DE19856983A1 - Implantable, bioresorbable vascular wall support, in particular coronary stent - Google Patents

Implantable, bioresorbable vascular wall support, in particular coronary stent

Info

Publication number
DE19856983A1
DE19856983A1 DE19856983A DE19856983A DE19856983A1 DE 19856983 A1 DE19856983 A1 DE 19856983A1 DE 19856983 A DE19856983 A DE 19856983A DE 19856983 A DE19856983 A DE 19856983A DE 19856983 A1 DE19856983 A1 DE 19856983A1
Authority
DE
Germany
Prior art keywords
wall support
vessel wall
support according
metal
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE19856983A
Other languages
German (de)
Inventor
Armin Bolz
Thomas Popp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BIOTRONIK AG, B?LACH, CH
Original Assignee
Biotronik Mess und Therapiegeraete GmbH and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Biotronik Mess und Therapiegeraete GmbH and Co filed Critical Biotronik Mess und Therapiegeraete GmbH and Co
Priority to DE19856983A priority Critical patent/DE19856983A1/en
Priority to EP99111383A priority patent/EP0966979B1/en
Priority to DE59913189T priority patent/DE59913189D1/en
Priority to US09/339,927 priority patent/US6287332B1/en
Publication of DE19856983A1 publication Critical patent/DE19856983A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/02Inorganic materials
    • A61L31/022Metals or alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • A61L31/082Inorganic materials
    • A61L31/088Other specific inorganic materials not covered by A61L31/084 or A61L31/086
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/148Materials at least partially resorbable by the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0004Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof bioabsorbable

Abstract

Eine implantierte bioresorbierbare Gefäßwandstütze, insbesondere Koronarstent, bestehend aus einer sich im Körper ohne schädliche Auswirkungen auf den Implantat-Träger zersetzenden Metall-Materialkombination. Letztere kann als Legierung oder galvanisches Lokalelement ausgebildet sein.An implanted bioresorbable vascular wall support, in particular a coronary stent, consisting of a metal-material combination that decomposes in the body without harmful effects on the implant carrier. The latter can be designed as an alloy or a galvanic local element.

Description

Die Erfindung betrifft eine implantierbare, bioresorbierbare Gefäßwand­ stütze, insbesondere einen Koronarstent.The invention relates to an implantable, bioresorbable vessel wall support, especially a coronary stent.

Zum Hintergrund der Erfindung ist festzuhalten, daß sogenannte "Gefäß­ wandstützen" oder - wie sie im Fachjargon genannt werden - "Stents" zur Therapie von Stenosen, also krankhaft verengten Passagen eines Koronar­ gefäßes eingesetzt werden. Dazu wird ein solcher Koronarstent mittels ei­ nes Katheters transvenös in den Körper eingeführt und durch das Gefäßsy­ stem an die Problemstelle im Herzen vorgeschoben. In diesem Zustand des Einführens und Vorschiebens darf der Stent für eine ausreichende Beweg­ lichkeit einen Außendurchmesser von lediglich etwa 1 mm aufweisen. Ist die stenotische Koronargefäß-Passage erreicht, wird der Stent dauerhaft aufgeweitet, um die Stenose zu beheben. Dazu wird der Stent mittels des Katheters, auf dem er eingeführt wurde, unter plastischer Verformung bis auf einen Durchmesser von etwa 4 mm radial aufgeweitet. Zu diesem Zweck ist der Katheter als Ballonkatheter ausgeführt, bei dem der den Stent tragende Längsabschnitt durch Anlegen eines Überdrucks mittels Koch­ salzlösung ähnlich einem Luftballon dilatiert wird.In the background of the invention it should be noted that so-called "vessel wall supports "or - as they are called in technical jargon -" stents " Therapy of stenoses, i.e. pathologically narrow passages of a coronary vessel are used. For this purpose, such a coronary stent is created using an egg A catheter is inserted transvenously into the body and through the vascular system stem advanced to the problem area in the heart. In this state of The stent may be inserted and advanced for sufficient movement have an outer diameter of only about 1 mm. Is When the stenotic passage through the coronary artery is reached, the stent becomes permanent expanded to correct the stenosis. To do this, the stent is removed using the Catheter on which it was inserted, with plastic deformation until expanded radially to a diameter of about 4 mm. To this The purpose of the catheter is a balloon catheter in which the stent load-bearing longitudinal section by applying an overpressure by means of a cook salt solution is dilated like a balloon.

Herkömmliche implantierte Stents bestehen aus einem für den medizini­ schen Einsatz geeigneten Metallmaterial, das gegebenenfalls zur Vermei­ dung thrombotischer Probleme mit einer antikoagulative wirkenden Be­ schichtung versehen sein kann. Nachteil bei solchen dauerhaft implantier­ ten Stents ist die nachweislich auftretende permanente Reizung des den Stent umgebenden Gewebes, da er die durch den Herzschlag verursachten Biegebewegungen des von ihm gestützten Koronargefäßes aufgrund seiner Steifigkeit nicht nachvollzieht.Conventional implanted stents consist of one for medical use use suitable metal material, which may be used to avoid  of thrombotic problems with an anticoagulant effect Layering can be provided. Disadvantage with such a permanent implant ten stents is the demonstrable permanent irritation of the Stent surrounding tissue as it is caused by the heartbeat Bending movements of the coronary vessel supported by him due to his Not understand rigidity.

Ferner ist darauf hinzuweisen, daß zur Aufweitung einer Stenose die Unter­ stützung durch den Stent in der Regel nur über einen Zeitraum von einigen Monaten erforderlich ist. Danach bliebe die von der Stenose betreffende Gefäßpartie auch ohne Unterstützung offen.It should also be noted that the sub support from the stent is usually only available over a period of a few Months is required. After that, the one affected by the stenosis would remain Vascular section open without support.

Zur Behebung der vorgenannten Probleme wurde bereits vorgeschlagen, Stents aus bioresorbierbaren Materialien herzustellen, die im Körper im Verlauf weniger Monate zersetzt werden. Ein Herstellungsverfahren für solche bioresorbierbaren Koronarstents ist z. B. aus der DE 195 39 449 A1 bekannt. Dort wird aus einer viskosen Lösung von Poly-Beta-Hydroxy- Buttersäure als bioresorbierbaren Polymermaterial in einem Lösungsmittel durch sukzessives, schichtweises Aufbringen der Polymerlösung auf einen Positiv-Formkern in mehreren Schritten durch Abscheiden des Polymer­ materials unter Abdampfen des Lösungsmittels und unter zumindest teil­ weiser Anlösung der vorher abgeschiedenen Schicht ein in seiner Polymer­ struktur homogener Stenterrohling aufgebaut. Dieser wird vom Positiv- Formkern abgezogen und zur Endformgebung des Stents nachbearbeitet.To solve the above problems, it has already been suggested Manufacture stents from bioabsorbable materials that are in the body in the Decompose over the course of a few months. A manufacturing process for such bioresorbable coronary stents is e.g. B. from DE 195 39 449 A1 known. There a viscous solution of poly-beta-hydroxy Butyric acid as a bioabsorbable polymer material in a solvent by successively applying the polymer solution in layers to one Positive mold core in several steps by separating the polymer materials with evaporation of the solvent and at least partially wise dissolution of the previously deposited layer in its polymer structurally homogeneous stenter blank constructed. This is from the positive Mold core removed and reworked to final shape of the stent.

Bioresorbierbare Koronarstents aus Polymermaterialien weisen zwar die gewünschte biologische Resorbierbarkeit und Körperverträglichkeit auf. Bioresorbable coronary stents made of polymer materials have the desired biological absorption and body tolerance.  

Probleme bereiten jedoch die oft unzureichenden mechanischen Eigen­ schaften, wie beispielsweise eine mangelnde plastische Verformbarkeit dieses Stents. Dies führt bei der Dilatation auf immerhin den 4fachen Durchmesser zu einer Rißbildung mit der Folge einer herab gesetzten me­ chanischen Stabilität und zu einer hohen Rückverformung. Letzteres be­ deutet, daß für einen Enddurchmesser von 4 mm die maximale Aufweitung deutlich darüber liegen muß. Dies wiederum führt zu einer weiter erhöhten Rißbildung mit entsprechender Destabilisierung des Stents.Problems, however, are caused by the often inadequate mechanical properties properties, such as a lack of plastic deformability of this stent. This leads to four times the dilation Diameter to form a crack, resulting in a reduced me mechanical stability and high recovery. The latter be indicates that for a final diameter of 4 mm the maximum expansion must be significantly higher. This in turn leads to a further increase Crack formation with corresponding destabilization of the stent.

Zur Lösung der vorstehenden Problematik sieht die Erfindung laut Patent­ anspruch 1 vor, die Gefäßwandstütze aus einer sich im Körper ohne schäd­ liche Auswirkungen auf den Implantat-Träger zersetzenden Metall- Materialkombination herzustellen. Die Metall-Materialkombination ist da­ bei so auszulegen, daß sich das Material der Gefäßwandstütze mit einer bestimmten Zersetzungsrate und ohne die Produktion von körperschädli­ chen Zersetzungsprodukten auflöst. Eine derartige Gefäßwandstütze vereint also die vorteilhaften mechanischen Eigenschaften von Metall-Stents mit der Bioresorbierbarkeit von Stents auf Polymer-Basis.According to the patent, the invention provides a solution to the above problems Claim 1 before, the vascular wall support from one in the body without damage effects on the metal Manufacture material combination. The metal-material combination is there when interpreted so that the material of the vessel wall support with a certain decomposition rate and without the production of bodily harm dissolves Chen decomposition products. Such a vessel wall support united thus the beneficial mechanical properties of metal stents the bioresorbability of polymer-based stents.

