CA2577018A1 - Inherently radiopaque bioresorbable polymers for multiple uses - Google Patents

Inherently radiopaque bioresorbable polymers for multiple uses Download PDF

Info

Publication number
CA2577018A1
CA2577018A1 CA002577018A CA2577018A CA2577018A1 CA 2577018 A1 CA2577018 A1 CA 2577018A1 CA 002577018 A CA002577018 A CA 002577018A CA 2577018 A CA2577018 A CA 2577018A CA 2577018 A1 CA2577018 A1 CA 2577018A1
Authority
CA
Canada
Prior art keywords
medical device
stent
group
independently
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CA002577018A
Other languages
French (fr)
Other versions
CA2577018C (en
Inventor
Donald K. Brandom
Joan Zeltinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Reva Medical Inc
Original Assignee
Reva Medical, Inc.
Donald K. Brandom
Joan Zeltinger
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Reva Medical, Inc., Donald K. Brandom, Joan Zeltinger filed Critical Reva Medical, Inc.
Publication of CA2577018A1 publication Critical patent/CA2577018A1/en
Application granted granted Critical
Publication of CA2577018C publication Critical patent/CA2577018C/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • C08G65/4006(I) or (II) containing elements other than carbon, oxygen, hydrogen or halogen as leaving group (X)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/04X-ray contrast preparations
    • A61K49/0433X-ray contrast preparations containing an organic halogenated X-ray contrast-enhancing agent
    • A61K49/0442Polymeric X-ray contrast-enhancing agent comprising a halogenated group
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/18Materials at least partially X-ray or laser opaque
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/02Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/04Aromatic polycarbonates
    • C08G64/06Aromatic polycarbonates not containing aliphatic unsaturation
    • C08G64/08Aromatic polycarbonates not containing aliphatic unsaturation containing atoms other than carbon, hydrogen or oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/18Block or graft polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/91533Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other characterised by the phase between adjacent bands
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/9155Adjacent bands being connected to each other
    • A61F2002/91591Locking connectors, e.g. using male-female connections
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0004Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof bioabsorbable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing

Abstract

Preferred embodiments of the present invention relate to polymeric medical devices, such as stents. More particularly, the compositions disclosed herein comprise halogen-containing phenol moeities, that may be used for medical devices and other uses whereby bioresorbable and radiopaque and physicomechanical properties are desired.

Claims (30)

1. An inherently radiopaque, biocompatible, bioresorbable polymer, wherein said polymer comprises one or more recurring units of the Formula (I):

wherein:
X1 and X2 are each independently selected from the group consisting of Br and I;
y1 and y2 are each independently zero or an integer in the range of 1 to 4, with the proviso that the sum of y1 and y2 is at least 1;

