which can interfere with generation of the electrical spark.
43. A method for providing a wear-resistant ceramic coating on a ceramic material which can be damaged by application of thermal energy, such that the ceramic material retains its properties during a process of applying the wear-resistant ceramic coating, said method comprising the steps of:
(1) selecting the ceramic coating from the group of ceramics consisting of transition metal nitrides which are both amorphous and conductive; and
(2) using a generally room temperature application process to apply the wear-resistant ceramic coating to the ceramic material such that the ceramic material is not deformed and altered in its physical properties.
44. A method for providing a bio-compatible coating on a temperature-sensitive material which is used in a medical device, such that the temperature sensitive material is not damaged during a process of applying the bio-compatible coating, said method comprising the steps of:
(1) selecting the bio-compatible coating from the group of ceramics consisting of transition metal nitrides which are both amorphous and conductive;
(2) using a generally room temperature application process to apply the bio-compatible ceramic coating to the temperature-sensitive material such that the temperature-sensitive material is not damaged by thermal energy from the application process; and
(3) disposing the temperature-sensitive material with its bio-compatible coating in the medical device, to thereby enable the medical device to be utilized in a medical environment.
45. The method as defined in
claim 44
wherein the method further comprises the step of selecting the temperature-sensitive material from the group of temperature-sensitive materials including plastic, glass, and magnetic materials.
46. The method as defined in
claim 44
wherein the method further comprises the step of selecting the bio-compatible coating from the group of ceramics which provide corrosion resistance.
47. The method as defined in
claim 46
wherein the method further comprises the step of selecting the bio-compatible coating from the group of ceramics which provide a surface texture of lubricity.
48. The method as defined in
claim 47
wherein the temperature-sensitive material is a plastic introducer catheter which is able to be more easily inserted because of the plastic introducer's lubricity.
49. The method as defined in
claim 44
wherein the method further comprises the step of applying the bio-compatible coating to a plurality of permanent magnets which are used in an implantable medical device requiring an electric motor, magnetic bearing, sensor and other electromagnetic devices for operation.
50. A method for utilizing nonbio-compatible materials in an implantable medical device, wherein the implantable medical device is made safe for implantation, said method comprising the steps of:
(1) selecting a bio-compatible coating from the group of ceramics consisting of transition metal nitrides which are both amorphous and conductive;
(2) using a generally room temperature application process to apply the bio-compatible ceramic coating to the nonbio-compatible materials such that the nonbio-compatible materials are covered completely by the bio-compatible ceramic coating; and
(3) implanting the nonbio-compatible material which is coated with the bio-compatible coating.
51. The method as defined in
claim 50
wherein the method further comprises the step of using less expensive nonbio-compatible materials to thereby reduce costs of the implantable devices.
52. The method as defined in
claim 51
wherein the method further comprises the step of utilizing temperature-sensitive materials for the nonbio-compatible materials, wherein the temperature-sensitive materials are selected from the group of temperature-sensitive materials consisting of plastics, glass, and magnetic materials.
53. The method as defined in
claim 52
wherein the method further comprises the step of selecting the implantable devices from the group of implantable devices consisting of stents, ventricular assist devices, pumps, impellers, balloons, diaphragms, volume displacement chambers, plastic tubes providing fluid paths, bearings, bearing components, catheters, occluders, soft-tissue implants, valves, shunts, pacemakers, defibrillators, cardioverters, electrodes, neural stimulators, filters, grafts, patches, contraceptive devices, sensors, transducers, needles, medical tubes, clips, surgical staples, prostheses and electrosurgical blades.
54. A method for creating a more effective diffusion barrier for a medical device, wherein the diffusion barrier is disposed on a permeable membrane through which fluids and gases are able to pass, said method comprising the steps of:
(1) selecting a bio-compatible coating for the diffusion barrier; and
(2) applying the bio-compatible coating to the diffusion barrier using a generally room temperature application process to thereby avoid damaging the permeable membrane, wherein the bio-compatible coating reduces penetration of the fluids and gases therethrough.
55. The method as defined in
claim 54
wherein the method further comprises the step of selecting a bio-compatible coating which is amorphous to thereby enable the diffusion barrier to flex without damaging the bio-compatible coating.
56. The method as defined in
claim 55
wherein the method further comprises the step of reducing an exchange of working fluids and body fluids.
57. The method as defined in
claim 56
wherein the method further comprises the step of reducing the exchange of working fluids which are selected from the group of working fluids including silicone oil, other lubricants and air.
58. A diffusion barrier for use in an implantable medical device which is exposed to body fluids, wherein the diffusion barrier reduces passage of working fluids between the implantable medical device and the body fluids, said diffusion barrier comprising:
a first membrane which is disposed between the body fluids and the working fluids;
an amorphous, bio-compatible, ceramic coating which is applied on a first side through a room or near room temperature process to a first side of the first membrane, wherein the amorphous, bio-compatible, ceramic coating is integrally bonded to the first membrane; and
a second membrane which is bonded to a second side of the amorphous, bio-compatible, ceramic coating.
59. The diffusion barrier as defined in
claim 58
wherein the first membrane and the second membrane are comprised of a polymer.
60. The diffusion barrier as defined in
claim 59
wherein the polymer is comprised of polyurethane.
61. The diffusion barrier as defined in
claim 58
wherein the amorphous, bio-compatible, ceramic coating is selected from the group of ceramics consisting of transition metal nitrides which are both amorphous and conductive, and which are also fatigue-resistant, corrosion-resistant, and abrasion-resistant.
62. The diffusion barrier as defined in
claim 58
wherein the working fluids are also comprised of working gases.
63. A method for preventing diffusion of fluids between an implantable medical device which is exposed to body fluids, and working fluids of the implantable medical device, said method comprising the steps of:
(1) providing a first membrane which is disposed between the body fluids and the working fluids;
(2) disposing an amorphous, bio-compatible, ceramic coating on a first side thereof to a first side of the first membrane through a room or near room temperature process, wherein the amorphous, bio-compatible, ceramic coating is integrally bonded to the first membrane; and
(3) disposing a second membrane to a second side of the amorphous, bio-compatible, ceramic coating, wherein said ceramic coating reduces diffusion of the body fluids and the working fluids through the first membrane and the second membrane.
64. A method for preventing diffusion of fluids between an implantable medical device which is exposed to body fluids, and working fluids of the implantable medical device, said method comprising the steps of:
(1) providing a first membrane which is disposed between the body fluids and the working fluids; and
(2) disposing an amorphous, bio-compatible, ceramic coating on a first side thereof to a first side of the first membrane through a room or near room temperature process, wherein the amorphous, bio-compatible, ceramic coating is integrally bonded to the first membrane, wherein said ceramic coating reduces diffusion of the body fluids and the working fluids through the first membrane.
US09/071,371 1998-04-30 1998-04-30 Method and apparatus for providing a conductive, amorphous non-stick coating Expired - Fee Related US6270831B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/071,371 US6270831B2 (en) 1998-04-30 1998-04-30 Method and apparatus for providing a conductive, amorphous non-stick coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/071,371 US6270831B2 (en) 1998-04-30 1998-04-30 Method and apparatus for providing a conductive, amorphous non-stick coating

Publications (2)

Publication Number Publication Date
US20010002000A1 true US20010002000A1 (en) 2001-05-31
US6270831B2 US6270831B2 (en) 2001-08-07

Family

ID=22100886

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/071,371 Expired - Fee Related US6270831B2 (en) 1998-04-30 1998-04-30 Method and apparatus for providing a conductive, amorphous non-stick coating

Country Status (1)

Country Link
US (1) US6270831B2 (en)