In einer ersten grundsätzlichen Ausführungsform der Erfindung ist die Metall-Materialkombination als Metall-Legierung ausgelegt, wobei durch die Auswahl der Legierungspartner - wie im folgenden noch näher erläutert wird - die Voraussetzung der körperverträglichen Zersetzung erreicht wird. Die Metall-Legierung hat also mithin aus einer Materialkombination zu bestehen, die sich im Körper verhältnismäßig schnell - also in einer Zeit­ spanne von einigen Monaten - in unschädliche Bestandteile zersetzt, was mit dem anschaulichen Begriff der "körperverträglichen Korrosion" zu um­ schreiben ist.In a first basic embodiment of the invention Metal-material combination designed as a metal alloy, whereby by the selection of the alloy partners - as explained in more detail below will - the condition of body-compatible decomposition is reached. The metal alloy therefore has a combination of materials exist in the body relatively quickly - i.e. at a time span of a few months - decomposed into harmless components what  to deal with the descriptive concept of "body-compatible corrosion" is to write.

Um eine entsprechend gleichmäßige Korrosion zu erreichen, besteht eine solche Legierung aus einer Komponente A, die sich mit einer schützenden Oxidschicht überzieht. Diese Komponente A ist aus einem oder mehreren Metallen der Gruppe Magnesium, Titan, Zirkon, Niob, Tantal, Zink oder Silizium ausgewählt. Um eine gleichmäßige Auflösung der genannten Oxidschicht zu erreichen, wird der Legierung ferner eine Komponente B zugesetzt, die eine ausreichende Löslichkeit in Blut oder interstitieller Flüs­ sigkeit besitzt, wie Lithium, Natrium, Kalium, Calcium, Eisen oder Man­ gan.In order to achieve a correspondingly uniform corrosion, there is a such an alloy from a component A, which deals with a protective Oxide layer. This component A is one or more Metals from the group magnesium, titanium, zircon, niobium, tantalum, zinc or Silicon selected. To achieve a uniform resolution of the above To reach oxide layer, the alloy is also a component B added that have sufficient solubility in blood or interstitial rivers has liquid, such as lithium, sodium, potassium, calcium, iron or man gan.

Die vorstehenden Elemente eigenen sich deswegen, weil sie entweder oh­ nehin im menschlichen Körper vertreten sind - wie Magnesium, Zink, Na­ trium, Kalium, Calcium, Eisen und Mangan - oder als nichttoxisch bekannt sind - wie Titan, Zirkon, Niob, Tantal, Silizium und Lithium. Die Kombi­ nation einer passivierenden und einer löslichen Komponente ermöglicht dabei eine zeitgerechte, gleichmäßige Zersetzung in körperverträgliche Ab­ bauprodukte. Die Korrosionsgeschwindigkeit kann über das Verhältnis der beiden Komponenten eingestellt werden.The above elements are suitable because they are either oh are no longer represented in the human body - such as magnesium, zinc, Na trium, potassium, calcium, iron and manganese - or known as non-toxic are - like titanium, zircon, niobium, tantalum, silicon and lithium. The station wagon nation of a passivating and a soluble component thereby a timely, even decomposition into body-compatible ab construction products. The rate of corrosion can depend on the ratio of both components can be set.

Die Legierung ist in besonders bevorzugter Weise so zusammenzusetzen, daß die Korrosionsprodukte lösliche Salze, wie Natrium-, Kalium-, Calci­ um-, Eisen- oder Zinksalze sind oder nichtlösliche Korrosionsprodukte, wie Titan-, Tantal- oder Nioboxid als kolloide Partikel entstehen. Die Korrosi­ onsgeschwindigkeit wird dabei über die Zusammensetzung so eingestellt, daß Gase, wie Wasserstoff, der bei der Korrosion von Lithium, Natrium, Kalium, Magnesium, Calcium oder Zink entsteht, sich physikalisch lösen und keine makroskopischen Gasblasen bilden.The alloy is particularly preferably composed in such a way that that the corrosion products soluble salts, such as sodium, potassium, calci um, iron or zinc salts are or insoluble corrosion products, such as Titanium, tantalum or niobium oxide are formed as colloidal particles. The corrosi speed is adjusted via the composition so  that gases, such as hydrogen, which are associated with the corrosion of lithium, sodium, Potassium, magnesium, calcium or zinc are formed, physically dissolve and do not form macroscopic gas bubbles.

Als mögliche Legierung kann ferner beispielsweise eine aus der Luftfahrt bekannte, sogenannte Superleicht-Legierung aus Lithium und Magnesium eingesetzt werden, die bei dem vorstehend genannten Einsatzgebiet aller­ dings hinsichtlich großer Dauerhaltbarkeit und geringer Reaktionsfreudig­ keit optimiert ist. Das Magnesium-Lithium-Verhältnis liegt in der Größen­ ordnung von 60 : 40, wobei die Dauerhaltbarkeit über die Zugabe weiterer Komponenten, wie Zink, oder die Begasung durch Wasserstoff erhöht wird. Auch werden spezielle Schmelz- und Schmiedeverfahren zur Erhöhung der Dauerhaltbarkeit angewendet.A possible alloy can also be, for example, one from aviation known, so-called super light alloy of lithium and magnesium are used in the aforementioned field of application of all dings in terms of great durability and low reactivity is optimized. The magnesium-lithium ratio is in the sizes order of 60: 40, the durability over the addition of further Components, such as zinc, or fumigation by hydrogen is increased. Special melting and forging processes are also used to increase the Durability applied.

Für die Umsetzung der vorliegenden Erfindung können Lithium. Magnesium-Legierungen eingesetzt werden, die bei herkömmlicher Be­ handlung und in der Körpersphäre eine geringere Dauerhaltbarkeit besit­ zen. Als Zersetzungsprodukte sind Lithium- und Magnesium-Hydroxid zu erwarten, die beide als nicht-toxisch und körperverträglich zu betrachten sind.Lithium can be used to implement the present invention. Magnesium alloys are used, which in conventional Be action and less durability in the body sphere Zen. Lithium and magnesium hydroxide are added as decomposition products expect to consider both of them non-toxic and tolerable to the body are.

Eine Problematik bei der geschilderten Lithium-Magnesium-Legierung liegt darin, daß die Zersetzungsprodukte Lithium-Hydroxid und Magnesi­ um-Hydroxid schwer löslich sind und sich unter Kohlendioxidaufnahme zu den ebenfalls schwer löslichen Karbonaten umsetzen. Insbesondere Lithi­ um-Hydroxid ist dabei sehr voluminös. Die Korrosionsprodukte schlagen sich folglich als Krusten auf dem Stent nieder, die ein vielfaches des Stent­ volumens einnehmen können.A problem with the described lithium-magnesium alloy is that the decomposition products lithium hydroxide and magnesi um hydroxide are sparingly soluble and increase with absorption of carbon dioxide implement the also difficultly soluble carbonates. Especially Lithi um hydroxide is very voluminous. The corrosion products hit  consequently settled as crusts on the stent, which are a multiple of the stent volume can take.

Insoweit sind andere Legierungskombinationen besser geeignet, beispiels­ weise ein Natrium-Magnesium-Legierung. Da Natrium-Hydroxid als Kor­ rosionsprodukt eine hohe Löslichkeit besitzt, zersetzt sich diese Legierung ohne voluminöse Krusten. Natrium geht in Lösung und Magnesium- Hydroxid bildet einen feinen Niederschlag, der gefahrlos in die sich bil­ dende Gefäßhaut, die sogenannte Intima, eingelagert werden kann.In this respect, other alloy combinations are more suitable, for example wise a sodium-magnesium alloy. Since sodium hydroxide as a cor corrosion product has a high solubility, this alloy decomposes without voluminous crusts. Sodium goes into solution and magnesium Hydroxide forms a fine precipitate that can be safely stored in the bil vascular skin, the so-called intima, can be stored.

Neben der Realisierung der Metall-Materialkombination in Form einer Metallegierung kann in einer weiteren grundsätzlichen Ausführungsform die Metall-Materialkombination als elektrochemisches Lokal-Element aus­ gelegt sein. Dieses besteht einerseits aus einem den Körper der Ge­ fäßwandstütze bildenden, im wesentlichen reinen ersten Metall und ande­ rerseits aus einer damit in Kontakt stehenden Lokalelektrode aus einem zweiten Metall. Letztere bildet mit dem Stützenkörper ein Lokal-Element, bei dem das Potential des Stützenkörpers entsprechend der elektrochemi­ schen Spannungsreihe verschoben ist. Die entstehende Kontaktspannung verursacht den Korrosionsprozeß des Stentkörpers. Die Korrosionsrate und damit die Zersetzungszeit des Stents kann über die Größe der Kontaktflä­ che zwischen dem korrodierbaren Stentkörper und der damit verbundenen Lokalelektrode bzw. über die Auswahl des Partnerelementes selbst gesteu­ ert werden.In addition to the realization of the metal-material combination in the form of a Metal alloy can be in a further basic embodiment the metal-material combination as an electrochemical local element be laid. On the one hand, this consists of a body of Ge essentially pure first metal and others on the other hand from a local electrode in contact with it from a second metal. The latter forms a local element with the column body, in which the potential of the support body according to the electrochemical voltage series is shifted. The resulting contact voltage causes the corrosion process of the stent body. The corrosion rate and so that the decomposition time of the stent can exceed the size of the contact surface che between the corrodible stent body and the associated Local electrode or controlled by the selection of the partner element itself be recognized.