R1 is R13 and R14 are each independently selected from the group consisting of -CH=CH-, -(CH2)c-, -(CHJ1)-, -CHJ2-CHJ3-, -CH=CH-(CHJ1)-, and -(CH2),-(CHJ1 )-;
c is zero or an integer in the range of 1 to 8;
J1, J2 and J3 are each independently selected from the group consisting of H, Br, I, -NH-Q2 and -C(=Z8)-OQ3;
Q1, Q2 and Q3 are each independently H or a non-crystallizable group comprising from about 1 to about 30 carbons;
Z7 and Z8 are each independetly O or S;
A1 is selected from the group consisting of R5 is selected from the group consisting of H, C1 - C30 alkyl, and C1 - C30 heteroalkyl.
2. A medical device comprising the polymer of Claim 1.
3. The medical device of Claim 2, wherein said medical device is configured for placement in a region selected from vascular, musculoskeletal/orthopedic, nervous, respiratory, reproductive, urinary, digestive, endocrine, hematopoietic, or integumentary system.
4. The medical device of Claim 2, wherein said medical device is configured for use in vivo.
5. The medical device of Claim 2, wherein said medical device is configured for use ex vivo.
6. The medical device of Claim 5, wherein said medical device is configured for use in vitro.
7. The medical device of Claim 2, wherein said medical device comprises a stent.
8. The medical device of Claim 7, wherein said stent further comprises a configuration selected from the group consisting of a sheet stent, a braided stent, a self-expanding stent, a wire stent, a deformable stent, and a slide-and-lock stent.
9. The medical device of Claim 7, wherein said stent comprises at least two substantially non-deforming elements arranged to form a tubular member, the non-deforming elements being slidably interconnected for allowing the tubular member to expand from a collapsed diameter to an expanded diameter.
10. The medical device of Claim 7, wherein said stent further comprises a tubular member comprising a series of slideably-engaged radial elements and a locking mechanism adapted to permit one-way sliding of the radial elements, such that said tubular member is configured to expand from a first collapsed diameter to a second expanded diameter with minimum recoil.
11. The medical device of Claim 2, further comprising an effective amount of a therapeutic agent.
12. The medical device of Claim 11, wherein said therapeutic agent is selected from the group consisting of antiproliferative agent, anti-inflammatory agent, anti-matrix metalloproteinase agent, lipid lowering agent, cholesterol modifying agent, anti-thrombotic agent, and antiplatelet agent.
13. The medical device of Claim 11, wherein said effective amount is sufficient to provide an effect selected from the group consisting of inhibition of restenosis, inhibition of thrombosis, inhibition of plaque formation, inhibition of plaque rupture, inhibition of inflammation, lowering of cholesterol, and promote healing.
14. The medical device of Claim 2, wherein X1 and X2 are iodine.
15. The medical device of Claim 2 further comprising a non-halogenated coating.
16. The medical device of Claim 2, wherein said polymer forms a coating on at least a portion of said medical device.
17. A system for treating a site within a vessel, comprising the stent of Claim 7 and a catheter having a deployment means, wherein said catheter is adapted to deliver the stent to said site and said deployment means is adapted to deploy the stent.
18. A method for re-treatment of a body lumen, comprising:
deploying a first stent along a region within a blood vessel, wherein said first stent is the stent of Claim 7, and wherein said first stent resides for a period of time; and deploying at a later time a second stent, along the approximate same region within the blood vessel, such that the blood vessel is re-treated.
19. The polymer of Claim 1, further comprising one or more recurring units of the Formula (II):

wherein:
B is -O-(CHR6)p O)q-;

R6 is H or C1 to C3 alkyl;
p and q are each individually an integer in the range of about 1 to about 100;

A2 is selected from the group consisting of R7 is H or a C, to C30 hydrocarbon; and R11 is selected from the group consisting of C1 - C30 alkyl, C1 - C30 heteroalkyl, C5 - C30 aryl, C6 - C30 alkylaryl, and C2 - C30 heteroaryl.
20. A medical device comprising the polymer of Claim 19.
21. The polymer of Claim 19, further comprising one or more recurring units of the Formula (Ia):

wherein:
X3 and X4 are each independently selected from the group consisting of Br and I;
y3 and y4 are each independently zero or an integer in the range of 1 to 4;
R2 is selected from the group consisting of:

R8 and R9 are each independently H or a non-crystallizable C1 to C30 hydrocarbon;
Z4, Z5 and Z6 are each independently O or S;
a and b are each independently an integer in the range of 1 to 8;
A3 is selected from the group consisting of R10 is selected from the group consisting of H, C1 - C30 alkyl, and C1 - C30 heteroalkyl; and R12 is selected from the group consisting of C1 - C30 alkyl, C1 - C30 heteroalkyl, C5 - C30 aryl, C6 - C30 alkylaryl, and C2 - C30 heteroaryl.
22. A medical device comprising the polymer of Claim 21.
23. The polymer of Claim 1, wherein R1 is:

