CN1898315B - 半互穿聚合物网络组合物 - Google Patents

半互穿聚合物网络组合物 Download PDF

Info

Publication number
CN1898315B
CN1898315B CN2004800386904A CN200480038690A CN1898315B CN 1898315 B CN1898315 B CN 1898315B CN 2004800386904 A CN2004800386904 A CN 2004800386904A CN 200480038690 A CN200480038690 A CN 200480038690A CN 1898315 B CN1898315 B CN 1898315B
Authority
CN
China
Prior art keywords
polysaccharide
chitosan
crosslinked
alkaline
polymer network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2004800386904A
Other languages
English (en)
Other versions
CN1898315A (zh
Inventor
巴里·詹姆斯·怀特
吉利那·伊莎贝拉·罗登
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hyaltech Ltd
Original Assignee
Hyaltech Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hyaltech Ltd filed Critical Hyaltech Ltd
Publication of CN1898315A publication Critical patent/CN1898315A/zh
Application granted granted Critical
Publication of CN1898315B publication Critical patent/CN1898315B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/52Hydrogels or hydrocolloids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0024Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid beta-D-Glucans; (beta-1,3)-D-Glucans, e.g. paramylon, coriolan, sclerotan, pachyman, callose, scleroglucan, schizophyllan, laminaran, lentinan or curdlan; (beta-1,6)-D-Glucans, e.g. pustulan; (beta-1,4)-D-Glucans; (beta-1,3)(beta-1,4)-D-Glucans, e.g. lichenan; Derivatives thereof
    • C08B37/00272-Acetamido-2-deoxy-beta-glucans; Derivatives thereof
    • C08B37/003Chitin, i.e. 2-acetamido-2-deoxy-(beta-1,4)-D-glucan or N-acetyl-beta-1,4-D-glucosamine; Chitosan, i.e. deacetylated product of chitin or (beta-1,4)-D-glucosamine; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/246Intercrosslinking of at least two polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2303/00Characterised by the use of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08J2303/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/02Dextran; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/04Alginic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/02Applications for biomedical use
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/04Polymer mixtures characterised by other features containing interpenetrating networks

Abstract

本发明提供了新型组合物,其包含交联的水溶性碱性多糖衍生物的半互穿网络和未交联成分,所述未交联成分为阴离子多糖。本发明还公开了该组合物的制备方法。优选地,该碱性多糖是壳聚糖或其衍生物,该阴离子多糖是透明质酸。该组合物可以制成例如凝胶或薄膜,从而在皮肤病学、整形手术、泌尿学以及整形外科等领域有广泛的医学用途。