Gemäß zweier alternativer Ausführungsformen kann das Partnerelement als Beschichtung auf dem Stützenkörper oder als eigenständiges, an dem Stüt­ zenkörper angebrachtes, beispielsweise daran angeschweißtes Metallteil ausgebildet sein. Im letzteren Fall können die Lokalelektroden in einer ty­ pischen Doppelfunktion auch als Röntgenmarker dienen.According to two alternative embodiments, the partner element can be as Coating on the support body or as an independent, on the support  metal body attached, for example welded to it be trained. In the latter case, the local electrodes can be in a ty double function also serve as an X-ray marker.

Im folgenden wird die Erfindung in zwei bevorzugten Ausführungsbei­ spielen näher erläutert:The invention will now be described in two preferred embodiments play explained in more detail:

Beispiel 1example 1

Es wird ein bioresorbierbarer Metallstent aus einer Legierung hergestellt, bei der die Komponente A aus Zink und die Komponente B aus Calcium besteht. Das Gewichtsverhältnis von Zink zu Calcium beträgt dabei minde­ stens 21 : 1. Bei dieser Zn-Ca-Legierung handelt es sich um eine Legierung, bei der die Korrosionsprodukte beider Komponenten als lösliche Salze an­ fallen, was besonders vorteilhaft für die vorliegende Anwendung ist. Calci­ um-Hydroxid besitzt dabei eine so hohe Löslichkeit, daß bei langsamer Korrosion über mehrere Wochen oder Monate das Löslichkeitsprodukt nicht überschritten wird. Das Calcium-Hydroxid wird also in gelöster Form vom Blut abtransportiert und verstoffwechselt. Die Korrosionsgeschwin­ digkeit wird im übrigen über das Verhältnis der beiden Komponenten ein­ gestellt, was über einfache Versuche ermittelbar ist.A bioresorbable metal stent is made from an alloy, in which component A is made of zinc and component B is made of calcium consists. The weight ratio of zinc to calcium is at least at least 21: 1. This Zn-Ca alloy is an alloy in which the corrosion products of both components appear as soluble salts fall, which is particularly advantageous for the present application. Calci um hydroxide has such a high solubility that slower Corrosion over several weeks or months is the solubility product is not exceeded. The calcium hydroxide is therefore in dissolved form transported away from the blood and metabolized. The corrosion rate Incidentally, the ratio of the two components determines the asked what can be determined by simple experiments.

Um die mechanischen Eigenschaften, wie Duktilität, Härte und Zugfestig­ keit, des Metallstents zu verbessern, können entsprechende Legierungsbe­ standteile in geringer Konzentration zugesetzt werden. Beispielsweise könnte ist der Legierung das Nichtmetall Phosphor im Prozentbereich zu­ gegeben werden. The mechanical properties such as ductility, hardness and tensile strength Ability to improve the metal stent, appropriate alloying ingredients are added in low concentration. For example Percentage of non-metal phosphorus could be added to the alloy are given.  

Beispiel 2Example 2

Bei einem bioresorbierbaren Metallstent besteht der Stützenkörper aus rei­ nem Zink, das sich - wie galvanische Versuche zeigen - bei externen Strö­ men von einigen mA ohne Gasentwicklung und ohne Oxidbildung auflöst, wie dies für korrodierbare Metallstents anzustreben ist.In the case of a bioresorbable metal stent, the support body consists of rei zinc, which - as galvanic tests show - with external currents of a few mA without gas evolution and without oxide formation, how to strive for corrodible metal stents.

Zur Erzeugung eines solchen "externen" Stromes ist nun ein Lokal- Element z. B. in Form einer Goldelektrode galvanisch oder durch Laser­ schweißen auf dem Stent angebracht und führt als Lokalelektrode zusam­ men mit dem Stützenkörper zu einer Kontaktspannung, da die Goldelektro­ de näherungsweise das Potential der Zinkelektrode annimmt und das Po­ tential der Zinkelektrode geringfügig positiver wird. Es folgt ein entspre­ chender Strom, der zur aktiven Zinkauflösung führt. An der Goldelektrode fließen entsprechende kathodische Ströme. Der Austauschstrom insgesamt wird wegen der geringen kathodischen Ströme der Goldelektrode von der Fläche der Goldelektrode bestimmt. Über diesen Mechanismus kann die Korrosionsrate also über die Fläche des Lokal-Elementes eingestellt wer­ den.To generate such an "external" current, a local Element z. B. in the form of a gold electrode galvanically or by laser welding attached to the stent and brings together as a local electrode men with the support body to a contact voltage, since the gold electro de approximates the potential of the zinc electrode and the Po potential of the zinc electrode becomes slightly more positive. A corresponding follows current that leads to active zinc dissolution. On the gold electrode corresponding cathodic currents flow. The total exchange current is due to the low cathodic currents of the gold electrode Surface of the gold electrode determined. With this mechanism the Corrosion rate over the area of the local element the.

Wie Versuche gezeigt haben, stellt sich bei einem Gold-Lokal-Element auf Zink ein Austauschstrom nach wenigen Minuten ein, der über mehrere Ta­ ge konstant bleibt. Insoweit ist eine konstante Korrosionsrate erzielbar, wobei beispielsweise ein 10 mg schwerer Stent bei 10 µA Korrosionsstrom sich in zirka 30 bis 40 Tagen auflösen wird.As experiments have shown, a gold local element arises Zinc an exchange current after a few minutes, which over several Ta ge remains constant. In this respect, a constant corrosion rate can be achieved for example a 10 mg stent at 10 µA corrosion current will dissolve in about 30 to 40 days.

Claims (16)