Cited By (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002069822A1 (en) * 2001-03-01 2002-09-12 Cardiac Pacemakers, Inc. Radio frequency ablation system and method linking energy delivery with fluid flow
US6707922B2 (en) * 2000-03-31 2004-03-16 Koninklijke Philips Electronics N.V. Deformable loudspeaker
US20040133258A1 (en) * 2002-11-20 2004-07-08 W. C. Heraeus Gmbh & Co. Kg Stimulation electrode and its use
US20050126903A1 (en) * 2002-02-27 2005-06-16 Ramos Henry J. Method for formation of titanium nitride films
US20060025848A1 (en) * 2004-07-29 2006-02-02 Jan Weber Medical device having a coating layer with structural elements therein and method of making the same
US20060030893A1 (en) * 2004-08-09 2006-02-09 Medtronic, Inc. Means for increasing implantable medical device electrode surface area
WO2006119182A3 (en) * 2005-05-02 2006-12-21 Sherwood Serv Ag Hard coated cannula and methods of manufacturing same
WO2007048825A2 (en) 2005-10-28 2007-05-03 I.B.S. International Biomedical Systems S.P.A. A method for production of a coated endovascular device
US20070179544A1 (en) * 2006-01-31 2007-08-02 Kuehn Kevin P Lead-carried proximal electrode for quadripolar transthoracic impedance monitoring
US20070236124A1 (en) * 2006-04-07 2007-10-11 Federal-Mogul World Wide, Inc. Spark plug
US20070272231A1 (en) * 2006-05-25 2007-11-29 Ssw Holding Company, Inc. Oven rack having an integral lubricious, dry porcelain surface
US20080056905A1 (en) * 2006-08-31 2008-03-06 Honeywell International, Inc. Erosion-protective coatings on polymer-matrix composites and components incorporating such coated composites
US20080058858A1 (en) * 2006-08-30 2008-03-06 Smith David W Method of imparting a mono-axial or multiaxial stiffness to extruded materials and products resulting therefrom
WO2008030857A2 (en) * 2006-09-05 2008-03-13 Philos Jongho Ko Sports equipment comprising diffused titanium nitride
EP2008598A1 (en) * 2007-06-29 2008-12-31 Edward A. Loeser Composite fiber electrosurgical instrument
US20090024109A1 (en) * 2005-02-24 2009-01-22 Riken Catheter Having Denatured Part for Contact with Body
US20090138058A1 (en) * 2004-12-17 2009-05-28 Cardiac Pacemakers, Inc. Mri operation modes for implantable medical devices
US7569979B2 (en) 2006-04-07 2009-08-04 Federal-Mogul World Wide, Inc. Spark plug having spark portion provided with a base material and a protective material
US20100087892A1 (en) * 2008-10-02 2010-04-08 Stubbs Scott R Implantable medical device responsive to mri induced capture threshold changes
US20100211123A1 (en) * 2009-02-19 2010-08-19 Stubbs Scott R Systems and methods for providing arrhythmia therapy in mri environments
US20110014399A1 (en) * 2002-12-13 2011-01-20 W.C. Heraeus Gmbh Method for producing a stimulation electrode
US20110019893A1 (en) * 2009-07-22 2011-01-27 Norbert Rahn Method and Device for Controlling the Ablation Energy for Performing an Electrophysiological Catheter Application
US20110054517A1 (en) * 2006-10-23 2011-03-03 Glaxosmithkline Llc External nasal dilator and methods of manufacture
US7931683B2 (en) 2007-07-27 2011-04-26 Boston Scientific Scimed, Inc. Articles having ceramic coated surfaces
US7938855B2 (en) 2007-11-02 2011-05-10 Boston Scientific Scimed, Inc. Deformable underlayer for stent
US7942926B2 (en) 2007-07-11 2011-05-17 Boston Scientific Scimed, Inc. Endoprosthesis coating
US7976915B2 (en) 2007-05-23 2011-07-12 Boston Scientific Scimed, Inc. Endoprosthesis with select ceramic morphology
US7981150B2 (en) 2006-11-09 2011-07-19 Boston Scientific Scimed, Inc. Endoprosthesis with coatings
US7985252B2 (en) 2008-07-30 2011-07-26 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis
US7998192B2 (en) 2008-05-09 2011-08-16 Boston Scientific Scimed, Inc. Endoprostheses
US8002821B2 (en) 2006-09-18 2011-08-23 Boston Scientific Scimed, Inc. Bioerodible metallic ENDOPROSTHESES
US8002823B2 (en) 2007-07-11 2011-08-23 Boston Scientific Scimed, Inc. Endoprosthesis coating
US8032228B2 (en) 2007-12-06 2011-10-04 Cardiac Pacemakers, Inc. Method and apparatus for disconnecting the tip electrode during MRI
US8048150B2 (en) 2006-04-12 2011-11-01 Boston Scientific Scimed, Inc. Endoprosthesis having a fiber meshwork disposed thereon
US8052745B2 (en) 2007-09-13 2011-11-08 Boston Scientific Scimed, Inc. Endoprosthesis
US8052743B2 (en) 2006-08-02 2011-11-08 Boston Scientific Scimed, Inc. Endoprosthesis with three-dimensional disintegration control
US8052744B2 (en) 2006-09-15 2011-11-08 Boston Scientific Scimed, Inc. Medical devices and methods of making the same
US8057534B2 (en) 2006-09-15 2011-11-15 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US8067054B2 (en) 2007-04-05 2011-11-29 Boston Scientific Scimed, Inc. Stents with ceramic drug reservoir layer and methods of making and using the same
US8066763B2 (en) 1998-04-11 2011-11-29 Boston Scientific Scimed, Inc. Drug-releasing stent with ceramic-containing layer
US8071156B2 (en) 2009-03-04 2011-12-06 Boston Scientific Scimed, Inc. Endoprostheses
US8070797B2 (en) 2007-03-01 2011-12-06 Boston Scientific Scimed, Inc. Medical device with a porous surface for delivery of a therapeutic agent
US8080055B2 (en) 2006-12-28 2011-12-20 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US8086321B2 (en) 2007-12-06 2011-12-27 Cardiac Pacemakers, Inc. Selectively connecting the tip electrode during therapy for MRI shielding
US8089029B2 (en) 2006-02-01 2012-01-03 Boston Scientific Scimed, Inc. Bioabsorbable metal medical device and method of manufacture
WO2012014079A2 (en) 2010-07-29 2012-02-02 Biotectix, LLC Implantable electrode
US8128689B2 (en) 2006-09-15 2012-03-06 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis with biostable inorganic layers
US8160717B2 (en) 2008-02-19 2012-04-17 Cardiac Pacemakers, Inc. Model reference identification and cancellation of magnetically-induced voltages in a gradient magnetic field
US8187620B2 (en) 2006-03-27 2012-05-29 Boston Scientific Scimed, Inc. Medical devices comprising a porous metal oxide or metal material and a polymer coating for delivering therapeutic agents
US8216632B2 (en) 2007-11-02 2012-07-10 Boston Scientific Scimed, Inc. Endoprosthesis coating
US8221822B2 (en) 2007-07-31 2012-07-17 Boston Scientific Scimed, Inc. Medical device coating by laser cladding
US8231980B2 (en) 2008-12-03 2012-07-31 Boston Scientific Scimed, Inc. Medical implants including iridium oxide
US20120192941A1 (en) * 2011-01-14 2012-08-02 Global Solar Energy, Inc. Barrier and planarization layer for thin-film photovoltaic cell
US8236046B2 (en) 2008-06-10 2012-08-07 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis
US8267992B2 (en) 2009-03-02 2012-09-18 Boston Scientific Scimed, Inc. Self-buffering medical implants
US8287937B2 (en) 2009-04-24 2012-10-16 Boston Scientific Scimed, Inc. Endoprosthese
US8303643B2 (en) 2001-06-27 2012-11-06 Remon Medical Technologies Ltd. Method and device for electrochemical formation of therapeutic species in vivo
US8311637B2 (en) 2008-02-11 2012-11-13 Cardiac Pacemakers, Inc. Magnetic core flux canceling of ferrites in MRI
US8353949B2 (en) 2006-09-14 2013-01-15 Boston Scientific Scimed, Inc. Medical devices with drug-eluting coating
US8382824B2 (en) 2008-10-03 2013-02-26 Boston Scientific Scimed, Inc. Medical implant having NANO-crystal grains with barrier layers of metal nitrides or fluorides
US8431149B2 (en) 2007-03-01 2013-04-30 Boston Scientific Scimed, Inc. Coated medical devices for abluminal drug delivery
US8449603B2 (en) 2008-06-18 2013-05-28 Boston Scientific Scimed, Inc. Endoprosthesis coating
US8565874B2 (en) 2009-12-08 2013-10-22 Cardiac Pacemakers, Inc. Implantable medical device with automatic tachycardia detection and control in MRI environments
US8574615B2 (en) 2006-03-24 2013-11-05 Boston Scientific Scimed, Inc. Medical devices having nanoporous coatings for controlled therapeutic agent delivery
US8668732B2 (en) 2010-03-23 2014-03-11 Boston Scientific Scimed, Inc. Surface treated bioerodible metal endoprostheses
US8771343B2 (en) 2006-06-29 2014-07-08 Boston Scientific Scimed, Inc. Medical devices with selective titanium oxide coatings
US8808726B2 (en) 2006-09-15 2014-08-19 Boston Scientific Scimed. Inc. Bioerodible endoprostheses and methods of making the same
US8815275B2 (en) 2006-06-28 2014-08-26 Boston Scientific Scimed, Inc. Coatings for medical devices comprising a therapeutic agent and a metallic material
US8815273B2 (en) 2007-07-27 2014-08-26 Boston Scientific Scimed, Inc. Drug eluting medical devices having porous layers
US8840660B2 (en) 2006-01-05 2014-09-23 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US8900292B2 (en) 2007-08-03 2014-12-02 Boston Scientific Scimed, Inc. Coating for medical device having increased surface area
US8920491B2 (en) 2008-04-22 2014-12-30 Boston Scientific Scimed, Inc. Medical devices having a coating of inorganic material
US8932346B2 (en) 2008-04-24 2015-01-13 Boston Scientific Scimed, Inc. Medical devices having inorganic particle layers
US9004969B2 (en) 2011-10-24 2015-04-14 Federal-Mogul Ignition Company Spark plug electrode and spark plug manufacturing method
US9130358B2 (en) 2013-03-13 2015-09-08 Federal-Mogul Ignition Company Method of manufacturing spark plug electrode material
US9284409B2 (en) 2007-07-19 2016-03-15 Boston Scientific Scimed, Inc. Endoprosthesis having a non-fouling surface
US9944984B2 (en) 2005-06-15 2018-04-17 Complete Genomics, Inc. High density DNA array
CN111163722A (en) * 2017-06-15 2020-05-15 康曼德公司 Coated electrosurgical vascular sealer electrode
US11020545B2 (en) * 2017-04-10 2021-06-01 U.S. Patent Innovations, LLC Electrosurgical gas control module
US11253310B2 (en) 2018-04-10 2022-02-22 U.S. Patent Innovations, LLC Gas-enhanced electrosurgical generator