Description

半互穿聚合物网络组合物
本发明涉及水凝胶组合物,该组合物包括形成半互穿网络(semiinterpenetrating networks)的交联的碱性多糖,其中该碱性多糖在酸性多糖的存在下进行交联。该碱性多糖尤其是壳聚糖或其衍生物,该酸性多糖尤其是透明质酸(HA)或其衍生物。
生物相容的多糖化合物被广泛地用于生物医学领域。为了延长体内滞留期,经常利用化学手段修饰这些化合物而形成聚合物网络,例如通常是采用交联的方式形成。
透明质酸(HA)是最广泛使用的医用生物相容聚合物之一。由于它与所有脊椎动物中自然存在的分子具有相同的化学成分,普遍认为透明质酸是没有副作用的。透明质酸是结缔组织非常重要的成分,由于它出色的生物相容性,人们试图通过其羟基和羧基部分交联该分子,然而,交联会改变该聚合物的化学结构,例如当被用于软组织充填时,结缔组织中暴露于非正常存在的透明质酸聚合物网络的细胞的发育、迁移和增殖都会受到这种环境的影响。
科学文献中越来越多的证据表明外源摄入的天然透明质酸会刺激内源的透明质酸的合成,因此,可以推测包括生物聚合物网络的生物材料,其体内的滞留期可以改变,同时可以长时间运载天然的非化学修饰结构的外源透明质酸,其在诸多生物医学领域中具有优于交联的透明质酸的潜在优势。可以进一步推测,如果将天然胞外基质的其他多糖成分比如软骨素,皮肤素和角蛋白的硫酸盐引入该聚合物网络中,这样的生物材料可以用于模拟胞外基质。
壳聚糖,是具有氨基的碱性多糖,生物聚合物几丁质的衍生物,据科学文献报道,它具有出色的生物相容性和诸多生物医学方面的应用。
美国专利号5,977,330公开了交联的N-取代壳聚糖衍生物,其中用带羧酸的羟酰基化合物取代,然后用聚环氧化合物交联。没有用这些交联的衍生物定义半互穿聚合物网络。
美国专利号6,379,702公开了壳聚糖和亲水的聚(N-乙烯基内酰胺)的混合物。该文件没有公开任何壳聚糖的交联或半互穿聚合物网络的形成。
美国专利号6,224,893公开了形成半互穿或互穿聚合物网络的组合物,该网络用于药物输送和人造组织(tissue engineering)中,该半互穿聚合物网络由合成的和/或天然的聚合物和光引发剂所制备,其中交联反应由电磁辐射产生的自由基引发。
美国专利号5,644,049公开了一种包括互穿聚合物网络的生物材料,其中,一个成分酸性多糖与另一个成分合成的化学聚合物交联,形成无限网络(infinite network)。没有公开酸性多糖与碱性多糖的交联。
美国专利号5,620,706公开了一种具有黄原胶和壳聚糖的聚离子络合物的生物材料,用于胶囊化和生物活性物质的控释中。没有公开碱性多糖与酸性多糖的共价交联。
Berger等人在European Journal of Pharmaceutics andBiopharmaceutics,57(2004),19-34中论述了交联的壳聚糖水凝胶的各种结构,其中包括半互穿聚合物网络。
我们开发了新型的生物材料,该生物材料基于在阴离子的存在下使阳离子多糖衍生物发生交联而形成的半互穿聚合物网络,形成的条件是能避免这两种聚合物之间形成离子配合物,且随后可以从该交联的网络中释放该阴离子。
因此,在第一方面,本发明提供了一种由半互穿聚合物网络组成的组合物,所述半互穿聚合物网络包括碱性多糖的至少一种交联的水溶性衍生物和未交联成分,其中所述碱性多糖的至少一种交联的水溶性衍生物具有一级和/或二级氨基,所述未交联成分包括至少一种阴离子多糖,其中该阴离子多糖存留于半互穿聚合物网络中。
半互穿聚合物网络是至少两种聚合物的结合,在另一种聚合物的存在下,但不与之发生交联的情况下,通过共价键合使聚合物的至少一种发生交联,且网络中至少具有一种聚合物作为直链或支链的未交联聚合物。
在本发明的上下文中,碱性阳离子多糖至少包含一种能够通过电离作用形成阳离子的官能团,比如质子化的氨基;酸性阴离子多糖至少包含一种能够通过电离作用形成阴离子的官能团,例如羧酸根或硫酸根离子。
本发明的组合物可以用作生物材料,可以制成例如水凝胶的形式,从而可模拟胞外基质。
在本发明的一个实施例中,该水溶性碱性多糖的衍生物为壳聚糖的衍生物,尤其是N-羧基甲基壳聚糖(N-Carboxy methyl chitosan)、O-羧基甲基壳聚糖(O-Carboxy methyl chitosan)或O-羟基乙基壳聚糖(O-Hydroxy ethylchitosan)或部分N-乙酰化的壳聚糖(partially N-acetylated chitosan)。部分N-乙酰化的壳聚糖可通过几丁质的部分脱乙酰化或壳聚糖的再乙酰化而制得。无论何种制备方式,在一个实施例中,部分N-乙酰化的壳聚糖的乙酰化度为45%至55%。
在另一个优选的实施例中,该未交联成分为透明质酸。另外,还可以包括胞外基质的其他阴离子多糖成分。
该组合物的交联成分可以用交联剂交联,例如交联剂为二环氧甘油醚,二异氰酸酯或醛类。尤其是,可以用1,4-丁二醇缩水甘油醚(BDDE)。BDDE分子任一端的环氧环和壳聚糖链上的反应性氨基发生亲核反应,随后环氧环开环,如“Chitin in Nature and Technology”,R.A.Muzarelli,C.Jeuniaux and G.W.Godday,Plenum Press,New York,1986,p303.中所描述。