1. Implantierbare, bioresorbierbare Gefäßwandstütze, insbesondere Ko­ ronarstent, dadurch gekennzeichnet, daß die Gefäßwandstütze aus einer sich im Körper ohne schädliche Auswirkungen auf den Implan­ tat-Träger zersetzenden Metall-Materialkombination besteht.1. Implantable, bioresorbable vascular wall support, in particular Ko ronar stent, characterized in that the vascular wall support consists of a metal-material combination which decomposes in the body without harmful effects on the implant carrier. 2. Gefäßwandstütze nach Anspruch 1, dadurch gekennzeichnet, daß die Metall-Materialkombination als Metall-Legierung ausgelegt ist, die mindestens aus einer ersten Komponente, die eine schützende Pas­ sivierungsschicht bildet, und aus einer zweiten Komponente besteht, die eine ausreichende Korrosion der Legierung gewährleistet.2. vessel wall support according to claim 1, characterized in that the metal-material combination is designed as a metal alloy, the at least one first component that has a protective pas forms the activation layer and consists of a second component, which ensures sufficient corrosion of the alloy. 3. Gefäßwandstütze nach Anspruch 2, dadurch gekennzeichnet, daß die erste Komponente aus einem oder mehreren Metallen aus der Gruppe Magnesium, Titan, Zirkon, Niob, Tantal, Zink oder Silizium und die zweite Komponente aus einem oder mehreren Metallen aus der Gruppe Lithium, Natrium, Kalium, Calcium, Mangan oder Eisen ausgewählt sind.3. vessel wall support according to claim 2, characterized in that the first component from one or more metals from the Magnesium, titanium, zircon, niobium, tantalum, zinc or silicon group and the second component is made of one or more metals the group lithium, sodium, potassium, calcium, manganese or iron are selected. 4. Gefäßwandstütze nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß die Bestandteile der Metall-Legierung so ausgewählt sind, daß die Korrosionsprodukte als lösliche Salze oder sehr feine Partikel oder kolloide Partikel entstehen.4. vessel wall support according to claim 2 or 3, characterized in that the components of the metal alloy are selected so that the corrosion products as soluble salts or very fine particles or colloidal particles are formed. 5. Gefäßwandstütze nach einem der Ansprüche 2 bis 4, dadurch ge­ kennzeichnet, daß die Bestandteile der Metall-Legierung so ausge­ wählt sind, daß sie mit einer solchen Geschwindigkeit korrodieren, daß die bei der Korrosion entstehenden Gase sich physikalisch in der die Gefäßwandstütze beaufschlagenden Körperflüssigkeit lösen.5. vessel wall support according to one of claims 2 to 4, characterized ge indicates that the components of the metal alloy are made out  are chosen to corrode at such a rate that the gases generated during corrosion are physically in the loosen the body fluid acting on the vessel wall support. 6. Gefäßwandstütze nach einem der Ansprüche 2 bis 5, dadurch ge­ kennzeichnet, daß die Legierung als korrosionshemmende Kompo­ nente A Zink enthält.6. vessel wall support according to one of claims 2 to 5, characterized ge indicates that the alloy as a corrosion-inhibiting compo nente A contains zinc. 7. Gefäßwandstütze nach Anspruch 6, dadurch gekennzeichnet, daß die Legierung eine Zink-Calcium-Legierung ist.7. vessel wall support according to claim 6, characterized in that the alloy is a zinc-calcium alloy. 8. Gefäßwandstütze nach Anspruch 6, dadurch gekennzeichnet, daß das Gewichtsverhältnis von Zink zu Calcium in der Legierung minde­ stens 21 : 1 beträgt.8. vessel wall support according to claim 6, characterized in that the weight ratio of zinc to calcium in the alloy min is at least 21: 1. 9. Gefäßwandstütze nach einem der Ansprüche 2 bis 8, dadurch ge­ kennzeichnet, daß die Legierung zur Korrosionshemmung mit Was­ serstoff begast ist.9. vessel wall support according to one of claims 2 to 8, characterized ge indicates that the alloy for corrosion inhibition with What is fumigated. 10. Gefäßwandstütze nach einem der Ansprüche 2 bis 9, dadurch ge­ kennzeichnet, daß der Legierung das Nichtmetall Phosphor zugesetzt ist.10. vessel wall support according to one of claims 2 to 9, characterized ge indicates that non-metal phosphorus is added to the alloy is. 11. Gefäßwandstütze nach Anspruch 1, dadurch gekennzeichnet, daß die Metall-Materialkombination als elektrochemisches Lokal-Element ausgelegt ist, das einerseits durch den Körper der Gefäßwandstütze aus einem im wesentlichen reinen ersten Metall und andererseits durch eine damit in Kontakt stehende, zu einer Kontaktspannung füh­ renden Lokalelektrode aus einem zweiten Metall gebildet ist.11. Vascular wall support according to claim 1, characterized in that the metal-material combination as an electrochemical local element is designed, on the one hand, through the body of the vessel wall support from a substantially pure first metal and on the other hand  through contact with it, lead to a contact voltage local electrode is formed from a second metal. 12. Gefäßwandstütze nach Anspruch 11, dadurch gekennzeichnet, daß die Lokalelektrode als Beschichtung auf dem Stützenkörper ausgebil­ det ist.12. Vascular wall support according to claim 11, characterized in that the local electrode is formed as a coating on the support body det. 13. Gefäßwandstütze nach Anspruch 11, dadurch gekennzeichnet, daß die Lokalelektrode als an dem Stützenkörper angebrachtes, insbeson­ dere daran angeschweißtes Metallteil ausgebildet ist.13. vessel wall support according to claim 11, characterized in that the local electrode as attached to the support body, in particular whose metal part is welded to it. 14. Gefäßwandstütze nach einem der Ansprüche 11 bis 13, dadurch ge­ kennzeichnet, daß der Stützenkörper aus Zink besteht.14. Vascular wall support according to one of claims 11 to 13, characterized ge indicates that the support body is made of zinc. 15. Gefäßwandstütze nach einem der Ansprüche 11 bis 14, dadurch ge­ kennzeichnet, daß die Lokalelektrode aus einem Edelmetall, insbe­ sondere Gold, Platin oder Iridium besteht.15. vessel wall support according to one of claims 11 to 14, characterized ge indicates that the local electrode made of a precious metal, in particular special gold, platinum or iridium. 16. Gefäßwandstütze nach Anspruch 12, dadurch gekennzeichnet, daß die die Lokalelektrode bildende Beschichtung durch Galvanisierung oder Sputtern aufgebracht ist.16. vessel wall support according to claim 12, characterized in that the coating forming the local electrode by galvanization or sputtering is applied.
DE19856983A 1998-06-25 1998-12-10 Implantable, bioresorbable vascular wall support, in particular coronary stent Withdrawn DE19856983A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE19856983A DE19856983A1 (en) 1998-06-25 1998-12-10 Implantable, bioresorbable vascular wall support, in particular coronary stent
EP99111383A EP0966979B1 (en) 1998-06-25 1999-06-11 Implantable bioresorbable support for the vascular walls, in particular coronary stent
DE59913189T DE59913189D1 (en) 1998-06-25 1999-06-11 Implantable, bioabsorbable vessel wall support, in particular coronary stent
US09/339,927 US6287332B1 (en) 1998-06-25 1999-06-25 Implantable, bioresorbable vessel wall support, in particular coronary stent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19828245 1998-06-25
DE19856983A DE19856983A1 (en) 1998-06-25 1998-12-10 Implantable, bioresorbable vascular wall support, in particular coronary stent

Publications (1)

Publication Number Publication Date
DE19856983A1 true DE19856983A1 (en) 1999-12-30

Family

ID=7871931

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19856983A Withdrawn DE19856983A1 (en) 1998-06-25 1998-12-10 Implantable, bioresorbable vascular wall support, in particular coronary stent

Country Status (1)

Country Link
DE (1) DE19856983A1 (en)