wherein R3 is H or a non-crystallizable C1 to C29 hydrocarbon;
Z1 and Z2 are each independently O or S; and m is an integer in the range of 1 to 8.
24. A medical device comprising the polymer of Claim 23.
25. The polymer of Claim 1, wherein R1 is:

wherein R3 is H or a non-crystallizable C, to C29 hydrocarbon;
Z1 and Z2 are each independently O or S; and j and m are each independently an integer in the range of 1 to 8.
26. A medical device comprising the polymer of Claim 25.
27. The polymer of Claim 1, wherein R1 is:

wherein R3 and R4 are each independently H or a non-crystallizable C1 to C29 hydrocarbon;
Z1, Z2 and Z3 are each independently O or S; and j and m are each independently an integer in the range of 1 to 8.
28. A medical device comprising the polymer of Claim 27.
29. The medical device of Claim 2, further comprising an effective amount of a radiopacifying agent.
30. The medical device of Claim 2, further comprising an effective amount of a magnetic resonance enhancing agent.
CA2577018A 2004-08-13 2005-08-09 Inherently radiopaque bioresorbable polymers for multiple uses Active CA2577018C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US60152604P 2004-08-13 2004-08-13
US60/601,526 2004-08-13
PCT/US2005/028228 WO2006020616A1 (en) 2004-08-13 2005-08-09 Inherently radiopaque bioresorbable polymers for multiple uses

Publications (2)

Publication Number Publication Date
CA2577018A1 true CA2577018A1 (en) 2006-02-23
CA2577018C CA2577018C (en) 2012-03-27

Family

ID=35276651

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2577018A Active CA2577018C (en) 2004-08-13 2005-08-09 Inherently radiopaque bioresorbable polymers for multiple uses

Country Status (8)

Country Link
US (1) US7473417B2 (en)
EP (1) EP1778761B1 (en)
JP (1) JP4768736B2 (en)
CN (1) CN101014642B (en)
AU (1) AU2005272944B2 (en)
CA (1) CA2577018C (en)
RU (1) RU2396289C2 (en)
WO (1) WO2006020616A1 (en)