本发明的组合物可制成薄膜、海绵、水凝胶、线或无纺基质。
在第二方面,本发明提供了制备本发明组合物的方法,该方法包括在至少一种阴离子多糖的存在下交联至少一种具有一级和/或二级氨基的水溶性碱性多糖衍生物,该条件下,避免了碱性多糖的一级或二级胺的质子化和水溶性阴离子多糖上其他官能团发生反应。
如上所述,本发明的组合物可以制成各种形式的医用生物材料,例如可制备可注射的水凝胶:
形成具有一级和/或二级氨基的水溶性碱性多糖衍生物的水溶液,加入水溶性阴离子多糖。之后在含多官能团的交联剂的存在下引发碱性多糖衍生物的交联,反应条件基本中性,其仅使一级胺或取代的胺发生交联而将阴离子多糖留在交联的聚合物网络中。
制备水溶性薄膜:
形成具有一级和/或二级氨基的水溶性碱性多糖衍生物的水溶液,加入水溶性阴离子多糖。之后加入含多官能团的交联剂,蒸干混合物使交联反应发生。
壳聚糖被酸质子化后可以溶解在水溶液中。聚合物因此带正电且会和带负电的诸如透明质酸或其他聚阴离子的物质发生反应。本发明的目的是生成半互穿聚合物网络,所以这样的离子络合物必须避免。
因此,壳聚糖必须以阴离子聚电解质或非离子聚合物的形式溶解在中性或弱碱性介质中。如所述的,合适的衍生物包括N-羧基甲基壳聚糖、O-羧基甲基壳聚糖或O-羟基乙基壳聚糖或部分N-乙酰化的壳聚糖。在一个优选的实施例中,使用的是约50%的再乙酰化的壳聚糖,因为它可以溶解在中性介质中而不引起氨基质子化。在另一个优选的实施例中,为获得水溶性,再乙酰化壳聚糖的乙酰化度为45%至55%。
在含多官能团交联剂参与下的交联反应通常是在中性或弱碱性条件下发生,pH范围为7至8,这样可基本上保证只有碱性多糖的一级或二级氨基与交联剂发生反应。因此,可以避免阴离子多糖的交联或酸碱聚合物之间的交联。交联度可以通过改变碱性多糖与交联剂的摩尔比来控制,由此可改变/更改被缚阴离子多糖的释放特征,以适应各种特定的生物医学用途。
交联反应通常在pH7左右发生,优选在pH6.8至8之间发生。
在第三方面,本发明提供了一种包括本发明组合物的生物材料。
在第四方面,本发明提供了本发明组合物或生物材料的医学用途。
在第五方面,本发明提供了本发明组合物在制备生物材料方面的用途。特别是用于皮肤病学,整形手术,泌尿学以及整形外科领域的生物材料。
这样的生物材料可以制成薄膜、海绵、水凝胶、线或无纺基质;
本发明各方面的优选方案已作必要的修正。
以下将参照实施例对本发明进行描述,这些实施例只是用于对本发明进行举例说明而不应理解为任何形式上的限定。
实施例
相对下面的实施例,用HA和BDDE做了对照实验,条件与制备所有凝胶相同,仅仅没有壳聚糖。证明HA与BDDE在50℃保温3小时后没有凝胶生成。因此我们可以断定,在semi IPN的制备条件下,HA对于凝胶的形成没有贡献,被缚在交联的壳聚糖基质中仍为线性未交联聚合物。
下面实施例制备的凝胶和薄膜的吸水力(Q)通过下面方程计算:
Q%=(聚合物总湿重-聚合物总干重)x 100/交联的聚合物干重
实施例1—凝胶
将鱿鱼鞘壳聚糖制备的再乙酰化的壳聚糖(2g,DDA%=54%,Mv=680,000g/mol)与去离子水水合形成聚合物最终质量浓度为5%的溶液。将HA(2g,Hyaltech Ltd发酵制得)溶解在水中得到聚合物最终质量浓度5%的溶液。两溶液冷却过夜以溶解聚合物。然后两聚合物溶液在高剪切混合器中混合,将BDDE(2.5g,Sigma)加到聚合物混合物中,并用机械搅拌器搅拌。在轻度搅拌下,溶液在50℃水浴中交联3小时。生成的凝胶浸在去离子水中,膨胀到重量恒定,这期间换4-5次水以除去剩余的未反应交联剂。该凝胶的吸水力为9654%,每种聚合物的浓度为10mg/mL。用高剪切混合器均化样品使得凝胶可以用30G针头的注射器注射。平均粒度(D4,3)为302μm。用频率0.01-10Hz的振荡剪切测得样品的G’弹性模量值为500至600Pa。体外试验监测HA从凝胶中长期释放的情况。在溶菌酶参与下进行同样的实验。结果如下:
实施例2—凝胶
将鱿鱼鞘壳聚糖制备的再乙酰化的壳聚糖(2g,DDA%=54%,Mv=680,000g/mol)与去离子水水合形成聚合物最终质量浓度为5%的溶液。将HA(1g,Hyaltech Ltd发酵制得)溶解在水中形成聚合物最终质量浓度为5%的溶液。两溶液冷却过夜以溶解聚合物。然后两聚合物溶液在高剪切混合器中混合,将BDDE(2.5g,Sigma)加到聚合物混合物中并用机械搅拌器搅拌。在搅拌下,溶液在50℃水浴中交联3小时。生成的凝胶随后浸在去离子水中,膨胀到重量恒定,这期间换4-5次水以除去剩余的未反应交联剂。该凝胶的吸水力为4551%,再乙酰化的壳聚糖浓度为22mg/mL,HA浓度为12mg/mL。用高剪切混合器均化样品使得凝胶可以用30G针头的注射器注射。平均粒度(D4,3)为255μm。用频率0.01-10Hz的振荡剪切测得样品的G’弹性模量值为2000到3000Pa。体外试验监测HA从凝胶中长期释放的情况。在溶菌酶参与下进行同样的实验。结果如下:
实施例3—凝胶