Families Citing this family (206)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002512333A (en) * 1998-04-22 2002-04-23 ユニバーシティ・オブ・ユタ Implantable centrifugal blood pump with hybrid magnetic bearing
SE9802556L (en) * 1998-07-16 2000-01-17 Abb Flexible Automation As Lack pumping device
US6452314B1 (en) * 2000-01-05 2002-09-17 Honeywell International Inc. Spark plug having a protective titanium thereon, and methods of making the same
US6589239B2 (en) * 2000-02-01 2003-07-08 Ashok C. Khandkar Electrosurgical knife
US8527046B2 (en) 2000-04-20 2013-09-03 Medtronic, Inc. MRI-compatible implantable device
US6829509B1 (en) 2001-02-20 2004-12-07 Biophan Technologies, Inc. Electromagnetic interference immune tissue invasive system
US20020116029A1 (en) 2001-02-20 2002-08-22 Victor Miller MRI-compatible pacemaker with power carrying photonic catheter and isolated pulse generating electronics providing VOO functionality
US10835307B2 (en) 2001-06-12 2020-11-17 Ethicon Llc Modular battery powered handheld surgical instrument containing elongated multi-layered shaft
US6731979B2 (en) 2001-08-30 2004-05-04 Biophan Technologies Inc. Pulse width cardiac pacing apparatus
DE10159907B4 (en) * 2001-12-06 2008-04-24 Interpane Entwicklungs- Und Beratungsgesellschaft Mbh & Co. coating process
US6783525B2 (en) 2001-12-12 2004-08-31 Megadyne Medical Products, Inc. Application and utilization of a water-soluble polymer on a surface
US6685704B2 (en) 2002-02-26 2004-02-03 Megadyne Medical Products, Inc. Utilization of an active catalyst in a surface coating of an electrosurgical instrument
US6711440B2 (en) 2002-04-11 2004-03-23 Biophan Technologies, Inc. MRI-compatible medical device with passive generation of optical sensing signals
US6725092B2 (en) 2002-04-25 2004-04-20 Biophan Technologies, Inc. Electromagnetic radiation immune medical assist device adapter
JP2003331861A (en) * 2002-05-16 2003-11-21 Nippon Steel Corp Small contact resistance separator/carbon material interface structure for fuel cell, its carbon material and separator, and method for manufacturing stainless steel separator for fuel cell
US6951559B1 (en) * 2002-06-21 2005-10-04 Megadyne Medical Products, Inc. Utilization of a hybrid material in a surface coating of an electrosurgical instrument
US6949066B2 (en) * 2002-08-21 2005-09-27 World Heart Corporation Rotary blood pump diagnostics and cardiac output controller
US20040115477A1 (en) * 2002-12-12 2004-06-17 Bruce Nesbitt Coating reinforcing underlayment and method of manufacturing same
US8715771B2 (en) * 2003-02-26 2014-05-06 Abbott Cardiovascular Systems Inc. Coated stent and method of making the same
US7255891B1 (en) * 2003-02-26 2007-08-14 Advanced Cardiovascular Systems, Inc. Method for coating implantable medical devices
EP1547647A1 (en) * 2003-10-20 2005-06-29 Greatbatch-Hittman, Incorporated Implantable electrical lead wire
US8182501B2 (en) 2004-02-27 2012-05-22 Ethicon Endo-Surgery, Inc. Ultrasonic surgical shears and method for sealing a blood vessel using same
AU2005295010B2 (en) 2004-10-08 2012-05-31 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument
US20060228506A1 (en) * 2005-04-11 2006-10-12 Lin A P Abrasion resistant composite material structure
US8814861B2 (en) 2005-05-12 2014-08-26 Innovatech, Llc Electrosurgical electrode and method of manufacturing same
US7147634B2 (en) * 2005-05-12 2006-12-12 Orion Industries, Ltd. Electrosurgical electrode and method of manufacturing same
US7719021B2 (en) * 2005-06-28 2010-05-18 Lighting Science Group Corporation Light efficient LED assembly including a shaped reflective cavity and method for making same
WO2007002476A2 (en) * 2005-06-28 2007-01-04 Lamina Ceramics, Inc. Backlight module display with optical coupler and lightguide
US20070191713A1 (en) 2005-10-14 2007-08-16 Eichmann Stephen E Ultrasonic device for cutting and coagulating
US7621930B2 (en) 2006-01-20 2009-11-24 Ethicon Endo-Surgery, Inc. Ultrasound medical instrument having a medical ultrasonic blade
US20080234709A1 (en) 2007-03-22 2008-09-25 Houser Kevin L Ultrasonic surgical instrument and cartilage and bone shaping blades therefor
US8057498B2 (en) 2007-11-30 2011-11-15 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument blades
US8911460B2 (en) 2007-03-22 2014-12-16 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8142461B2 (en) 2007-03-22 2012-03-27 Ethicon Endo-Surgery, Inc. Surgical instruments
US8226675B2 (en) 2007-03-22 2012-07-24 Ethicon Endo-Surgery, Inc. Surgical instruments
PT2167724E (en) * 2007-07-17 2012-12-24 P2I Ltd Method for liquid proofing an item of footwear by plasma graft polymerisation
US8523889B2 (en) 2007-07-27 2013-09-03 Ethicon Endo-Surgery, Inc. Ultrasonic end effectors with increased active length
US8257377B2 (en) 2007-07-27 2012-09-04 Ethicon Endo-Surgery, Inc. Multiple end effectors ultrasonic surgical instruments
US8808319B2 (en) 2007-07-27 2014-08-19 Ethicon Endo-Surgery, Inc. Surgical instruments
US8348967B2 (en) 2007-07-27 2013-01-08 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8882791B2 (en) 2007-07-27 2014-11-11 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8430898B2 (en) 2007-07-31 2013-04-30 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8252012B2 (en) 2007-07-31 2012-08-28 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument with modulator
US8512365B2 (en) 2007-07-31 2013-08-20 Ethicon Endo-Surgery, Inc. Surgical instruments
US9044261B2 (en) 2007-07-31 2015-06-02 Ethicon Endo-Surgery, Inc. Temperature controlled ultrasonic surgical instruments
US8998978B2 (en) * 2007-09-28 2015-04-07 Abbott Cardiovascular Systems Inc. Stent formed from bioerodible metal-bioceramic composite
US8623027B2 (en) 2007-10-05 2014-01-07 Ethicon Endo-Surgery, Inc. Ergonomic surgical instruments
US20090110833A1 (en) * 2007-10-31 2009-04-30 Gala Industries, Inc. Method for abrasion-resistant non-stick surface treatments for pelletization and drying process equipment components
US8029554B2 (en) 2007-11-02 2011-10-04 Boston Scientific Scimed, Inc. Stent with embedded material
US10010339B2 (en) 2007-11-30 2018-07-03 Ethicon Llc Ultrasonic surgical blades
US7901423B2 (en) 2007-11-30 2011-03-08 Ethicon Endo-Surgery, Inc. Folded ultrasonic end effectors with increased active length
US9259857B2 (en) 2008-02-12 2016-02-16 Gala Industries, Inc. Method and apparatus to condition polymers utilizing multiple processing systems
US8080196B2 (en) * 2008-02-12 2011-12-20 Gala Industries, Inc. Method and apparatus to achieve crystallization of polymers utilizing multiple processing systems
GB0810326D0 (en) * 2008-06-06 2008-07-09 P2I Ltd Filtration media
US8058771B2 (en) 2008-08-06 2011-11-15 Ethicon Endo-Surgery, Inc. Ultrasonic device for cutting and coagulating with stepped output
US9089360B2 (en) 2008-08-06 2015-07-28 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
US8500687B2 (en) 2008-09-25 2013-08-06 Abbott Cardiovascular Systems Inc. Stent delivery system having a fibrous matrix covering with improved stent retention
US8076529B2 (en) 2008-09-26 2011-12-13 Abbott Cardiovascular Systems, Inc. Expandable member formed of a fibrous matrix for intraluminal drug delivery
US8226603B2 (en) 2008-09-25 2012-07-24 Abbott Cardiovascular Systems Inc. Expandable member having a covering formed of a fibrous matrix for intraluminal drug delivery
US8049061B2 (en) 2008-09-25 2011-11-01 Abbott Cardiovascular Systems, Inc. Expandable member formed of a fibrous matrix having hydrogel polymer for intraluminal drug delivery
US9700339B2 (en) 2009-05-20 2017-07-11 Ethicon Endo-Surgery, Inc. Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments
US8344596B2 (en) 2009-06-24 2013-01-01 Ethicon Endo-Surgery, Inc. Transducer arrangements for ultrasonic surgical instruments
US8663220B2 (en) 2009-07-15 2014-03-04 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US9017326B2 (en) 2009-07-15 2015-04-28 Ethicon Endo-Surgery, Inc. Impedance monitoring apparatus, system, and method for ultrasonic surgical instruments
US8461744B2 (en) 2009-07-15 2013-06-11 Ethicon Endo-Surgery, Inc. Rotating transducer mount for ultrasonic surgical instruments