Families Citing this family (107)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070142901A1 (en) * 1998-02-17 2007-06-21 Steinke Thomas A Expandable stent with sliding and locking radial elements
US6623521B2 (en) 1998-02-17 2003-09-23 Md3, Inc. Expandable stent with sliding and locking radial elements
US6951053B2 (en) * 2002-09-04 2005-10-04 Reva Medical, Inc. Method of manufacturing a prosthesis
CN100558321C (en) * 2003-06-16 2009-11-11 南洋理工大学 Polymer Scaffold And Its Manufacturing Methods
US8685367B2 (en) * 2003-09-25 2014-04-01 Rutgers, The State University of of New Jersey Inherently radiopaque polymeric products for embolotherapy
US20120041550A1 (en) 2003-12-23 2012-02-16 Sadra Medical, Inc. Methods and Apparatus for Endovascular Heart Valve Replacement Comprising Tissue Grasping Elements
US7959666B2 (en) 2003-12-23 2011-06-14 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a heart valve
US20050137687A1 (en) 2003-12-23 2005-06-23 Sadra Medical Heart valve anchor and method
US8603160B2 (en) 2003-12-23 2013-12-10 Sadra Medical, Inc. Method of using a retrievable heart valve anchor with a sheath
US8828078B2 (en) 2003-12-23 2014-09-09 Sadra Medical, Inc. Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
US7381219B2 (en) 2003-12-23 2008-06-03 Sadra Medical, Inc. Low profile heart valve and delivery system
US8840663B2 (en) 2003-12-23 2014-09-23 Sadra Medical, Inc. Repositionable heart valve method
US11278398B2 (en) 2003-12-23 2022-03-22 Boston Scientific Scimed, Inc. Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
US8579962B2 (en) 2003-12-23 2013-11-12 Sadra Medical, Inc. Methods and apparatus for performing valvuloplasty
US9526609B2 (en) 2003-12-23 2016-12-27 Boston Scientific Scimed, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US9005273B2 (en) 2003-12-23 2015-04-14 Sadra Medical, Inc. Assessing the location and performance of replacement heart valves
US8703113B2 (en) * 2004-07-08 2014-04-22 Reva Medical Inc. Side-chain crystallizable polymers for medical applications
US8702716B1 (en) 2009-09-21 2014-04-22 Reva Medical Inc. Devices, compositions and methods for bone and tissue augmentation
CN1997686B (en) 2004-07-08 2010-06-30 雷瓦医药公司 Side-chain crystallizable polymers for medical applications
US7763065B2 (en) 2004-07-21 2010-07-27 Reva Medical, Inc. Balloon expandable crush-recoverable stent device
US20060034769A1 (en) * 2004-08-13 2006-02-16 Rutgers, The State University Radiopaque polymeric stents
WO2006020616A1 (en) 2004-08-13 2006-02-23 Reva Medical, Inc. Inherently radiopaque bioresorbable polymers for multiple uses
US7901451B2 (en) 2004-09-24 2011-03-08 Biosensors International Group, Ltd. Drug-delivery endovascular stent and method for treating restenosis
US8292944B2 (en) 2004-12-17 2012-10-23 Reva Medical, Inc. Slide-and-lock stent
KR100511618B1 (en) * 2005-01-17 2005-08-31 이경범 Multi-layer coating of drug release controllable coronary stent and method for manufacturing the same
DE102005003632A1 (en) 2005-01-20 2006-08-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Catheter for the transvascular implantation of heart valve prostheses
US7962208B2 (en) 2005-04-25 2011-06-14 Cardiac Pacemakers, Inc. Method and apparatus for pacing during revascularization
US9149378B2 (en) 2005-08-02 2015-10-06 Reva Medical, Inc. Axially nested slide and lock expandable device
US7914574B2 (en) 2005-08-02 2011-03-29 Reva Medical, Inc. Axially nested slide and lock expandable device
US20070213813A1 (en) 2005-12-22 2007-09-13 Symetis Sa Stent-valves for valve replacement and associated methods and systems for surgery
US20070160672A1 (en) * 2006-01-06 2007-07-12 Vipul Bhupendra Dave Methods of making bioabsorbable drug delivery devices comprised of solvent cast films
US20070162110A1 (en) * 2006-01-06 2007-07-12 Vipul Bhupendra Dave Bioabsorbable drug delivery devices