将对虾壳聚糖制备的再乙酰化的壳聚糖(2g,DDA%=54%,Mw=750,000g/mol)与去离子水水合形成聚合物最终质量浓度为5%的溶液。将HA(2g,Hyaltech Ltd发酵制得)溶解在水中形成聚合物最终质量浓度为5%的溶液。两溶液冷却过夜以溶解聚合物。然后两聚合物溶液在高剪切混合器中混合,将BDDE(1.7g,Fluka)加到聚合物混合物中并用机械搅拌器搅拌。在温和搅拌下,溶液在50℃水浴中交联3小时。生成的凝胶随后浸在去离子水中,膨胀到重量恒定,这期间换4-5次水以除去剩余的未反应交联剂。该凝胶的吸水力为12652%,再乙酰化的壳聚糖浓度为7.9mg/mL,HA浓度为7.5mg/mL。当将该凝胶在磷酸盐缓冲生理盐水(PBS)中膨胀时,RAC(再乙酰化的壳聚糖)和HA的最终浓度分别为13.54mg/mL和12.75mg/mL。用高剪切混合器均化在水中膨胀的凝胶样品,使得凝胶可以用30G针头的注射器注射。平均粒度(D4,3)为451μm。用频率0.01-10Hz的振荡剪切测得样品的G’弹性模量值为1000Pa。体外试验监测HA从凝胶中长期释放的情况。在溶菌酶参与下进行同样的实验。结果如下:
Figure DEST_PATH_S04838690420060703D000081
实施例4—凝胶
将O-羟基乙基壳聚糖(1g,Sigma)与去离子水水合形成聚合物最终质量浓度为5%的溶液。将HA(1g,Hyaltech Ltd发酵制得)溶解在水中形成聚合物最终质量浓度为5%的溶液。两溶液冷却过夜以溶解聚合物。然后两聚合物溶液在高剪切混合器中混合,将BDDE(1.5g,Fluka)加到聚合物混合物中并用机械搅拌器搅拌。在轻度搅拌下,溶液在50℃水浴中交联3小时。生成的凝胶随后浸在去离子水中,膨胀到重量恒定,这期间换4-5次水以除去剩余的未反应交联剂。该凝胶的吸水力为8525%,O-羟基乙基壳聚糖的最终浓度为11.7mg/mL,HA的最终浓度为12.7mg/mL。用高剪切混合器均化样品使得凝胶可以用30G针头的注射器注射。平均粒度(D4,3)为205μm。用频率0.01-10Hz的振荡剪切测得样品的G’弹性模量值为1000至2000Pa。
实施例5—凝胶
将N-羧基甲基壳聚糖(0.6g,DDA%=85%,Heppe Ltd)与去离子水水合形成聚合物最终质量浓度为5%的溶液。将HA(0.6g,Hyaltech Ltd发酵制得)溶解在水中形成聚合物最终质量浓度为5%的溶液。两溶液冷却过夜以溶解聚合物。然后两聚合物溶液在高剪切混合器中混合,将BDDE(0.96g,Fluka)加到聚合物混合物中并用机械搅拌器搅拌。在搅拌下,溶液在50℃水浴中交联8小时。生成的凝胶随后浸在去离子水中,膨胀到重量恒定,这期间换4-5次水以除去剩余的未反应交联剂。该凝胶的吸水力为9464%,两聚合物的最终浓度均为11mg/mL。用高剪切混合器均化样品使得凝胶可以用30G针头的注射器注射。平均粒度(D4,3)为218μm。用频率0.01-10Hz的振荡剪切测得样品的G’弹性模量值为600至900Pa。当该凝胶在磷酸盐缓冲生理盐水(PBS)中膨胀时,N-羧基甲基壳聚糖和HA的最终浓度分别为38mg/mL和39mg/mL。
实施例6—凝胶
将由鱿鱼鞘壳聚糖制备的再乙酰化的壳聚糖(1.9g,DDA%=54%,Mv=680,000g/mol)与去离子水水合形成聚合物最终质量浓度为5%的溶液。将HA(1.9g,Hyaltech Ltd发酵制得)溶解在水中形成聚合物最终质量浓度为5%的溶液。两溶液冷却过夜以溶解聚合物。然后两聚合物溶液在高剪切混合器中混合,将BDDE(0.7g,Fluka)加到聚合物混合物中并用机械搅拌器搅拌。在轻度搅拌下,溶液在50℃水浴中交联7.5小时。生成的凝胶浸在去离子水中,膨胀2-3天直到重量恒定,这期间换4-5次水以除去剩余的未反应交联剂。该凝胶的吸水力为7995%,每种聚合物的浓度为12.5mg/mL。用高剪切混合器均化样品使得凝胶可以用30G针头的注射器注射。平均粒度(D4,3)为403μm。用频率0.01-10Hz的振荡剪切测得样品的G’弹性模量值为500到800Pa。
实施例7—薄膜
将O-羟基乙基壳聚糖(0.2g)在去离子水(15mL)中水化。向O-羟基乙基壳聚糖溶液中加入HA(0.1g),搅拌直到HA溶解。向该聚合物混合物中搅拌加入BDDE(0.2g,Sigma)。将溶液转移到培养皿中,蒸发18小时形成交联薄膜。然后将薄膜浸在去离子水中膨胀。该薄膜的吸水力为151%,得到的O-羟基乙基壳聚糖浓度为660mg/mL,HA浓度为388mg/mL。48小时后在膨胀水中检测[HA],结果有9.38%的HA被释放。将该薄膜再在膨胀水中放置96小时后,没有检测到有HA进一步释放。
实施例8—薄膜
将再乙酰化壳聚糖(0.5g)与去离子水(15mL)水合得到浓度2%的溶液。将HA(0.5g,Hyaltech Ltd发酵制得)溶解在去离子水中形成浓度2%的溶液,使两溶液冷却过夜以充分溶解。使两溶液混合,且加入BDDE(0.3g,Fluka)。将聚合物混合物倒到培养皿中,在室温下慢慢将水蒸发过夜形成交联薄膜。将薄膜浸在去离子水中膨胀2天。该薄膜的吸水力为258%,对应HA浓度为383mg/mL,再乙酰化壳聚糖浓度为387mg/mL。膨胀后,0.45%HA从薄膜中释放。再过4天后,没有检测到有HA进一步释放。