Cited By (108)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10064596A1 (en) * 2000-12-18 2002-06-20 Biotronik Mess & Therapieg Application of a marker element to an implant, especially a stent, comprises introducing a solidifiable material into a recess and solidifying the material in the recess
DE10118603A1 (en) * 2001-04-12 2002-10-17 Gerd Hausdorf Biodegradable implant, e.g. for sealing defects in blood vessels or the heart, comprises a corrosively degradable tungsten, iron or magnesium alloy support structure bonded with another material
DE10125999A1 (en) * 2001-05-18 2002-11-21 Biotronik Mess & Therapieg Implantable bio-resorbable vessel-wall-support consists of a framework of interconnected arms with different cross-sections, thicknesses and widths
DE10153541A1 (en) * 2001-10-30 2003-05-22 Fraunhofer Ges Forschung Blood vessel adapter used as a stent or an anastomosis adapter in bypass surgery comprises a tubular piece having a passage between two axial end openings
DE10153542A1 (en) * 2001-10-30 2003-05-22 Fraunhofer Ges Forschung Production of adapters used as a stent or blood vessel adapter in bypass surgery comprises forming a mold, coating with a metallic material, and dissolving the coating as adapter from the mold
EP1389472A2 (en) 2002-08-13 2004-02-18 BIOTRONIK Mess- und Therapiegeräte GmbH & Co Ingenieurbüro Berlin Endovascular implant having an active coating
EP1389471A1 (en) 2002-08-13 2004-02-18 BIOTRONIK Mess- und Therapiegeräte GmbH & Co Ingenieurbüro Berlin Stent with coating of high-molecular poly-L-lactide
DE10325678A1 (en) * 2003-06-02 2004-12-23 Biotronik Meß- und Therapiegeräte GmbH & Co. Ingenieurbüro Berlin Connection system for connecting a stent to a radio-opaque marker and method for establishing a connection between a stent and two or more radio-opaque markers
DE10357281A1 (en) * 2003-12-05 2005-07-14 Hassel, Thomas, Dipl.-Ing. Degradable stent for blood vessel support made of magnesium material, comprises degradation-inhibiting biocompatible coating
DE102005018356A1 (en) * 2005-04-20 2006-10-26 Orlowski, Michael, Dr. Resorbable implant consisting mainly of zinc or zinc alloy, particularly useful as stent in blood vessels, urinary tract, respiratory tract, biliary tract or digestive tract, provides support until adequate tissue regeneration has occurred
EP1741423A1 (en) * 2005-07-04 2007-01-10 BIOTRONIK VI Patent AG Drug depot for parenteral drug release, in particular intravascular drug release
WO2007082147A2 (en) * 2006-01-05 2007-07-19 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
DE102006038242A1 (en) * 2006-08-07 2008-02-14 Biotronik Vi Patent Ag Stent with a structure made of a biocorrodible metallic material
WO2008083190A2 (en) * 2006-12-28 2008-07-10 Boston Scientific Limited Bioerodible endoprostheses and methods of making same
DE102007008479A1 (en) 2007-02-21 2008-09-04 Orlowski, Michael, Dr. Coated Expandable System
DE102007034350A1 (en) 2007-07-24 2009-01-29 Hemoteq Ag Biodegradable stent graft, useful as a stent e.g. for blood vessels and respiratory system, comprises an inner bioresorbable metal skeleton containing e.g. calcium and an outer polymeric coating containing e.g. polylactic acid
WO2008076582A3 (en) * 2006-12-15 2009-07-02 Medtronic Vascular Inc Bioresorbable stent
US7658880B2 (en) 2005-07-29 2010-02-09 Advanced Cardiovascular Systems, Inc. Polymeric stent polishing method and apparatus
US7662326B2 (en) 2004-09-10 2010-02-16 Advanced Cardiovascular Systems, Inc. Compositions containing fast-leaching plasticizers for improved performance of medical devices
US7699890B2 (en) 1997-04-15 2010-04-20 Advanced Cardiovascular Systems, Inc. Medicated porous metal prosthesis and a method of making the same
US7708548B2 (en) 2005-04-12 2010-05-04 Advanced Cardiovascular Systems, Inc. Molds for fabricating stents with profiles for gripping a balloon catheter
US7731890B2 (en) 2006-06-15 2010-06-08 Advanced Cardiovascular Systems, Inc. Methods of fabricating stents with enhanced fracture toughness
US7740791B2 (en) 2006-06-30 2010-06-22 Advanced Cardiovascular Systems, Inc. Method of fabricating a stent with features by blow molding
US7757543B2 (en) 2006-07-13 2010-07-20 Advanced Cardiovascular Systems, Inc. Radio frequency identification monitoring of stents
US7761968B2 (en) 2006-05-25 2010-07-27 Advanced Cardiovascular Systems, Inc. Method of crimping a polymeric stent
EP1482864B2 (en) 2002-01-31 2010-08-18 Radi Medical Systems Ab Dissolvable stent
US7794495B2 (en) 2006-07-17 2010-09-14 Advanced Cardiovascular Systems, Inc. Controlled degradation of stents
US7794776B1 (en) 2006-06-29 2010-09-14 Abbott Cardiovascular Systems Inc. Modification of polymer stents with radiation
US7823263B2 (en) 2006-07-11 2010-11-02 Abbott Cardiovascular Systems Inc. Method of removing stent islands from a stent
US7829008B2 (en) 2007-05-30 2010-11-09 Abbott Cardiovascular Systems Inc. Fabricating a stent from a blow molded tube
US7842737B2 (en) 2006-09-29 2010-11-30 Abbott Cardiovascular Systems Inc. Polymer blend-bioceramic composite implantable medical devices
EP2269664A2 (en) 2007-01-21 2011-01-05 Hemoteq AG Medical product for treating closures of bodily passages and preventing reclosures
US7867547B2 (en) 2005-12-19 2011-01-11 Advanced Cardiovascular Systems, Inc. Selectively coating luminal surfaces of stents
US7875233B2 (en) 2004-09-30 2011-01-25 Advanced Cardiovascular Systems, Inc. Method of fabricating a biaxially oriented implantable medical device
US7879367B2 (en) 1997-07-18 2011-02-01 Alfons Fischer Metallic implant which is degradable in vivo
US7886419B2 (en) 2006-07-18 2011-02-15 Advanced Cardiovascular Systems, Inc. Stent crimping apparatus and method
US7901452B2 (en) 2007-06-27 2011-03-08 Abbott Cardiovascular Systems Inc. Method to fabricate a stent having selected morphology to reduce restenosis
DE202011001927U1 (en) 2011-01-25 2011-04-07 Sellin, Lothar Nature stent
US7923022B2 (en) 2006-09-13 2011-04-12 Advanced Cardiovascular Systems, Inc. Degradable polymeric implantable medical devices with continuous phase and discrete phase
US7951194B2 (en) 2006-05-26 2011-05-31 Abbott Cardiovascular Sysetms Inc. Bioabsorbable stent with radiopaque coating
US7951185B1 (en) 2006-01-06 2011-05-31 Advanced Cardiovascular Systems, Inc. Delivery of a stent at an elevated temperature
US7955382B2 (en) 2006-09-15 2011-06-07 Boston Scientific Scimed, Inc. Endoprosthesis with adjustable surface features
US7955381B1 (en) 2007-06-29 2011-06-07 Advanced Cardiovascular Systems, Inc. Polymer-bioceramic composite implantable medical device with different types of bioceramic particles
US7959940B2 (en) 2006-05-30 2011-06-14 Advanced Cardiovascular Systems, Inc. Polymer-bioceramic composite implantable medical devices
US7959857B2 (en) 2007-06-01 2011-06-14 Abbott Cardiovascular Systems Inc. Radiation sterilization of medical devices
US7967998B2 (en) 2003-06-25 2011-06-28 Advanced Cardiocasvular Systems, Inc. Method of polishing implantable medical devices to lower thrombogenecity and increase mechanical stability
US7971333B2 (en) 2006-05-30 2011-07-05 Advanced Cardiovascular Systems, Inc. Manufacturing process for polymetric stents
US7985252B2 (en) 2008-07-30 2011-07-26 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis
US7989018B2 (en) 2001-09-17 2011-08-02 Advanced Cardiovascular Systems, Inc. Fluid treatment of a polymeric coating on an implantable medical device
US7998192B2 (en) 2008-05-09 2011-08-16 Boston Scientific Scimed, Inc. Endoprostheses
US7998404B2 (en) 2006-07-13 2011-08-16 Advanced Cardiovascular Systems, Inc. Reduced temperature sterilization of stents
US8003156B2 (en) 2006-05-04 2011-08-23 Advanced Cardiovascular Systems, Inc. Rotatable support elements for stents
US8002821B2 (en) 2006-09-18 2011-08-23 Boston Scientific Scimed, Inc. Bioerodible metallic ENDOPROSTHESES
US8016879B2 (en) 2006-08-01 2011-09-13 Abbott Cardiovascular Systems Inc. Drug delivery after biodegradation of the stent scaffolding
US8017237B2 (en) 2006-06-23 2011-09-13 Abbott Cardiovascular Systems, Inc. Nanoshells on polymers
US8034287B2 (en) 2006-06-01 2011-10-11 Abbott Cardiovascular Systems Inc. Radiation sterilization of medical devices
US8043553B1 (en) 2004-09-30 2011-10-25 Advanced Cardiovascular Systems, Inc. Controlled deformation of a polymer tube with a restraining surface in fabricating a medical article
US8048441B2 (en) 2007-06-25 2011-11-01 Abbott Cardiovascular Systems, Inc. Nanobead releasing medical devices
US8048150B2 (en) 2006-04-12 2011-11-01 Boston Scientific Scimed, Inc. Endoprosthesis having a fiber meshwork disposed thereon
US8048448B2 (en) 2006-06-15 2011-11-01 Abbott Cardiovascular Systems Inc. Nanoshells for drug delivery
US8052745B2 (en) 2007-09-13 2011-11-08 Boston Scientific Scimed, Inc. Endoprosthesis
US8052744B2 (en) 2006-09-15 2011-11-08 Boston Scientific Scimed, Inc. Medical devices and methods of making the same
US8052743B2 (en) 2006-08-02 2011-11-08 Boston Scientific Scimed, Inc. Endoprosthesis with three-dimensional disintegration control
US8057534B2 (en) 2006-09-15 2011-11-15 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US8089029B2 (en) 2006-02-01 2012-01-03 Boston Scientific Scimed, Inc. Bioabsorbable metal medical device and method of manufacture
US8099849B2 (en) 2006-12-13 2012-01-24 Abbott Cardiovascular Systems Inc. Optimizing fracture toughness of polymeric stent
US8128688B2 (en) 2006-06-27 2012-03-06 Abbott Cardiovascular Systems Inc. Carbon coating on an implantable device
US8128689B2 (en) 2006-09-15 2012-03-06 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis with biostable inorganic layers
US8172897B2 (en) 1997-04-15 2012-05-08 Advanced Cardiovascular Systems, Inc. Polymer and metal composite implantable medical devices
US8173062B1 (en) 2004-09-30 2012-05-08 Advanced Cardiovascular Systems, Inc. Controlled deformation of a polymer tube in fabricating a medical article
US8197879B2 (en) 2003-09-30 2012-06-12 Advanced Cardiovascular Systems, Inc. Method for selectively coating surfaces of a stent
US8202528B2 (en) 2007-06-05 2012-06-19 Abbott Cardiovascular Systems Inc. Implantable medical devices with elastomeric block copolymer coatings
US8236046B2 (en) 2008-06-10 2012-08-07 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis
US8241554B1 (en) 2004-06-29 2012-08-14 Advanced Cardiovascular Systems, Inc. Method of forming a stent pattern on a tube
US8262723B2 (en) 2007-04-09 2012-09-11 Abbott Cardiovascular Systems Inc. Implantable medical devices fabricated from polymer blends with star-block copolymers
US8267992B2 (en) 2009-03-02 2012-09-18 Boston Scientific Scimed, Inc. Self-buffering medical implants
US8293260B2 (en) 2007-06-05 2012-10-23 Abbott Cardiovascular Systems Inc. Elastomeric copolymer coatings containing poly (tetramethyl carbonate) for implantable medical devices
US8303643B2 (en) 2001-06-27 2012-11-06 Remon Medical Technologies Ltd. Method and device for electrochemical formation of therapeutic species in vivo
US8333000B2 (en) 2006-06-19 2012-12-18 Advanced Cardiovascular Systems, Inc. Methods for improving stent retention on a balloon catheter
US8343530B2 (en) 2006-05-30 2013-01-01 Abbott Cardiovascular Systems Inc. Polymer-and polymer blend-bioceramic composite implantable medical devices
US8382824B2 (en) 2008-10-03 2013-02-26 Boston Scientific Scimed, Inc. Medical implant having NANO-crystal grains with barrier layers of metal nitrides or fluorides
US8425591B1 (en) 2007-06-11 2013-04-23 Abbott Cardiovascular Systems Inc. Methods of forming polymer-bioceramic composite medical devices with bioceramic particles
US8470014B2 (en) 2004-08-25 2013-06-25 Advanced Cardiovascular Systems, Inc. Stent-catheter assembly with a releasable connection for stent retention
US8486135B2 (en) 2006-06-01 2013-07-16 Abbott Cardiovascular Systems Inc. Implantable medical devices fabricated from branched polymers
US8535372B1 (en) 2006-06-16 2013-09-17 Abbott Cardiovascular Systems Inc. Bioabsorbable stent with prohealing layer
US8568469B1 (en) 2004-06-28 2013-10-29 Advanced Cardiovascular Systems, Inc. Stent locking element and a method of securing a stent on a delivery system
US8603530B2 (en) 2006-06-14 2013-12-10 Abbott Cardiovascular Systems Inc. Nanoshell therapy
US8668732B2 (en) 2010-03-23 2014-03-11 Boston Scientific Scimed, Inc. Surface treated bioerodible metal endoprostheses
US8747879B2 (en) 2006-04-28 2014-06-10 Advanced Cardiovascular Systems, Inc. Method of fabricating an implantable medical device to reduce chance of late inflammatory response
US8747878B2 (en) 2006-04-28 2014-06-10 Advanced Cardiovascular Systems, Inc. Method of fabricating an implantable medical device by controlling crystalline structure
US8778256B1 (en) 2004-09-30 2014-07-15 Advanced Cardiovascular Systems, Inc. Deformation of a polymer tube in the fabrication of a medical article
US8808726B2 (en) 2006-09-15 2014-08-19 Boston Scientific Scimed. Inc. Bioerodible endoprostheses and methods of making the same
US8846070B2 (en) 2004-03-29 2014-09-30 Advanced Cardiovascular Systems, Inc. Biologically degradable compositions for medical applications
EP2796112A1 (en) * 2005-04-05 2014-10-29 Elixir Medical Corporation Degradable implantable medical devices
US9038260B2 (en) 2006-05-26 2015-05-26 Abbott Cardiovascular Systems Inc. Stent with radiopaque markers
US9072820B2 (en) 2006-06-26 2015-07-07 Advanced Cardiovascular Systems, Inc. Polymer composite stent with polymer particles
US9173733B1 (en) 2006-08-21 2015-11-03 Abbott Cardiovascular Systems Inc. Tracheobronchial implantable medical device and methods of use
US9198785B2 (en) 2010-01-30 2015-12-01 Abbott Cardiovascular Systems Inc. Crush recoverable polymer scaffolds
US9248034B2 (en) 2005-08-23 2016-02-02 Advanced Cardiovascular Systems, Inc. Controlled disintegrating implantable medical devices
US9265866B2 (en) 2006-08-01 2016-02-23 Abbott Cardiovascular Systems Inc. Composite polymeric and metallic stent with radiopacity
US9295570B2 (en) 2001-09-19 2016-03-29 Abbott Laboratories Vascular Enterprises Limited Cold-molding process for loading a stent onto a stent delivery system
WO2016145956A1 (en) * 2015-03-13 2016-09-22 西安爱德万思医疗科技有限公司 Corrosion-resistant, high strength and ductility zn-fe-x zinc alloy degradable by human body and applications of the alloy
US9532888B2 (en) 2006-01-04 2017-01-03 Abbott Cardiovascular Systems Inc. Stents with radiopaque markers
US9827119B2 (en) 2010-01-30 2017-11-28 Abbott Cardiovascular Systems Inc. Polymer scaffolds having a low crossing profile
US9999527B2 (en) 2015-02-11 2018-06-19 Abbott Cardiovascular Systems Inc. Scaffolds having radiopaque markers
US10028851B2 (en) 1997-04-15 2018-07-24 Advanced Cardiovascular Systems, Inc. Coatings for controlling erosion of a substrate of an implantable medical device
US10307274B2 (en) 2011-07-29 2019-06-04 Abbott Cardiovascular Systems Inc. Methods for uniform crimping and deployment of a polymer scaffold
US10610387B2 (en) 2015-06-12 2020-04-07 Abbott Cardiovascular Systems Inc. Scaffolds having a radiopaque marker and methods for attaching a marker to a scaffold