US9168054B2 (en) 2009-10-09 2015-10-27 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
USRE47996E1 (en) 2009-10-09 2020-05-19 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US8951248B2 (en) 2009-10-09 2015-02-10 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
US10441345B2 (en) 2009-10-09 2019-10-15 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US10172669B2 (en) 2009-10-09 2019-01-08 Ethicon Llc Surgical instrument comprising an energy trigger lockout
US11090104B2 (en) 2009-10-09 2021-08-17 Cilag Gmbh International Surgical generator for ultrasonic and electrosurgical devices
US8469981B2 (en) 2010-02-11 2013-06-25 Ethicon Endo-Surgery, Inc. Rotatable cutting implement arrangements for ultrasonic surgical instruments
US8961547B2 (en) 2010-02-11 2015-02-24 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments with moving cutting implement
US9259234B2 (en) 2010-02-11 2016-02-16 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments with rotatable blade and hollow sheath arrangements
US8382782B2 (en) 2010-02-11 2013-02-26 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments with partially rotating blade and fixed pad arrangement
US8531064B2 (en) 2010-02-11 2013-09-10 Ethicon Endo-Surgery, Inc. Ultrasonically powered surgical instruments with rotating cutting implement
US8419759B2 (en) 2010-02-11 2013-04-16 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument with comb-like tissue trimming device
US8323302B2 (en) 2010-02-11 2012-12-04 Ethicon Endo-Surgery, Inc. Methods of using ultrasonically powered surgical instruments with rotatable cutting implements
US8486096B2 (en) 2010-02-11 2013-07-16 Ethicon Endo-Surgery, Inc. Dual purpose surgical instrument for cutting and coagulating tissue
US8579928B2 (en) 2010-02-11 2013-11-12 Ethicon Endo-Surgery, Inc. Outer sheath and blade arrangements for ultrasonic surgical instruments
US8951272B2 (en) 2010-02-11 2015-02-10 Ethicon Endo-Surgery, Inc. Seal arrangements for ultrasonically powered surgical instruments
GB2480498A (en) 2010-05-21 2011-11-23 Ethicon Endo Surgery Inc Medical device comprising RF circuitry
US8795327B2 (en) 2010-07-22 2014-08-05 Ethicon Endo-Surgery, Inc. Electrosurgical instrument with separate closure and cutting members
US9192431B2 (en) 2010-07-23 2015-11-24 Ethicon Endo-Surgery, Inc. Electrosurgical cutting and sealing instrument
US8968293B2 (en) 2011-04-12 2015-03-03 Covidien Lp Systems and methods for calibrating power measurements in an electrosurgical generator
WO2012145750A2 (en) * 2011-04-22 2012-10-26 The Nano Group, Inc. Electroplated lubricant-hard-ductile nanocomposite coatings and their applications
US9259265B2 (en) 2011-07-22 2016-02-16 Ethicon Endo-Surgery, Llc Surgical instruments for tensioning tissue
USD691265S1 (en) 2011-08-23 2013-10-08 Covidien Ag Control assembly for portable surgical device
US9333025B2 (en) 2011-10-24 2016-05-10 Ethicon Endo-Surgery, Llc Battery initialization clip
USD687549S1 (en) 2011-10-24 2013-08-06 Ethicon Endo-Surgery, Inc. Surgical instrument
EP2811932B1 (en) 2012-02-10 2019-06-26 Ethicon LLC Robotically controlled surgical instrument
ES2944935T3 (en) 2012-02-23 2023-06-27 Treadstone Tech Inc Corrosion resistant and electrically conductive metal surface
US9333099B2 (en) 2012-03-30 2016-05-10 Abbott Cardiovascular Systems Inc. Magnesium alloy implants with controlled degradation
US9226766B2 (en) 2012-04-09 2016-01-05 Ethicon Endo-Surgery, Inc. Serial communication protocol for medical device
US9724118B2 (en) 2012-04-09 2017-08-08 Ethicon Endo-Surgery, Llc Techniques for cutting and coagulating tissue for ultrasonic surgical instruments
US9439668B2 (en) 2012-04-09 2016-09-13 Ethicon Endo-Surgery, Llc Switch arrangements for ultrasonic surgical instruments
US9237921B2 (en) 2012-04-09 2016-01-19 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
US9241731B2 (en) 2012-04-09 2016-01-26 Ethicon Endo-Surgery, Inc. Rotatable electrical connection for ultrasonic surgical instruments
US20140005705A1 (en) 2012-06-29 2014-01-02 Ethicon Endo-Surgery, Inc. Surgical instruments with articulating shafts
US9393037B2 (en) 2012-06-29 2016-07-19 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US9283045B2 (en) 2012-06-29 2016-03-15 Ethicon Endo-Surgery, Llc Surgical instruments with fluid management system
US20140005702A1 (en) 2012-06-29 2014-01-02 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments with distally positioned transducers
US9226767B2 (en) 2012-06-29 2016-01-05 Ethicon Endo-Surgery, Inc. Closed feedback control for electrosurgical device
US9198714B2 (en) 2012-06-29 2015-12-01 Ethicon Endo-Surgery, Inc. Haptic feedback devices for surgical robot
US9326788B2 (en) 2012-06-29 2016-05-03 Ethicon Endo-Surgery, Llc Lockout mechanism for use with robotic electrosurgical device
US9820768B2 (en) 2012-06-29 2017-11-21 Ethicon Llc Ultrasonic surgical instruments with control mechanisms
US9408622B2 (en) 2012-06-29 2016-08-09 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US9351754B2 (en) 2012-06-29 2016-05-31 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments with distally positioned jaw assemblies
US9492224B2 (en) 2012-09-28 2016-11-15 EthiconEndo-Surgery, LLC Multi-function bi-polar forceps
US9095367B2 (en) 2012-10-22 2015-08-04 Ethicon Endo-Surgery, Inc. Flexible harmonic waveguides/blades for surgical instruments
US10201365B2 (en) 2012-10-22 2019-02-12 Ethicon Llc Surgeon feedback sensing and display methods
US20140135804A1 (en) 2012-11-15 2014-05-15 Ethicon Endo-Surgery, Inc. Ultrasonic and electrosurgical devices
US10226273B2 (en) 2013-03-14 2019-03-12 Ethicon Llc Mechanical fasteners for use with surgical energy devices
US9241728B2 (en) 2013-03-15 2016-01-26 Ethicon Endo-Surgery, Inc. Surgical instrument with multiple clamping mechanisms
JP2016523125A (en) 2013-05-30 2016-08-08 グラハム エイチ. クリーシー Local nervous stimulation
US11229789B2 (en) 2013-05-30 2022-01-25 Neurostim Oab, Inc. Neuro activator with controller
US9814514B2 (en) 2013-09-13 2017-11-14 Ethicon Llc Electrosurgical (RF) medical instruments for cutting and coagulating tissue
US9265926B2 (en) 2013-11-08 2016-02-23 Ethicon Endo-Surgery, Llc Electrosurgical devices
GB2521229A (en) 2013-12-16 2015-06-17 Ethicon Endo Surgery Inc Medical device
GB2521228A (en) 2013-12-16 2015-06-17 Ethicon Endo Surgery Inc Medical device
US9795436B2 (en) 2014-01-07 2017-10-24 Ethicon Llc Harvesting energy from a surgical generator
US9554854B2 (en) 2014-03-18 2017-01-31 Ethicon Endo-Surgery, Llc Detecting short circuits in electrosurgical medical devices
US10463421B2 (en) 2014-03-27 2019-11-05 Ethicon Llc Two stage trigger, clamp and cut bipolar vessel sealer
US10092310B2 (en) 2014-03-27 2018-10-09 Ethicon Llc Electrosurgical devices
US9737355B2 (en) 2014-03-31 2017-08-22 Ethicon Llc Controlling impedance rise in electrosurgical medical devices
US10925438B1 (en) * 2014-04-14 2021-02-23 All Metal Sales, Inc. Blender blade formed of titanium or titanium alloy
US9913680B2 (en) 2014-04-15 2018-03-13 Ethicon Llc Software algorithms for electrosurgical instruments
WO2016018312A1 (en) * 2014-07-30 2016-02-04 Hewlett-Packard Development Company, L.P. Wear resistant coating
US10285724B2 (en) 2014-07-31 2019-05-14 Ethicon Llc Actuation mechanisms and load adjustment assemblies for surgical instruments
US10639092B2 (en) 2014-12-08 2020-05-05 Ethicon Llc Electrode configurations for surgical instruments
US10159524B2 (en) 2014-12-22 2018-12-25 Ethicon Llc High power battery powered RF amplifier topology
US10245095B2 (en) 2015-02-06 2019-04-02 Ethicon Llc Electrosurgical instrument with rotation and articulation mechanisms
US11077301B2 (en) 2015-02-21 2021-08-03 NeurostimOAB, Inc. Topical nerve stimulator and sensor for bladder control
US10321950B2 (en) 2015-03-17 2019-06-18 Ethicon Llc Managing tissue treatment
US10342602B2 (en) 2015-03-17 2019-07-09 Ethicon Llc Managing tissue treatment
US10595929B2 (en) 2015-03-24 2020-03-24 Ethicon Llc Surgical instruments with firing system overload protection mechanisms
US10314638B2 (en) 2015-04-07 2019-06-11 Ethicon Llc Articulating radio frequency (RF) tissue seal with articulating state sensing