Claims (8)

1.一种制备半互穿聚合物网络组合物的方法,所述组合物包括碱性多糖的至少一种交联的水溶性衍生物和未交联成分,其中所述碱性多糖的至少一种交联的水溶性衍生物具有一级和/或二级氨基,所述未交联成分包括至少一种阴离子多糖,其中该阴离子多糖存留于半互穿聚合物网络中,
该方法包括在至少一种阴离子多糖的存在下使具有一级和/或二级氨基的至少一种水溶性碱性多糖衍生物在pH范围为7至8的条件下发生交联,该条件下,避免了碱性多糖的一级或二级氨基发生质子化,还避免了阴离子多糖上的羟基或其他任何官能团发生反应。
2.权利要求1所述的方法,其中该交联反应在pH7发生。
3.权利要求1或2所述的方法,其中水溶性碱性多糖为壳聚糖的水溶性衍生物。
4.权利要求3所述的方法,其中碱性多糖为脱乙酰化的几丁质、再乙酰化的壳聚糖、N-羧基甲基壳聚糖、O-羧基甲基壳聚糖或O-羟基乙基壳聚糖。
5.权利要求4所述的方法,其中再乙酰化壳聚糖的乙酰度为45%至55%。
6.权利要求1-5中任一项所述的方法,其中所述未交联成分为透明质酸。
7.权利要求1-6中任一项所述的方法,其中所述组合物还包括胞外基质的一种或其他种阴离子多糖成分。
8.一种由权利要求1~7任一项所述的方法制备的半互穿聚合物网络组合物,所述组合物包括碱性多糖的至少一种交联的水溶性衍生物和未交联成分,其中所述碱性多糖的至少一种交联的水溶性衍生物具有一级和/或二级氨基,所述未交联成分包括至少一种阴离子多糖,其中该阴离子多糖存留于半互穿聚合物网络中。
CN2004800386904A 2003-12-23 2004-12-22 半互穿聚合物网络组合物 Expired - Fee Related CN1898315B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GBGB0329907.0A GB0329907D0 (en) 2003-12-23 2003-12-23 Compositions
GB0329907.0 2003-12-23
PCT/GB2004/005443 WO2005061611A1 (en) 2003-12-23 2004-12-22 Compositions of semi-interpenetrating polymer network

Publications (2)