Cited By (146)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8172897B2 (en) 1997-04-15 2012-05-08 Advanced Cardiovascular Systems, Inc. Polymer and metal composite implantable medical devices
US7699890B2 (en) 1997-04-15 2010-04-20 Advanced Cardiovascular Systems, Inc. Medicated porous metal prosthesis and a method of making the same
US10028851B2 (en) 1997-04-15 2018-07-24 Advanced Cardiovascular Systems, Inc. Coatings for controlling erosion of a substrate of an implantable medical device
US8007529B2 (en) 1997-04-15 2011-08-30 Advanced Cardiovascular Systems, Inc. Medicated porous metal prosthesis
US7879367B2 (en) 1997-07-18 2011-02-01 Alfons Fischer Metallic implant which is degradable in vivo
DE10064596A1 (en) * 2000-12-18 2002-06-20 Biotronik Mess & Therapieg Application of a marker element to an implant, especially a stent, comprises introducing a solidifiable material into a recess and solidifying the material in the recess
US6899914B2 (en) 2000-12-18 2005-05-31 Biotronik Mess-Und Therapiegeraete Gmbh Ingeniurbuero Berlin Method of applying a marker element to an implant and an implant provided with a marker element
DE10118603A1 (en) * 2001-04-12 2002-10-17 Gerd Hausdorf Biodegradable implant, e.g. for sealing defects in blood vessels or the heart, comprises a corrosively degradable tungsten, iron or magnesium alloy support structure bonded with another material
DE10125999A1 (en) * 2001-05-18 2002-11-21 Biotronik Mess & Therapieg Implantable bio-resorbable vessel-wall-support consists of a framework of interconnected arms with different cross-sections, thicknesses and widths
US8303643B2 (en) 2001-06-27 2012-11-06 Remon Medical Technologies Ltd. Method and device for electrochemical formation of therapeutic species in vivo
US7989018B2 (en) 2001-09-17 2011-08-02 Advanced Cardiovascular Systems, Inc. Fluid treatment of a polymeric coating on an implantable medical device
US9295570B2 (en) 2001-09-19 2016-03-29 Abbott Laboratories Vascular Enterprises Limited Cold-molding process for loading a stent onto a stent delivery system
US10166131B2 (en) 2001-09-19 2019-01-01 Abbott Laboratories Vascular Enterprises Limited Process for loading a stent onto a stent delivery system
DE10153542B4 (en) * 2001-10-30 2006-11-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for making adapters for blood vessels
DE10153542A1 (en) * 2001-10-30 2003-05-22 Fraunhofer Ges Forschung Production of adapters used as a stent or blood vessel adapter in bypass surgery comprises forming a mold, coating with a metallic material, and dissolving the coating as adapter from the mold
DE10153541A1 (en) * 2001-10-30 2003-05-22 Fraunhofer Ges Forschung Blood vessel adapter used as a stent or an anastomosis adapter in bypass surgery comprises a tubular piece having a passage between two axial end openings
DE10153541B4 (en) * 2001-10-30 2008-05-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Blood vessel adapter
EP1482864B2 (en) 2002-01-31 2010-08-18 Radi Medical Systems Ab Dissolvable stent
EP1389471A1 (en) 2002-08-13 2004-02-18 BIOTRONIK Mess- und Therapiegeräte GmbH & Co Ingenieurbüro Berlin Stent with coating of high-molecular poly-L-lactide
EP1389472A2 (en) 2002-08-13 2004-02-18 BIOTRONIK Mess- und Therapiegeräte GmbH & Co Ingenieurbüro Berlin Endovascular implant having an active coating
DE10325678A1 (en) * 2003-06-02 2004-12-23 Biotronik Meß- und Therapiegeräte GmbH & Co. Ingenieurbüro Berlin Connection system for connecting a stent to a radio-opaque marker and method for establishing a connection between a stent and two or more radio-opaque markers
US7967998B2 (en) 2003-06-25 2011-06-28 Advanced Cardiocasvular Systems, Inc. Method of polishing implantable medical devices to lower thrombogenecity and increase mechanical stability
US8197879B2 (en) 2003-09-30 2012-06-12 Advanced Cardiovascular Systems, Inc. Method for selectively coating surfaces of a stent
DE10357281A1 (en) * 2003-12-05 2005-07-14 Hassel, Thomas, Dipl.-Ing. Degradable stent for blood vessel support made of magnesium material, comprises degradation-inhibiting biocompatible coating
US8846070B2 (en) 2004-03-29 2014-09-30 Advanced Cardiovascular Systems, Inc. Biologically degradable compositions for medical applications
US8568469B1 (en) 2004-06-28 2013-10-29 Advanced Cardiovascular Systems, Inc. Stent locking element and a method of securing a stent on a delivery system
US8241554B1 (en) 2004-06-29 2012-08-14 Advanced Cardiovascular Systems, Inc. Method of forming a stent pattern on a tube
US9283099B2 (en) 2004-08-25 2016-03-15 Advanced Cardiovascular Systems, Inc. Stent-catheter assembly with a releasable connection for stent retention
US8470014B2 (en) 2004-08-25 2013-06-25 Advanced Cardiovascular Systems, Inc. Stent-catheter assembly with a releasable connection for stent retention
US7662326B2 (en) 2004-09-10 2010-02-16 Advanced Cardiovascular Systems, Inc. Compositions containing fast-leaching plasticizers for improved performance of medical devices
US8173062B1 (en) 2004-09-30 2012-05-08 Advanced Cardiovascular Systems, Inc. Controlled deformation of a polymer tube in fabricating a medical article
US8043553B1 (en) 2004-09-30 2011-10-25 Advanced Cardiovascular Systems, Inc. Controlled deformation of a polymer tube with a restraining surface in fabricating a medical article
US7875233B2 (en) 2004-09-30 2011-01-25 Advanced Cardiovascular Systems, Inc. Method of fabricating a biaxially oriented implantable medical device
US8778256B1 (en) 2004-09-30 2014-07-15 Advanced Cardiovascular Systems, Inc. Deformation of a polymer tube in the fabrication of a medical article
EP2796112A1 (en) * 2005-04-05 2014-10-29 Elixir Medical Corporation Degradable implantable medical devices
US10350093B2 (en) 2005-04-05 2019-07-16 Elixir Medical Corporation Degradable implantable medical devices
US7708548B2 (en) 2005-04-12 2010-05-04 Advanced Cardiovascular Systems, Inc. Molds for fabricating stents with profiles for gripping a balloon catheter
DE102005018356B4 (en) * 2005-04-20 2010-02-25 Eurocor Gmbh Resorbable implants
DE102005018356A1 (en) * 2005-04-20 2006-10-26 Orlowski, Michael, Dr. Resorbable implant consisting mainly of zinc or zinc alloy, particularly useful as stent in blood vessels, urinary tract, respiratory tract, biliary tract or digestive tract, provides support until adequate tissue regeneration has occurred
EP1741423A1 (en) * 2005-07-04 2007-01-10 BIOTRONIK VI Patent AG Drug depot for parenteral drug release, in particular intravascular drug release
US7658880B2 (en) 2005-07-29 2010-02-09 Advanced Cardiovascular Systems, Inc. Polymeric stent polishing method and apparatus
US9248034B2 (en) 2005-08-23 2016-02-02 Advanced Cardiovascular Systems, Inc. Controlled disintegrating implantable medical devices
US7867547B2 (en) 2005-12-19 2011-01-11 Advanced Cardiovascular Systems, Inc. Selectively coating luminal surfaces of stents
US10070975B2 (en) 2006-01-04 2018-09-11 Abbott Cardiovascular Systems Inc. Stents with radiopaque markers
US9532888B2 (en) 2006-01-04 2017-01-03 Abbott Cardiovascular Systems Inc. Stents with radiopaque markers
WO2007082147A2 (en) * 2006-01-05 2007-07-19 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US8840660B2 (en) 2006-01-05 2014-09-23 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
WO2007082147A3 (en) * 2006-01-05 2007-09-20 Boston Scient Scimed Inc Bioerodible endoprostheses and methods of making the same
US7951185B1 (en) 2006-01-06 2011-05-31 Advanced Cardiovascular Systems, Inc. Delivery of a stent at an elevated temperature
US8089029B2 (en) 2006-02-01 2012-01-03 Boston Scientific Scimed, Inc. Bioabsorbable metal medical device and method of manufacture
US8048150B2 (en) 2006-04-12 2011-11-01 Boston Scientific Scimed, Inc. Endoprosthesis having a fiber meshwork disposed thereon
US8747878B2 (en) 2006-04-28 2014-06-10 Advanced Cardiovascular Systems, Inc. Method of fabricating an implantable medical device by controlling crystalline structure
US8747879B2 (en) 2006-04-28 2014-06-10 Advanced Cardiovascular Systems, Inc. Method of fabricating an implantable medical device to reduce chance of late inflammatory response
US8596215B2 (en) 2006-05-04 2013-12-03 Advanced Cardiovascular Systems, Inc. Rotatable support elements for stents
US8003156B2 (en) 2006-05-04 2011-08-23 Advanced Cardiovascular Systems, Inc. Rotatable support elements for stents
US8637110B2 (en) 2006-05-04 2014-01-28 Advanced Cardiovascular Systems, Inc. Rotatable support elements for stents
US8741379B2 (en) 2006-05-04 2014-06-03 Advanced Cardiovascular Systems, Inc. Rotatable support elements for stents
US8465789B2 (en) 2006-05-04 2013-06-18 Advanced Cardiovascular Systems, Inc. Rotatable support elements for stents
US7761968B2 (en) 2006-05-25 2010-07-27 Advanced Cardiovascular Systems, Inc. Method of crimping a polymeric stent
US9038260B2 (en) 2006-05-26 2015-05-26 Abbott Cardiovascular Systems Inc. Stent with radiopaque markers
US7951194B2 (en) 2006-05-26 2011-05-31 Abbott Cardiovascular Sysetms Inc. Bioabsorbable stent with radiopaque coating
US9358325B2 (en) 2006-05-26 2016-06-07 Abbott Cardiovascular Systems Inc. Stents with radiopaque markers
US9694116B2 (en) 2006-05-26 2017-07-04 Abbott Cardiovascular Systems Inc. Stents with radiopaque markers
US7959940B2 (en) 2006-05-30 2011-06-14 Advanced Cardiovascular Systems, Inc. Polymer-bioceramic composite implantable medical devices
US8343530B2 (en) 2006-05-30 2013-01-01 Abbott Cardiovascular Systems Inc. Polymer-and polymer blend-bioceramic composite implantable medical devices
US7971333B2 (en) 2006-05-30 2011-07-05 Advanced Cardiovascular Systems, Inc. Manufacturing process for polymetric stents
US8034287B2 (en) 2006-06-01 2011-10-11 Abbott Cardiovascular Systems Inc. Radiation sterilization of medical devices