US10034684B2 (en) 2015-06-15 2018-07-31 Ethicon Llc Apparatus and method for dissecting and coagulating tissue
US11020140B2 (en) 2015-06-17 2021-06-01 Cilag Gmbh International Ultrasonic surgical blade for use with ultrasonic surgical instruments
US11051873B2 (en) 2015-06-30 2021-07-06 Cilag Gmbh International Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters
US10034704B2 (en) 2015-06-30 2018-07-31 Ethicon Llc Surgical instrument with user adaptable algorithms
US10357303B2 (en) 2015-06-30 2019-07-23 Ethicon Llc Translatable outer tube for sealing using shielded lap chole dissector
US11141213B2 (en) 2015-06-30 2021-10-12 Cilag Gmbh International Surgical instrument with user adaptable techniques
US11129669B2 (en) 2015-06-30 2021-09-28 Cilag Gmbh International Surgical system with user adaptable techniques based on tissue type
US10898256B2 (en) 2015-06-30 2021-01-26 Ethicon Llc Surgical system with user adaptable techniques based on tissue impedance
US10154852B2 (en) 2015-07-01 2018-12-18 Ethicon Llc Ultrasonic surgical blade with improved cutting and coagulation features
US10687884B2 (en) 2015-09-30 2020-06-23 Ethicon Llc Circuits for supplying isolated direct current (DC) voltage to surgical instruments
US10595930B2 (en) 2015-10-16 2020-03-24 Ethicon Llc Electrode wiping surgical device
US10959771B2 (en) 2015-10-16 2021-03-30 Ethicon Llc Suction and irrigation sealing grasper
US10179022B2 (en) 2015-12-30 2019-01-15 Ethicon Llc Jaw position impedance limiter for electrosurgical instrument
US10959806B2 (en) 2015-12-30 2021-03-30 Ethicon Llc Energized medical device with reusable handle
US10575892B2 (en) 2015-12-31 2020-03-03 Ethicon Llc Adapter for electrical surgical instruments
US11129670B2 (en) 2016-01-15 2021-09-28 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization
US10716615B2 (en) 2016-01-15 2020-07-21 Ethicon Llc Modular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade
US10709469B2 (en) 2016-01-15 2020-07-14 Ethicon Llc Modular battery powered handheld surgical instrument with energy conservation techniques
US11229471B2 (en) 2016-01-15 2022-01-25 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
US10555769B2 (en) 2016-02-22 2020-02-11 Ethicon Llc Flexible circuits for electrosurgical instrument
US10702329B2 (en) 2016-04-29 2020-07-07 Ethicon Llc Jaw structure with distal post for electrosurgical instruments
US10646269B2 (en) 2016-04-29 2020-05-12 Ethicon Llc Non-linear jaw gap for electrosurgical instruments
US10485607B2 (en) 2016-04-29 2019-11-26 Ethicon Llc Jaw structure with distal closure for electrosurgical instruments
US10987156B2 (en) 2016-04-29 2021-04-27 Ethicon Llc Electrosurgical instrument with electrically conductive gap setting member and electrically insulative tissue engaging members
US10856934B2 (en) 2016-04-29 2020-12-08 Ethicon Llc Electrosurgical instrument with electrically conductive gap setting and tissue engaging members
US10456193B2 (en) 2016-05-03 2019-10-29 Ethicon Llc Medical device with a bilateral jaw configuration for nerve stimulation
DE102016005467A1 (en) * 2016-05-06 2017-11-09 Fresenius Medical Care Deutschland Gmbh Medical treatment device and tubing set for a medical treatment device and method for monitoring a peristaltic peristaltic pump
US10245064B2 (en) 2016-07-12 2019-04-02 Ethicon Llc Ultrasonic surgical instrument with piezoelectric central lumen transducer
US10893883B2 (en) 2016-07-13 2021-01-19 Ethicon Llc Ultrasonic assembly for use with ultrasonic surgical instruments
US10842522B2 (en) 2016-07-15 2020-11-24 Ethicon Llc Ultrasonic surgical instruments having offset blades
US10376305B2 (en) 2016-08-05 2019-08-13 Ethicon Llc Methods and systems for advanced harmonic energy
US10285723B2 (en) 2016-08-09 2019-05-14 Ethicon Llc Ultrasonic surgical blade with improved heel portion
USD847990S1 (en) 2016-08-16 2019-05-07 Ethicon Llc Surgical instrument
US10779847B2 (en) 2016-08-25 2020-09-22 Ethicon Llc Ultrasonic transducer to waveguide joining
US10952759B2 (en) 2016-08-25 2021-03-23 Ethicon Llc Tissue loading of a surgical instrument
US10751117B2 (en) 2016-09-23 2020-08-25 Ethicon Llc Electrosurgical instrument with fluid diverter
US10603064B2 (en) 2016-11-28 2020-03-31 Ethicon Llc Ultrasonic transducer
US11266430B2 (en) 2016-11-29 2022-03-08 Cilag Gmbh International End effector control and calibration
US11033325B2 (en) 2017-02-16 2021-06-15 Cilag Gmbh International Electrosurgical instrument with telescoping suction port and debris cleaner
US10799284B2 (en) 2017-03-15 2020-10-13 Ethicon Llc Electrosurgical instrument with textured jaws
US11497546B2 (en) 2017-03-31 2022-11-15 Cilag Gmbh International Area ratios of patterned coatings on RF electrodes to reduce sticking
CN110944689B (en) 2017-06-07 2022-12-09 施菲姆德控股有限责任公司 Intravascular fluid movement devices, systems, and methods of use
US10603117B2 (en) 2017-06-28 2020-03-31 Ethicon Llc Articulation state detection mechanisms
US10820920B2 (en) 2017-07-05 2020-11-03 Ethicon Llc Reusable ultrasonic medical devices and methods of their use
US11033323B2 (en) 2017-09-29 2021-06-15 Cilag Gmbh International Systems and methods for managing fluid and suction in electrosurgical systems
US11484358B2 (en) 2017-09-29 2022-11-01 Cilag Gmbh International Flexible electrosurgical instrument
US11490951B2 (en) 2017-09-29 2022-11-08 Cilag Gmbh International Saline contact with electrodes
WO2019094365A1 (en) 2017-11-07 2019-05-16 Neurostim Oab, Inc. Non-invasive nerve activator with adaptive circuit
CN111556763B (en) 2017-11-13 2023-09-01 施菲姆德控股有限责任公司 Intravascular fluid movement device and system
JP7410034B2 (en) 2018-02-01 2024-01-09 シファメド・ホールディングス・エルエルシー Intravascular blood pump and methods of use and manufacture
EP3990100A4 (en) 2019-06-26 2023-07-19 Neurostim Technologies LLC Non-invasive nerve activator with adaptive circuit
WO2021016372A1 (en) 2019-07-22 2021-01-28 Shifamed Holdings, Llc Intravascular blood pumps with struts and methods of use and manufacture
WO2021062265A1 (en) 2019-09-25 2021-04-01 Shifamed Holdings, Llc Intravascular blood pump systems and methods of use and control thereof
JP2023506713A (en) 2019-12-16 2023-02-20 ニューロスティム テクノロジーズ エルエルシー Noninvasive nerve activator using booster charge delivery
US11911063B2 (en) 2019-12-30 2024-02-27 Cilag Gmbh International Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade
US11779387B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Clamp arm jaw to minimize tissue sticking and improve tissue control
US11786291B2 (en) 2019-12-30 2023-10-17 Cilag Gmbh International Deflectable support of RF energy electrode with respect to opposing ultrasonic blade
US11744636B2 (en) 2019-12-30 2023-09-05 Cilag Gmbh International Electrosurgical systems with integrated and external power sources
US11937863B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Deflectable electrode with variable compression bias along the length of the deflectable electrode
US11589916B2 (en) 2019-12-30 2023-02-28 Cilag Gmbh International Electrosurgical instruments with electrodes having variable energy densities
US11660089B2 (en) 2019-12-30 2023-05-30 Cilag Gmbh International Surgical instrument comprising a sensing system
US20210196344A1 (en) 2019-12-30 2021-07-01 Ethicon Llc Surgical system communication pathways
US11937866B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Method for an electrosurgical procedure
US11812957B2 (en) 2019-12-30 2023-11-14 Cilag Gmbh International Surgical instrument comprising a signal interference resolution system
US11452525B2 (en) 2019-12-30 2022-09-27 Cilag Gmbh International Surgical instrument comprising an adjustment system
US11684412B2 (en) 2019-12-30 2023-06-27 Cilag Gmbh International Surgical instrument with rotatable and articulatable surgical end effector
US11944366B2 (en) 2019-12-30 2024-04-02 Cilag Gmbh International Asymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode
US11696776B2 (en) 2019-12-30 2023-07-11 Cilag Gmbh International Articulatable surgical instrument
US11779329B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Surgical instrument comprising a flex circuit including a sensor system