Publication Number Publication Date
CN1898315A CN1898315A (zh) 2007-01-17
CN1898315B true CN1898315B (zh) 2010-10-20

Family

ID=30776429

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2004800386904A Expired - Fee Related CN1898315B (zh) 2003-12-23 2004-12-22 半互穿聚合物网络组合物

Country Status (12)

Country Link
US (2) US20070197754A1 (zh)
EP (1) EP1704182A1 (zh)
JP (2) JP2007516333A (zh)
CN (1) CN1898315B (zh)
AU (1) AU2004303599B2 (zh)
BR (1) BRPI0417974A (zh)
CA (1) CA2550906A1 (zh)
GB (1) GB0329907D0 (zh)
IL (1) IL176285A0 (zh)
NO (1) NO20062960L (zh)
WO (1) WO2005061611A1 (zh)
ZA (1) ZA200605168B (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2909560B1 (fr) * 2006-12-06 2012-12-28 Fabre Pierre Dermo Cosmetique Gel d'acide hyaluronique pour injection intradermique
NZ584996A (en) * 2007-10-30 2012-07-27 Viscogel Ab Cross-linkable chitosan composition for producing a chitosan hydrogel
FR2924615B1 (fr) 2007-12-07 2010-01-22 Vivacy Lab Hydrogel cohesif biodegradable.
US8563066B2 (en) 2007-12-17 2013-10-22 New World Pharmaceuticals, Llc Sustained release of nutrients in vivo
ES2829971T3 (es) 2008-09-02 2021-06-02 Tautona Group Lp Hilos de ácido hialurónico y/o derivados de los mismos, métodos para fabricar los mismos y usos de los mismos
CA2791050A1 (en) * 2010-03-01 2011-09-09 Tautona Group Lp Threads of cross-linked hyaluronic acid and methods of use thereof
EP2585541B1 (en) * 2010-06-25 2016-06-08 3M Innovative Properties Company Semi-interpenetrating polymer network
FR2991876B1 (fr) 2012-06-13 2014-11-21 Vivacy Lab Composition, en milieu aqueux, comprenant au moins un acide hyaluronique et au moins un sel hydrosoluble de sucrose octasulfate
JP6026192B2 (ja) * 2012-09-18 2016-11-16 川研ファインケミカル株式会社 カルボキシメチルキトサンアセテート化合物、その製造方法及び化粧料
US10722443B2 (en) * 2016-09-14 2020-07-28 Rodan & Fields, Llc Moisturizing compositions and uses thereof
SG11201806845VA (en) 2016-02-12 2018-09-27 Rodan & Fields Llc Moisturizing compositions and uses thereof
JPWO2018043153A1 (ja) * 2016-08-31 2019-06-24 国立大学法人大阪大学 細胞培養担体、細胞培養担体作製キット、およびそれらを用いたゲル/細胞ハイブリッド組織の製造方法
JP2021072906A (ja) * 2021-01-18 2021-05-13 アラーガン、インコーポレイテッドAllergan,Incorporated 皮膚充填剤用途のためのコアセルベートヒアルロナンヒドロゲル

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5496933A (en) * 1993-06-01 1996-03-05 Chemische Fabrik Stockhausen Gmbh Super-absorbents and a process for their preparation
US5658915A (en) * 1990-11-29 1997-08-19 Iatron Laboratories, Inc. Polyelectrolyte complex antibacterial agent and antibacterial material
WO1998052543A1 (en) * 1997-05-23 1998-11-26 Massachusetts Institute Of Technology Semi-interpenetrating or interpenetrating polymer networks for drug delivery and tissue engineering
US5977330A (en) * 1992-03-27 1999-11-02 Ciba Specialty Chemicals Corporation Crosslinked N-substituted chitosan derivatives
CN1342722A (zh) * 2001-09-26 2002-04-03 天津大学 壳聚糖-明胶-透明质酸双层复合支架材料的制备方法