US8486135B2 (en) 2006-06-01 2013-07-16 Abbott Cardiovascular Systems Inc. Implantable medical devices fabricated from branched polymers
US8808342B2 (en) 2006-06-14 2014-08-19 Abbott Cardiovascular Systems Inc. Nanoshell therapy
US8603530B2 (en) 2006-06-14 2013-12-10 Abbott Cardiovascular Systems Inc. Nanoshell therapy
US8048448B2 (en) 2006-06-15 2011-11-01 Abbott Cardiovascular Systems Inc. Nanoshells for drug delivery
US7731890B2 (en) 2006-06-15 2010-06-08 Advanced Cardiovascular Systems, Inc. Methods of fabricating stents with enhanced fracture toughness
US8535372B1 (en) 2006-06-16 2013-09-17 Abbott Cardiovascular Systems Inc. Bioabsorbable stent with prohealing layer
US8925177B2 (en) 2006-06-19 2015-01-06 Abbott Cardiovascular Systems Inc. Methods for improving stent retention on a balloon catheter
US9579225B2 (en) 2006-06-19 2017-02-28 Abbott Cardiovascular Systems Inc. Methods for improving stent retention on a balloon catheter
US8333000B2 (en) 2006-06-19 2012-12-18 Advanced Cardiovascular Systems, Inc. Methods for improving stent retention on a balloon catheter
US10342688B2 (en) 2006-06-19 2019-07-09 Abbott Cardiovascular Systems Inc. Methods for improving stent retention on a balloon catheter
US9259341B2 (en) 2006-06-19 2016-02-16 Abbott Cardiovascular Systems Inc. Methods for improving stent retention on a balloon catheter
US8293367B2 (en) 2006-06-23 2012-10-23 Advanced Cardiovascular Systems, Inc. Nanoshells on polymers
US8592036B2 (en) 2006-06-23 2013-11-26 Abbott Cardiovascular Systems Inc. Nanoshells on polymers
US8017237B2 (en) 2006-06-23 2011-09-13 Abbott Cardiovascular Systems, Inc. Nanoshells on polymers
US9072820B2 (en) 2006-06-26 2015-07-07 Advanced Cardiovascular Systems, Inc. Polymer composite stent with polymer particles
US8128688B2 (en) 2006-06-27 2012-03-06 Abbott Cardiovascular Systems Inc. Carbon coating on an implantable device
US7794776B1 (en) 2006-06-29 2010-09-14 Abbott Cardiovascular Systems Inc. Modification of polymer stents with radiation
US7740791B2 (en) 2006-06-30 2010-06-22 Advanced Cardiovascular Systems, Inc. Method of fabricating a stent with features by blow molding
US7823263B2 (en) 2006-07-11 2010-11-02 Abbott Cardiovascular Systems Inc. Method of removing stent islands from a stent
US10145811B2 (en) 2006-07-13 2018-12-04 Abbott Cardiovascular Systems Inc. Radio frequency identification monitoring of stents
US7757543B2 (en) 2006-07-13 2010-07-20 Advanced Cardiovascular Systems, Inc. Radio frequency identification monitoring of stents
US7998404B2 (en) 2006-07-13 2011-08-16 Advanced Cardiovascular Systems, Inc. Reduced temperature sterilization of stents
US7794495B2 (en) 2006-07-17 2010-09-14 Advanced Cardiovascular Systems, Inc. Controlled degradation of stents
US7886419B2 (en) 2006-07-18 2011-02-15 Advanced Cardiovascular Systems, Inc. Stent crimping apparatus and method
US8016879B2 (en) 2006-08-01 2011-09-13 Abbott Cardiovascular Systems Inc. Drug delivery after biodegradation of the stent scaffolding
US9265866B2 (en) 2006-08-01 2016-02-23 Abbott Cardiovascular Systems Inc. Composite polymeric and metallic stent with radiopacity
US8052743B2 (en) 2006-08-02 2011-11-08 Boston Scientific Scimed, Inc. Endoprosthesis with three-dimensional disintegration control
DE102006038242A1 (en) * 2006-08-07 2008-02-14 Biotronik Vi Patent Ag Stent with a structure made of a biocorrodible metallic material
US9173733B1 (en) 2006-08-21 2015-11-03 Abbott Cardiovascular Systems Inc. Tracheobronchial implantable medical device and methods of use
US9833342B2 (en) 2006-08-21 2017-12-05 Abbott Cardiovascular Systems Inc. Tracheobronchial implantable medical device and methods of use
US7923022B2 (en) 2006-09-13 2011-04-12 Advanced Cardiovascular Systems, Inc. Degradable polymeric implantable medical devices with continuous phase and discrete phase
US8057534B2 (en) 2006-09-15 2011-11-15 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US7955382B2 (en) 2006-09-15 2011-06-07 Boston Scientific Scimed, Inc. Endoprosthesis with adjustable surface features
US8052744B2 (en) 2006-09-15 2011-11-08 Boston Scientific Scimed, Inc. Medical devices and methods of making the same
US8808726B2 (en) 2006-09-15 2014-08-19 Boston Scientific Scimed. Inc. Bioerodible endoprostheses and methods of making the same
US8128689B2 (en) 2006-09-15 2012-03-06 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis with biostable inorganic layers
US8002821B2 (en) 2006-09-18 2011-08-23 Boston Scientific Scimed, Inc. Bioerodible metallic ENDOPROSTHESES
US7842737B2 (en) 2006-09-29 2010-11-30 Abbott Cardiovascular Systems Inc. Polymer blend-bioceramic composite implantable medical devices
US8099849B2 (en) 2006-12-13 2012-01-24 Abbott Cardiovascular Systems Inc. Optimizing fracture toughness of polymeric stent
US7651527B2 (en) 2006-12-15 2010-01-26 Medtronic Vascular, Inc. Bioresorbable stent
WO2008076582A3 (en) * 2006-12-15 2009-07-02 Medtronic Vascular Inc Bioresorbable stent
US8715339B2 (en) 2006-12-28 2014-05-06 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
WO2008083190A3 (en) * 2006-12-28 2009-08-20 Boston Scient Ltd Bioerodible endoprostheses and methods of making same
US8080055B2 (en) 2006-12-28 2011-12-20 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
EP2277563A3 (en) * 2006-12-28 2011-02-23 Boston Scientific Limited Bioerodible endoprostheses and methods of making same
WO2008083190A2 (en) * 2006-12-28 2008-07-10 Boston Scientific Limited Bioerodible endoprostheses and methods of making same
EP2491962A1 (en) 2007-01-21 2012-08-29 Hemoteq AG Medical product for treating closures of bodily passages and preventing reclosures
EP2269664A2 (en) 2007-01-21 2011-01-05 Hemoteq AG Medical product for treating closures of bodily passages and preventing reclosures
DE102007008479A1 (en) 2007-02-21 2008-09-04 Orlowski, Michael, Dr. Coated Expandable System
US8262723B2 (en) 2007-04-09 2012-09-11 Abbott Cardiovascular Systems Inc. Implantable medical devices fabricated from polymer blends with star-block copolymers
US7829008B2 (en) 2007-05-30 2010-11-09 Abbott Cardiovascular Systems Inc. Fabricating a stent from a blow molded tube
US7959857B2 (en) 2007-06-01 2011-06-14 Abbott Cardiovascular Systems Inc. Radiation sterilization of medical devices
US8293260B2 (en) 2007-06-05 2012-10-23 Abbott Cardiovascular Systems Inc. Elastomeric copolymer coatings containing poly (tetramethyl carbonate) for implantable medical devices
US8202528B2 (en) 2007-06-05 2012-06-19 Abbott Cardiovascular Systems Inc. Implantable medical devices with elastomeric block copolymer coatings
US8425591B1 (en) 2007-06-11 2013-04-23 Abbott Cardiovascular Systems Inc. Methods of forming polymer-bioceramic composite medical devices with bioceramic particles
US8048441B2 (en) 2007-06-25 2011-11-01 Abbott Cardiovascular Systems, Inc. Nanobead releasing medical devices
US7901452B2 (en) 2007-06-27 2011-03-08 Abbott Cardiovascular Systems Inc. Method to fabricate a stent having selected morphology to reduce restenosis
US7955381B1 (en) 2007-06-29 2011-06-07 Advanced Cardiovascular Systems, Inc. Polymer-bioceramic composite implantable medical device with different types of bioceramic particles
DE102007034350A1 (en) 2007-07-24 2009-01-29 Hemoteq Ag Biodegradable stent graft, useful as a stent e.g. for blood vessels and respiratory system, comprises an inner bioresorbable metal skeleton containing e.g. calcium and an outer polymeric coating containing e.g. polylactic acid
US8052745B2 (en) 2007-09-13 2011-11-08 Boston Scientific Scimed, Inc. Endoprosthesis
US7998192B2 (en) 2008-05-09 2011-08-16 Boston Scientific Scimed, Inc. Endoprostheses
US8236046B2 (en) 2008-06-10 2012-08-07 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis
US7985252B2 (en) 2008-07-30 2011-07-26 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis
US8382824B2 (en) 2008-10-03 2013-02-26 Boston Scientific Scimed, Inc. Medical implant having NANO-crystal grains with barrier layers of metal nitrides or fluorides
US8267992B2 (en) 2009-03-02 2012-09-18 Boston Scientific Scimed, Inc. Self-buffering medical implants
US9827119B2 (en) 2010-01-30 2017-11-28 Abbott Cardiovascular Systems Inc. Polymer scaffolds having a low crossing profile
US9198785B2 (en) 2010-01-30 2015-12-01 Abbott Cardiovascular Systems Inc. Crush recoverable polymer scaffolds
US11324614B2 (en) 2010-01-30 2022-05-10 Abbott Cardiovascular Systems Inc. Balloon expanded polymer stent
US9763818B2 (en) 2010-01-30 2017-09-19 Abbott Cardiovascular Systems Inc. Method of crimping stent on catheter delivery assembly
US9867728B2 (en) 2010-01-30 2018-01-16 Abbott Cardiovascular Systems Inc. Method of making a stent
US10123894B2 (en) 2010-01-30 2018-11-13 Abbott Cardiovascular Systems Inc. Method of crimping stent on catheter delivery assembly
US9770351B2 (en) 2010-01-30 2017-09-26 Abbott Cardiovascular Systems Inc. Crush recoverable polymer scaffolds
US8668732B2 (en) 2010-03-23 2014-03-11 Boston Scientific Scimed, Inc. Surface treated bioerodible metal endoprostheses
DE202011001927U1 (en) 2011-01-25 2011-04-07 Sellin, Lothar Nature stent
US10307274B2 (en) 2011-07-29 2019-06-04 Abbott Cardiovascular Systems Inc. Methods for uniform crimping and deployment of a polymer scaffold
US9999527B2 (en) 2015-02-11 2018-06-19 Abbott Cardiovascular Systems Inc. Scaffolds having radiopaque markers
WO2016145956A1 (en) * 2015-03-13 2016-09-22 西安爱德万思医疗科技有限公司 Corrosion-resistant, high strength and ductility zn-fe-x zinc alloy degradable by human body and applications of the alloy
US10610387B2 (en) 2015-06-12 2020-04-07 Abbott Cardiovascular Systems Inc. Scaffolds having a radiopaque marker and methods for attaching a marker to a scaffold
US11478370B2 (en) 2015-06-12 2022-10-25 Abbott Cardiovascular Systems Inc. Scaffolds having a radiopaque marker and methods for attaching a marker to a scaffold