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4556607A (en) * 1984-03-28 1985-12-03 Sastri Suri A Surface coatings and subcoats
US5152774A (en) 1988-10-17 1992-10-06 Schroeder William A Surgical instrument having a toughened wearing surface and method of making the same
JPH0692078B2 (en) 1988-12-15 1994-11-16 株式会社貝印刃物開発センター Coated blade
US5100402A (en) 1990-10-05 1992-03-31 Megadyne Medical Products, Inc. Electrosurgical laparoscopic cauterization electrode
US5330471A (en) 1991-06-07 1994-07-19 Hemostatic Surgery Corporation Bi-polar electrosurgical endoscopic instruments and methods of use
US5697926A (en) 1992-12-17 1997-12-16 Megadyne Medical Products, Inc. Cautery medical instrument
US5380320A (en) 1993-11-08 1995-01-10 Advanced Surgical Materials, Inc. Electrosurgical instrument having a parylene coating
US5658282A (en) 1994-01-18 1997-08-19 Endovascular, Inc. Apparatus for in situ saphenous vein bypass and less-invasive varicose vein treatment
US5630275A (en) * 1994-08-23 1997-05-20 Warner-Lambert Company Multi-blade razor head with improved performance
US5549604A (en) 1994-12-06 1996-08-27 Conmed Corporation Non-Stick electroconductive amorphous silica coating
US5774326A (en) * 1995-08-25 1998-06-30 General Electric Company Multilayer capacitors using amorphous hydrogenated carbon
US5720775A (en) 1996-07-31 1998-02-24 Cordis Corporation Percutaneous atrial line ablation catheter