US20070158880A1 (en) * 2006-01-06 2007-07-12 Vipul Bhupendra Dave Methods of making bioabsorbable drug delivery devices comprised of solvent cast tubes
US8440214B2 (en) * 2006-01-31 2013-05-14 Boston Scientific Scimed, Inc. Medical devices for therapeutic agent delivery with polymeric regions that contain copolymers having both soft segments and uniform length hard segments
EP1988851A2 (en) 2006-02-14 2008-11-12 Sadra Medical, Inc. Systems and methods for delivering a medical implant
CA2644847A1 (en) * 2006-04-06 2007-10-11 Reva Medical, Inc. Embolic prosthesis for treatment of vascular aneurysm
CA2652871C (en) * 2006-05-12 2016-01-12 Cordis Corporation Balloon expandable bioabsorbable drug eluting flexible stent
EP2020956A2 (en) 2006-05-26 2009-02-11 Nanyang Technological University Implantable article, method of forming same and method for reducing thrombogenicity
KR20090024242A (en) * 2006-06-06 2009-03-06 루트거스, 더 스테이트 유니버시티 오브 뉴 저지 Iodinated polymers
DE102006038232A1 (en) * 2006-08-07 2008-02-14 Biotronik Vi Patent Ag Endoprosthesis and method for producing such
US8507639B2 (en) * 2006-09-11 2013-08-13 Boston Scientific Scimed, Inc. Radiopaque amide polymers and medical devices formed thereof
EP2079491B1 (en) * 2006-10-17 2013-02-27 Reva Medical, Inc. N-substituted monomers and polymers
WO2010033640A1 (en) * 2008-09-16 2010-03-25 Rutgers, The State University Of New Jersey Bioresorbable polymers synthesized from monomer analogs of natural metabolites
US20080097591A1 (en) 2006-10-20 2008-04-24 Biosensors International Group Drug-delivery endovascular stent and method of use
US8067055B2 (en) * 2006-10-20 2011-11-29 Biosensors International Group, Ltd. Drug-delivery endovascular stent and method of use
US20080103584A1 (en) 2006-10-25 2008-05-01 Biosensors International Group Temporal Intraluminal Stent, Methods of Making and Using
US20100113506A1 (en) * 2007-01-17 2010-05-06 Hiroyuki Kawano Composition for preventing or treating thrombus- or embolus- associated disease
US7704275B2 (en) 2007-01-26 2010-04-27 Reva Medical, Inc. Circumferentially nested expandable device
US7896915B2 (en) 2007-04-13 2011-03-01 Jenavalve Technology, Inc. Medical device for treating a heart valve insufficiency
US20080269874A1 (en) * 2007-04-30 2008-10-30 Yunbing Wang Implantable medical devices fabricated from polymers with radiopaque groups
EP1992371A1 (en) * 2007-05-15 2008-11-19 Occlutech GmbH Bio reabsorbable polymer materials opaque to X-rays and occlusion instruments made thereof
US8328867B2 (en) * 2007-06-08 2012-12-11 Medtronic Vascular, Inc. Drug loaded implantable medical device
US8133553B2 (en) * 2007-06-18 2012-03-13 Zimmer, Inc. Process for forming a ceramic layer
US8309521B2 (en) 2007-06-19 2012-11-13 Zimmer, Inc. Spacer with a coating thereon for use with an implant device
KR100930167B1 (en) * 2007-09-19 2009-12-07 삼성전기주식회사 Ultra wide angle optical system
US20110230973A1 (en) * 2007-10-10 2011-09-22 Zimmer, Inc. Method for bonding a tantalum structure to a cobalt-alloy substrate
US8608049B2 (en) * 2007-10-10 2013-12-17 Zimmer, Inc. Method for bonding a tantalum structure to a cobalt-alloy substrate
US7988721B2 (en) 2007-11-30 2011-08-02 Reva Medical, Inc. Axially-radially nested expandable device
US7972373B2 (en) * 2007-12-19 2011-07-05 Advanced Technologies And Regenerative Medicine, Llc Balloon expandable bioabsorbable stent with a single stress concentration region interconnecting adjacent struts
US8231927B2 (en) * 2007-12-21 2012-07-31 Innovatech, Llc Marked precoated medical device and method of manufacturing same
US8231926B2 (en) 2007-12-21 2012-07-31 Innovatech, Llc Marked precoated medical device and method of manufacturing same
US7714217B2 (en) 2007-12-21 2010-05-11 Innovatech, Llc Marked precoated strings and method of manufacturing same
US7811623B2 (en) * 2007-12-21 2010-10-12 Innovatech, Llc Marked precoated medical device and method of manufacturing same