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3778431A (en) * 1972-10-16 1973-12-11 Standard Brands Inc Gelatinizable crosslinked cationic starch and method for its manufacture
US4501834A (en) * 1983-12-22 1985-02-26 Colgate-Palmolive Company Gels formed from anionic and cationic polymers
SE452469B (sv) * 1986-06-18 1987-11-30 Pharmacia Ab Material bestaende av en tverbunden karboxylgrupphaltig polysackarid och forfarande vid framstellning av detsamma
US6174999B1 (en) * 1987-09-18 2001-01-16 Genzyme Corporation Water insoluble derivatives of polyanionic polysaccharides
GB8820332D0 (en) * 1988-08-26 1988-09-28 Allied Colloids Ltd Graft copolymers
JPH0352912A (ja) * 1989-07-19 1991-03-07 Nippon Paint Co Ltd 複合樹脂粒子ならびにその製造方法
US5260002A (en) * 1991-12-23 1993-11-09 Vanderbilt University Method and apparatus for producing uniform polymeric spheres
US5334640A (en) * 1992-04-08 1994-08-02 Clover Consolidated, Ltd. Ionically covalently crosslinked and crosslinkable biocompatible encapsulation compositions and methods
IT1260154B (it) * 1992-07-03 1996-03-28 Lanfranco Callegaro Acido ialuronico e suoi derivati in polimeri interpenetranti (ipn)
US5620706A (en) 1995-04-10 1997-04-15 Universite De Sherbrooke Polyionic insoluble hydrogels comprising xanthan and chitosan
US6129761A (en) * 1995-06-07 2000-10-10 Reprogenesis, Inc. Injectable hydrogel compositions
US7351421B2 (en) * 1996-11-05 2008-04-01 Hsing-Wen Sung Drug-eluting stent having collagen drug carrier chemically treated with genipin
JPH10139889A (ja) * 1996-11-12 1998-05-26 Jsr Corp 複合体
US5904927A (en) * 1997-03-14 1999-05-18 Northeastern University Drug delivery using pH-sensitive semi-interpenetrating network hydrogels
US6271278B1 (en) * 1997-05-13 2001-08-07 Purdue Research Foundation Hydrogel composites and superporous hydrogel composites having fast swelling, high mechanical strength, and superabsorbent properties
US6018033A (en) * 1997-05-13 2000-01-25 Purdue Research Foundation Hydrophilic, hydrophobic, and thermoreversible saccharide gels and forms, and methods for producing same
US5837752A (en) * 1997-07-17 1998-11-17 Massachusetts Institute Of Technology Semi-interpenetrating polymer networks
JP3732404B2 (ja) * 1998-02-23 2006-01-05 ニーモサイエンス ゲーエムベーハー 形状記憶ポリマー組成物、形状記憶製品を形成する方法、および形状を記憶する組成物を形成する方法
US6331578B1 (en) * 1998-11-18 2001-12-18 Josephine Turner Process for preparing interpenetrating polymer networks of controlled morphology
GB9902412D0 (en) * 1999-02-03 1999-03-24 Fermentech Med Ltd Process
GB9902652D0 (en) 1999-02-05 1999-03-31 Fermentech Med Ltd Process
AU1249001A (en) * 1999-06-11 2001-01-31 Nektar Therapeutics Al, Corporation Hydrogels derived from chitosan and poly(ethylene glycol) or related polymers
CN1181816C (zh) * 1999-11-12 2004-12-29 麦克罗梅德公司 溶胀和消溶胀聚合物共混物
US20030206958A1 (en) * 2000-12-22 2003-11-06 Cattaneo Maurizio V. Chitosan biopolymer for the topical delivery of active agents
JP3455510B2 (ja) * 2000-10-30 2003-10-14 紳一郎 西村 ハイブリッド繊維及び膜並びにそれらの製造方法
US7625580B1 (en) * 2000-11-28 2009-12-01 Massachusetts Institute Of Technology Semi-interpenetrating or interpenetrating polymer networks for drug delivery and tissue engineering
US6586493B1 (en) * 2001-03-07 2003-07-01 Arizona Board Of Regents Arizona State University Polysaccharide-based hydrogels and pre-gel blends for the same
US20030034304A1 (en) * 2001-08-17 2003-02-20 Huang Robert Y.M. N-acetylated chitosan membranes
KR100451399B1 (ko) * 2001-11-02 2004-10-06 주식회사 건풍바이오 키토산의 아세틸화 방법
DK1448607T3 (da) * 2001-11-15 2011-04-26 Piramal Healthcare Canada Ltd Sammensætning og fremgangsmåde til homogen modificering eller krydsbinding af chitosan under neutrale betingelser
US7208314B2 (en) * 2002-02-26 2007-04-24 Mirus Bio Corporation Compositions and methods for drug delivery using pH sensitive molecules
WO2003089506A1 (en) * 2002-04-22 2003-10-30 Purdue Research Foundation Hydrogels having enhanced elasticity and mechanical strength properties
US6923961B2 (en) * 2002-04-30 2005-08-02 Fziomed, Inc. Chemically activated carboxypolysaccharides and methods for use to inhibit adhesion formation and promote hemostasis
US7090745B2 (en) * 2002-09-13 2006-08-15 University Of Pittsburgh Method for increasing the strength of a cellulosic product
US7524514B2 (en) * 2003-12-01 2009-04-28 Tissue Engineering Consultants, Inc. Biomimetic composition reinforced by a polyelectrolytic complex of hyaluronic acid and chitosan
US8293890B2 (en) * 2004-04-30 2012-10-23 Advanced Cardiovascular Systems, Inc. Hyaluronic acid based copolymers