Similar Documents

Publication Publication Date Title
DE19856983A1 (en) Implantable, bioresorbable vascular wall support, in particular coronary stent
EP0966979A2 (en) Implantable bioresorbable support for the vascular walls, in particular coronary stent
DE10145714B4 (en) stent
EP1270023B2 (en) Metallic stent which is degradable in vivo
EP2744531B1 (en) Magnesium alloy and resorbable stents containing the same
EP2172580B1 (en) Implant and method for manufacturing same
EP2457601B1 (en) Marker composite and medical implant comprising an x-ray marker
EP1562565B1 (en) Use of one or more elements from the group containing yttrium, neodymium and zirconium
EP2135628B1 (en) Stent with a coating and a base body containing a lithium salt
EP2189170A1 (en) Method for manufacturing an anti-corrosive coating on an implant made from a bio-corrodible magnesium alloy and the implant resulting from the method
EP2676684B1 (en) Cobalt alloy for medical implants and stent comprising the alloy
DE102006038236A1 (en) Biodegradable stent with an active coating
EP2676686B1 (en) Stent made of a cobalt alloy
EP2630978A2 (en) Implant and method for production thereof
DE102006038242A1 (en) Stent with a structure made of a biocorrodible metallic material
DE10118603A1 (en) Biodegradable implant, e.g. for sealing defects in blood vessels or the heart, comprises a corrosively degradable tungsten, iron or magnesium alloy support structure bonded with another material
EP3068452A1 (en) Implant having an increased negative surface charge
EP2678047B1 (en) Biocorrodible magnesium alloy implant
WO1999065537A1 (en) Superficial implant and surface coating for stents and other implants
DE102008044221A1 (en) Stent with a structure of a biocorrodible material and a controlled corrosion behavior
DE102007029672A1 (en) Implant and method for its production
EP2260884A1 (en) Implant system with a temporary implant and method for influencing the corrosion rate of an implant
EP3643337B1 (en) Stent for implanting into a cavity of a human or animal body and method for producing an x-ray-opaque layer suspension on a stent
WO2022128979A1 (en) Stents for use in the interventional treatment of vascular disorders and vascular surgery
DE102013208958B4 (en) Process for making a stent from a CoCr alloy

Legal Events

Date Code Title Description
8127 New person/name/address of the applicant

Owner name: BIOTRONIK AG, B?LACH, CH

8128 New person/name/address of the agent

Representative=s name: PATENTANWAELTE RAU, SCHNECK & HUEBNER, 90402 NUERNBERG

8141 Disposal/no request for examination