Cited By (115)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8066763B2 (en) 1998-04-11 2011-11-29 Boston Scientific Scimed, Inc. Drug-releasing stent with ceramic-containing layer
US6707922B2 (en) * 2000-03-31 2004-03-16 Koninklijke Philips Electronics N.V. Deformable loudspeaker
US6955675B2 (en) 2001-03-01 2005-10-18 Cardiac Pacemakers, Inc. Ablation catheter with transducer for providing one or more of pressure, temperature and fluid flow data for use in controlling ablation therapy
US6666862B2 (en) 2001-03-01 2003-12-23 Cardiac Pacemakers, Inc. Radio frequency ablation system and method linking energy delivery with fluid flow
WO2002069822A1 (en) * 2001-03-01 2002-09-12 Cardiac Pacemakers, Inc. Radio frequency ablation system and method linking energy delivery with fluid flow
US8303643B2 (en) 2001-06-27 2012-11-06 Remon Medical Technologies Ltd. Method and device for electrochemical formation of therapeutic species in vivo
US20050126903A1 (en) * 2002-02-27 2005-06-16 Ramos Henry J. Method for formation of titanium nitride films
US20040133258A1 (en) * 2002-11-20 2004-07-08 W. C. Heraeus Gmbh & Co. Kg Stimulation electrode and its use
US6901297B2 (en) 2002-11-20 2005-05-31 W.C. Heraeus Gmbh & Co. Kg Stimulation electrode and its use
US8298608B2 (en) 2002-12-13 2012-10-30 Heraeus Precious Metals Gmbh & Co. Kg Method for producing a stimulation electrode
US20110014399A1 (en) * 2002-12-13 2011-01-20 W.C. Heraeus Gmbh Method for producing a stimulation electrode
US20060025848A1 (en) * 2004-07-29 2006-02-02 Jan Weber Medical device having a coating layer with structural elements therein and method of making the same
US7191009B2 (en) 2004-08-09 2007-03-13 Medtronic, Inc. Means for increasing implantable medical device electrode surface area
US20060030893A1 (en) * 2004-08-09 2006-02-09 Medtronic, Inc. Means for increasing implantable medical device electrode surface area
US8886317B2 (en) 2004-12-17 2014-11-11 Cardiac Pacemakers, Inc. MRI operation modes for implantable medical devices
US8543207B2 (en) 2004-12-17 2013-09-24 Cardiac Pacemakers, Inc. MRI operation modes for implantable medical devices
US8014867B2 (en) 2004-12-17 2011-09-06 Cardiac Pacemakers, Inc. MRI operation modes for implantable medical devices
US20090138058A1 (en) * 2004-12-17 2009-05-28 Cardiac Pacemakers, Inc. Mri operation modes for implantable medical devices
US20090024109A1 (en) * 2005-02-24 2009-01-22 Riken Catheter Having Denatured Part for Contact with Body
US8858527B2 (en) * 2005-02-24 2014-10-14 Riken Catheter having denatured part for contact with body
WO2006119182A3 (en) * 2005-05-02 2006-12-21 Sherwood Serv Ag Hard coated cannula and methods of manufacturing same
US10351909B2 (en) 2005-06-15 2019-07-16 Complete Genomics, Inc. DNA sequencing from high density DNA arrays using asynchronous reactions
US9944984B2 (en) 2005-06-15 2018-04-17 Complete Genomics, Inc. High density DNA array
EA013514B1 (en) * 2005-10-28 2010-06-30 И.Б.С. Интернэшнл Байомедикал Системз С.П.А. A method for production of a coated endovascular device
US20080281410A1 (en) * 2005-10-28 2008-11-13 I.B.S. International Biomedical Systems S.P.A. Method for Production of a Coated Endovascular Device
WO2007048825A3 (en) * 2005-10-28 2007-10-11 I B S Internat Biomedical Syst A method for production of a coated endovascular device
WO2007048825A2 (en) 2005-10-28 2007-05-03 I.B.S. International Biomedical Systems S.P.A. A method for production of a coated endovascular device
US8840660B2 (en) 2006-01-05 2014-09-23 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US20110208262A1 (en) * 2006-01-31 2011-08-25 Medtronic, Inc. Lead-carried proximal electrode for quadripolar transthoracic impedance monitoring
US20070179544A1 (en) * 2006-01-31 2007-08-02 Kuehn Kevin P Lead-carried proximal electrode for quadripolar transthoracic impedance monitoring
US8521286B2 (en) 2006-01-31 2013-08-27 Medtronic, Inc. Lead-carried proximal electrode for quadripolar transthoracic impedance monitoring
US7937150B2 (en) 2006-01-31 2011-05-03 Medtronic, Inc. Lead-carried proximal electrode for quadripolar transthoracic impedance monitoring
US8089029B2 (en) 2006-02-01 2012-01-03 Boston Scientific Scimed, Inc. Bioabsorbable metal medical device and method of manufacture
US8574615B2 (en) 2006-03-24 2013-11-05 Boston Scientific Scimed, Inc. Medical devices having nanoporous coatings for controlled therapeutic agent delivery
US8187620B2 (en) 2006-03-27 2012-05-29 Boston Scientific Scimed, Inc. Medical devices comprising a porous metal oxide or metal material and a polymer coating for delivering therapeutic agents
US7569979B2 (en) 2006-04-07 2009-08-04 Federal-Mogul World Wide, Inc. Spark plug having spark portion provided with a base material and a protective material
US20070236124A1 (en) * 2006-04-07 2007-10-11 Federal-Mogul World Wide, Inc. Spark plug
US8048150B2 (en) 2006-04-12 2011-11-01 Boston Scientific Scimed, Inc. Endoprosthesis having a fiber meshwork disposed thereon
US8739773B2 (en) * 2006-05-25 2014-06-03 Ssw Holding Company, Inc. Oven rack having integral lubricious, dry porcelain surface
US20100059041A1 (en) * 2006-05-25 2010-03-11 Ssw Holdings Oven Rack Having Integral Lubricious, Dry Porcelain Surface
US20070272231A1 (en) * 2006-05-25 2007-11-29 Ssw Holding Company, Inc. Oven rack having an integral lubricious, dry porcelain surface
US8815275B2 (en) 2006-06-28 2014-08-26 Boston Scientific Scimed, Inc. Coatings for medical devices comprising a therapeutic agent and a metallic material
US8771343B2 (en) 2006-06-29 2014-07-08 Boston Scientific Scimed, Inc. Medical devices with selective titanium oxide coatings
US8052743B2 (en) 2006-08-02 2011-11-08 Boston Scientific Scimed, Inc. Endoprosthesis with three-dimensional disintegration control
USD662203S1 (en) 2006-08-30 2012-06-19 Smithkline Beecham Corporation Nasal dilator
US20080058858A1 (en) * 2006-08-30 2008-03-06 Smith David W Method of imparting a mono-axial or multiaxial stiffness to extruded materials and products resulting therefrom
US8834514B2 (en) 2006-08-30 2014-09-16 Xennovate Medical Llc Resilient band medical device
US7700167B2 (en) 2006-08-31 2010-04-20 Honeywell International Inc. Erosion-protective coatings on polymer-matrix composites and components incorporating such coated composites
US20080056905A1 (en) * 2006-08-31 2008-03-06 Honeywell International, Inc. Erosion-protective coatings on polymer-matrix composites and components incorporating such coated composites
WO2008030857A2 (en) * 2006-09-05 2008-03-13 Philos Jongho Ko Sports equipment comprising diffused titanium nitride
WO2008030857A3 (en) * 2006-09-05 2008-06-26 Philos Jongho Ko Sports equipment comprising diffused titanium nitride
US8353949B2 (en) 2006-09-14 2013-01-15 Boston Scientific Scimed, Inc. Medical devices with drug-eluting coating
US8057534B2 (en) 2006-09-15 2011-11-15 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US8128689B2 (en) 2006-09-15 2012-03-06 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis with biostable inorganic layers
US8808726B2 (en) 2006-09-15 2014-08-19 Boston Scientific Scimed. Inc. Bioerodible endoprostheses and methods of making the same
US8052744B2 (en) 2006-09-15 2011-11-08 Boston Scientific Scimed, Inc. Medical devices and methods of making the same
US8002821B2 (en) 2006-09-18 2011-08-23 Boston Scientific Scimed, Inc. Bioerodible metallic ENDOPROSTHESES
US8834511B2 (en) 2006-10-23 2014-09-16 GlaxoSmithKline, LLC External nasal dilator and methods of manufacture
US9901479B2 (en) 2006-10-23 2018-02-27 GlaxoSmithKline, LLC External nasal dilator and methods
US20110054517A1 (en) * 2006-10-23 2011-03-03 Glaxosmithkline Llc External nasal dilator and methods of manufacture
US7981150B2 (en) 2006-11-09 2011-07-19 Boston Scientific Scimed, Inc. Endoprosthesis with coatings
US8080055B2 (en) 2006-12-28 2011-12-20 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US8715339B2 (en) 2006-12-28 2014-05-06 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US8070797B2 (en) 2007-03-01 2011-12-06 Boston Scientific Scimed, Inc. Medical device with a porous surface for delivery of a therapeutic agent
US8431149B2 (en) 2007-03-01 2013-04-30 Boston Scientific Scimed, Inc. Coated medical devices for abluminal drug delivery
US8067054B2 (en) 2007-04-05 2011-11-29 Boston Scientific Scimed, Inc. Stents with ceramic drug reservoir layer and methods of making and using the same
US7976915B2 (en) 2007-05-23 2011-07-12 Boston Scientific Scimed, Inc. Endoprosthesis with select ceramic morphology
EP2008598A1 (en) * 2007-06-29 2008-12-31 Edward A. Loeser Composite fiber electrosurgical instrument
US20100168745A1 (en) * 2007-06-29 2010-07-01 Loeser Edward A Composite fiber electrosurgical instrument
US7942926B2 (en) 2007-07-11 2011-05-17 Boston Scientific Scimed, Inc. Endoprosthesis coating
US8002823B2 (en) 2007-07-11 2011-08-23 Boston Scientific Scimed, Inc. Endoprosthesis coating
US9284409B2 (en) 2007-07-19 2016-03-15 Boston Scientific Scimed, Inc. Endoprosthesis having a non-fouling surface
US7931683B2 (en) 2007-07-27 2011-04-26 Boston Scientific Scimed, Inc. Articles having ceramic coated surfaces
US8815273B2 (en) 2007-07-27 2014-08-26 Boston Scientific Scimed, Inc. Drug eluting medical devices having porous layers
US8221822B2 (en) 2007-07-31 2012-07-17 Boston Scientific Scimed, Inc. Medical device coating by laser cladding
US8900292B2 (en) 2007-08-03 2014-12-02 Boston Scientific Scimed, Inc. Coating for medical device having increased surface area
US8052745B2 (en) 2007-09-13 2011-11-08 Boston Scientific Scimed, Inc. Endoprosthesis
US8216632B2 (en) 2007-11-02 2012-07-10 Boston Scientific Scimed, Inc. Endoprosthesis coating
US7938855B2 (en) 2007-11-02 2011-05-10 Boston Scientific Scimed, Inc. Deformable underlayer for stent
US8897875B2 (en) 2007-12-06 2014-11-25 Cardiac Pacemakers, Inc. Selectively connecting the tip electrode during therapy for MRI shielding
US8554335B2 (en) 2007-12-06 2013-10-08 Cardiac Pacemakers, Inc. Method and apparatus for disconnecting the tip electrode during MRI
US8086321B2 (en) 2007-12-06 2011-12-27 Cardiac Pacemakers, Inc. Selectively connecting the tip electrode during therapy for MRI shielding
US8032228B2 (en) 2007-12-06 2011-10-04 Cardiac Pacemakers, Inc. Method and apparatus for disconnecting the tip electrode during MRI
US8311637B2 (en) 2008-02-11 2012-11-13 Cardiac Pacemakers, Inc. Magnetic core flux canceling of ferrites in MRI
US8160717B2 (en) 2008-02-19 2012-04-17 Cardiac Pacemakers, Inc. Model reference identification and cancellation of magnetically-induced voltages in a gradient magnetic field
US8920491B2 (en) 2008-04-22 2014-12-30 Boston Scientific Scimed, Inc. Medical devices having a coating of inorganic material
US8932346B2 (en) 2008-04-24 2015-01-13 Boston Scientific Scimed, Inc. Medical devices having inorganic particle layers
US7998192B2 (en) 2008-05-09 2011-08-16 Boston Scientific Scimed, Inc. Endoprostheses
US8236046B2 (en) 2008-06-10 2012-08-07 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis
US8449603B2 (en) 2008-06-18 2013-05-28 Boston Scientific Scimed, Inc. Endoprosthesis coating
US7985252B2 (en) 2008-07-30 2011-07-26 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis
US9561378B2 (en) 2008-10-02 2017-02-07 Cardiac Pacemakers, Inc. Implantable medical device responsive to MRI induced capture threshold changes
US8571661B2 (en) 2008-10-02 2013-10-29 Cardiac Pacemakers, Inc. Implantable medical device responsive to MRI induced capture threshold changes
US20100087892A1 (en) * 2008-10-02 2010-04-08 Stubbs Scott R Implantable medical device responsive to mri induced capture threshold changes
US8382824B2 (en) 2008-10-03 2013-02-26 Boston Scientific Scimed, Inc. Medical implant having NANO-crystal grains with barrier layers of metal nitrides or fluorides
US8231980B2 (en) 2008-12-03 2012-07-31 Boston Scientific Scimed, Inc. Medical implants including iridium oxide
US8977356B2 (en) 2009-02-19 2015-03-10 Cardiac Pacemakers, Inc. Systems and methods for providing arrhythmia therapy in MRI environments
US20100211123A1 (en) * 2009-02-19 2010-08-19 Stubbs Scott R Systems and methods for providing arrhythmia therapy in mri environments
US8639331B2 (en) 2009-02-19 2014-01-28 Cardiac Pacemakers, Inc. Systems and methods for providing arrhythmia therapy in MRI environments
US8267992B2 (en) 2009-03-02 2012-09-18 Boston Scientific Scimed, Inc. Self-buffering medical implants
US8071156B2 (en) 2009-03-04 2011-12-06 Boston Scientific Scimed, Inc. Endoprostheses
US8287937B2 (en) 2009-04-24 2012-10-16 Boston Scientific Scimed, Inc. Endoprosthese
US20110019893A1 (en) * 2009-07-22 2011-01-27 Norbert Rahn Method and Device for Controlling the Ablation Energy for Performing an Electrophysiological Catheter Application
US8565874B2 (en) 2009-12-08 2013-10-22 Cardiac Pacemakers, Inc. Implantable medical device with automatic tachycardia detection and control in MRI environments
US9381371B2 (en) 2009-12-08 2016-07-05 Cardiac Pacemakers, Inc. Implantable medical device with automatic tachycardia detection and control in MRI environments
US8668732B2 (en) 2010-03-23 2014-03-11 Boston Scientific Scimed, Inc. Surface treated bioerodible metal endoprostheses
WO2012014079A2 (en) 2010-07-29 2012-02-02 Biotectix, LLC Implantable electrode
US8380306B2 (en) 2010-07-29 2013-02-19 Biotectix, LLC Implantable electrode
US8759669B2 (en) * 2011-01-14 2014-06-24 Hanergy Hi-Tech Power (Hk) Limited Barrier and planarization layer for thin-film photovoltaic cell
US20120192941A1 (en) * 2011-01-14 2012-08-02 Global Solar Energy, Inc. Barrier and planarization layer for thin-film photovoltaic cell
US9004969B2 (en) 2011-10-24 2015-04-14 Federal-Mogul Ignition Company Spark plug electrode and spark plug manufacturing method
US9130358B2 (en) 2013-03-13 2015-09-08 Federal-Mogul Ignition Company Method of manufacturing spark plug electrode material
US11020545B2 (en) * 2017-04-10 2021-06-01 U.S. Patent Innovations, LLC Electrosurgical gas control module
CN111163722A (en) * 2017-06-15 2020-05-15 康曼德公司 Coated electrosurgical vascular sealer electrode
US11253310B2 (en) 2018-04-10 2022-02-22 U.S. Patent Innovations, LLC Gas-enhanced electrosurgical generator