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5658915A (en) * 1990-11-29 1997-08-19 Iatron Laboratories, Inc. Polyelectrolyte complex antibacterial agent and antibacterial material
US5977330A (en) * 1992-03-27 1999-11-02 Ciba Specialty Chemicals Corporation Crosslinked N-substituted chitosan derivatives
US5496933A (en) * 1993-06-01 1996-03-05 Chemische Fabrik Stockhausen Gmbh Super-absorbents and a process for their preparation
US6224893B1 (en) * 1997-04-11 2001-05-01 Massachusetts Institute Of Technology Semi-interpenetrating or interpenetrating polymer networks for drug delivery and tissue engineering
WO1998052543A1 (en) * 1997-05-23 1998-11-26 Massachusetts Institute Of Technology Semi-interpenetrating or interpenetrating polymer networks for drug delivery and tissue engineering
CN1342722A (zh) * 2001-09-26 2002-04-03 天津大学 壳聚糖-明胶-透明质酸双层复合支架材料的制备方法

Also Published As

Publication number Publication date
ZA200605168B (en) 2007-10-31
BRPI0417974A (pt) 2007-04-17
IL176285A0 (en) 2006-10-05
AU2004303599A1 (en) 2005-07-07
GB0329907D0 (en) 2004-01-28
AU2004303599B2 (en) 2011-06-23
US20070197754A1 (en) 2007-08-23
CA2550906A1 (en) 2005-07-07
CN1898315A (zh) 2007-01-17
EP1704182A1 (en) 2006-09-27
US20110117198A1 (en) 2011-05-19
JP2007516333A (ja) 2007-06-21
NO20062960L (no) 2006-09-11
JP2012082428A (ja) 2012-04-26
WO2005061611A1 (en) 2005-07-07

Similar Documents

Publication Publication Date Title
Erathodiyil et al. Zwitterionic polymers and hydrogels for antibiofouling applications in implantable devices
Berger et al. Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications
US20110117198A1 (en) Compositions of semi-interpenetrating polymer network
CA2467049C (en) Composition and method to homogeneously modify or cross-link chitosan under neutral conditions
ES2181607T3 (es) Procedimiento para la reticulacion de acido hialuronico a polimeros.
CN107964105A (zh) 一种通过动态亚胺键交联的多糖基水凝胶的制备方法
EP1773399B1 (en) Hydrogels of hyaluronic acid and alpha, beta-polyaspartylhydrazide and their biomedical and pharmaceutical uses
PL188071B1 (pl) Sposób wytwarzania usieciowanej biokompatybilnej polisacharydowej kompozycji żelowej
US20230348699A1 (en) Hydrophobically modified chitosan compositions
Chen et al. A triple-network carboxymethyl chitosan-based hydrogel for hemostasis of incompressible bleeding on wet wound surfaces
JP2022504623A (ja) 多様な湿潤表面用の生体から着想を得た分解性の強靭な接着剤
Ngwabebhoh et al. Preparation and characterization of injectable self-antibacterial gelatin/carrageenan/bacterial cellulose hydrogel scaffolds for wound healing application
Liu et al. A robust, resilient, and multi-functional soy protein-based hydrogel
WO2020122707A1 (en) Hydrogel for in-vivo directional release of medication
Racine et al. Design of interpenetrating chitosan and poly (ethylene glycol) sponges for potential drug delivery applications
Akram et al. Nanohydrogels: History, development, and applications in drug delivery
Zafar et al. Role of crosslinkers for synthesizing biocompatible, biodegradable and mechanically strong hydrogels with desired release profile
Augustine et al. Crosslinking strategies to develop hydrogels for biomedical applications
JP4044291B2 (ja) 水膨潤性高分子ゲルおよびその製造法
JP2014528406A (ja) 治療薬を送達するための多層インプラント
Hosseini et al. Preparation of poly (vinyl alcohol)/chitosan-blended hydrogels: Properties, in vitro studies and kinetic evaluation
de Azevedo Aldehyde-functionalized chitosan and cellulose: chitosan composites: application as drug carriers and vascular bypass grafts
Collins et al. Hydrogel functionalization and crosslinking strategies for biomedical applications
MXPA06007323A (en) Compositions of semi-interpenetrating polymer network
Wei Studies on Poly (γ-glutamic acid)-based

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20101020

Termination date: 20121222