Also Published As

Publication number Publication date
US6270831B2 (en) 2001-08-07

Similar Documents

Publication Publication Date Title
US6270831B2 (en) Method and apparatus for providing a conductive, amorphous non-stick coating
AU751322B2 (en) Method and apparatus for providing a conductive, amorphous non-stick coating
EP2018881B1 (en) Medical device having diamond-like thin film and method for manufacture thereof
US5496359A (en) Zirconium oxide and zirconium nitride coated biocompatible leads
US5588443A (en) Zirconium oxide and zirconium nitride coated guide wires
EP0739219B1 (en) Catheter having a long-lasting antimicrobial surface treatment
US5492763A (en) Infection resistant medical devices and process
WO1993007924A1 (en) Bactericidal coatings for implants
CN105343938B (en) Medical instrument
US5683442A (en) Cardiovascular implants of enhanced biocompatibility
US7918944B2 (en) Surface carburization technique of medical titanium alloy femoral head in hip arthroplasty
WO2003035924A1 (en) Improved non-irritating antimicrobial coatings and process for preparing same
CN104817711B (en) The antibiotic property method of modifying of silicon rubber
JP6843356B2 (en) Antibacterial member
US20140127270A1 (en) Compositions and Methods for Preventing and Ameliorating Fouling on Medical Surfaces
Ufukerbulut et al. Biomaterials for improving the blood and tissue compatibility of total artificial hearts (TAH) and ventricular assist devices (VAD)
KR102131101B1 (en) Method for preparation of ePTFE-based artificial vessels with enhanced hemocompatibility via selective plasma etching
EP4241799A1 (en) Metal material for medical device, manufacturing method for metal material for medical device, and medical device
JP6996556B2 (en) Medical devices and artificial joints
WO1999053988A1 (en) Guide wire for catheters
Ali et al. Human microvascular endothelial cell seeding on Cr-DLC thin films for heart valve applications
EP3970762A1 (en) Method for manufacturing eptfe artificial blood vessels having improved hemocompatibility via selective plasma etching
JPH0975456A (en) Low friction injection needle
Shishiyanu et al. DLC thin films for cardiovascular stents

Legal Events

Date Code Title Description
AS Assignment

Owner name: MEDQUEST PRODUCTS, INC., UTAH

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KUMAR, B. AJIT;KHANWILKAR, PRATAP;OLSEN, DON B.;REEL/FRAME:009721/0331

Effective date: 19980722

AS Assignment

Owner name: MEDQUEST PRODUCTS, INC., UTAH

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KUMAR, AJIT B.;OLSEN, DON B.;KHANWILKAR, PRATAP;AND OTHERS;REEL/FRAME:010947/0382

Effective date: 20000628

Owner name: UTAH, UNIVERSITY OF, UTAH

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KUMAR, AJIT B.;OLSEN, DON B.;KHANWILKAR, PRATAP;AND OTHERS;REEL/FRAME:010947/0382

Effective date: 20000628

AS Assignment

Owner name: UTAH, UNIVERSITY OF RESEARCH FOUNDATION, UTAH

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:UTAH, UNIVERSITY OF;REEL/FRAME:011399/0695

Effective date: 20001221

REMI Maintenance fee reminder mailed
FPAY Fee payment

Year of fee payment: 4

SULP Surcharge for late payment
AS Assignment

Owner name: WORLD HEART CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MEDQUEST PRODUCTS, INC.;REEL/FRAME:016641/0282

Effective date: 20050726

AS Assignment

Owner name: ABIOMED, INC., MASSACHUSETTS

Free format text: SECURITY AGREEMENT;ASSIGNOR:WORLD HEART INC.;REEL/FRAME:020270/0084

Effective date: 20071211

AS Assignment

Owner name: WORLD HEART INC., CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:ABIOMED, INC.;REEL/FRAME:021328/0167

Effective date: 20080731

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20090807