US8048471B2 (en) * 2007-12-21 2011-11-01 Innovatech, Llc Marked precoated medical device and method of manufacturing same
US20090187256A1 (en) * 2008-01-21 2009-07-23 Zimmer, Inc. Method for forming an integral porous region in a cast implant
US20090198286A1 (en) * 2008-02-05 2009-08-06 Zimmer, Inc. Bone fracture fixation system
WO2011104269A1 (en) 2008-02-26 2011-09-01 Jenavalve Technology Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US9044318B2 (en) 2008-02-26 2015-06-02 Jenavalve Technology Gmbh Stent for the positioning and anchoring of a valvular prosthesis
US8206635B2 (en) 2008-06-20 2012-06-26 Amaranth Medical Pte. Stent fabrication via tubular casting processes
US8206636B2 (en) 2008-06-20 2012-06-26 Amaranth Medical Pte. Stent fabrication via tubular casting processes
US10898620B2 (en) 2008-06-20 2021-01-26 Razmodics Llc Composite stent having multi-axial flexibility and method of manufacture thereof
CA2737753C (en) 2008-10-10 2017-03-14 Reva Medical, Inc. Expandable slide and lock stent
CN102245256B (en) 2008-10-10 2014-07-23 萨德拉医学公司 Medical devices and delivery systems for delivering medical devices
US8252887B2 (en) * 2008-10-11 2012-08-28 Rutgers, The State University Of New Jersey Biocompatible polymers for medical devices
US8343088B2 (en) * 2008-10-21 2013-01-01 Douglas Bates Apparatus and method for treating occluded infection collections of the digestive tract
EP2459638B1 (en) 2009-07-31 2017-09-27 Rutgers, The State University of New Jersey Monomers and phase-separated biocompatible polymer compositions prepared therefrom for medical uses
AU2015202526B2 (en) * 2009-10-11 2017-03-02 Rutgers, The State University Of New Jersey Biocompatible polymers for medical devices
JP6031355B2 (en) * 2009-10-11 2016-11-24 ラトガース,ザ ステート ユニバーシティ オブ ニュー ジャージー Biocompatible polymers for medical devices
JP5820815B2 (en) 2009-12-15 2015-11-24 インセプト・リミテッド・ライアビリティ・カンパニーIncept,Llc Implants and biodegradable fiducial markers
AU2011220876A1 (en) * 2010-02-23 2012-09-06 University Of Connecticut Natural polymer-based orthopedic fixation screw for bone repair and regeneration
CA2795292A1 (en) 2010-04-10 2011-10-13 Reva Medical, Inc. Expandable slide and lock stent
JP2013526388A (en) 2010-05-25 2013-06-24 イエナバルブ テクノロジー インク Artificial heart valve, and transcatheter delivery prosthesis comprising an artificial heart valve and a stent
EP3482776B1 (en) 2010-08-06 2020-07-15 Endoshape, Inc. Radiopaque shape memory polymers for medical devices
CN106073946B (en) 2010-09-10 2022-01-04 西美蒂斯股份公司 Valve replacement device, delivery device for a valve replacement device and method of producing a valve replacement device
US8900652B1 (en) 2011-03-14 2014-12-02 Innovatech, Llc Marked fluoropolymer surfaces and method of manufacturing same
CA2835893C (en) 2011-07-12 2019-03-19 Boston Scientific Scimed, Inc. Coupling system for medical devices
CA3069030C (en) 2012-02-03 2021-11-16 Rutgers, The State University Of New Jersey Polymeric biomaterials derived from phenolic monomers and their medical uses
US11472918B2 (en) 2012-02-03 2022-10-18 Rutgers, The State University Of New Jersey Polymeric biomaterials derived from phenolic monomers and their medical uses
WO2014064180A1 (en) 2012-10-25 2014-05-01 Arterial Remodeling Technologies, Sa Radiopaque marker for bioresorbable stents
US10213583B2 (en) * 2012-12-31 2019-02-26 Clearstream Technologies Limited Balloon catheter with transient radiopaque marking
US9789231B2 (en) 2013-02-08 2017-10-17 Endoshape, Inc. Radiopaque polymers for medical devices
WO2014159337A1 (en) 2013-03-14 2014-10-02 Reva Medical, Inc. Reduced - profile slide and lock stent
EP2968620B1 (en) 2013-03-15 2019-02-13 Endoshape, Inc. Polymer compositions with enhanced radiopacity
CN105491978A (en) 2013-08-30 2016-04-13 耶拿阀门科技股份有限公司 Radially collapsible frame for a prosthetic valve and method for manufacturing such a frame
WO2015171854A1 (en) * 2014-05-07 2015-11-12 The University Of Akron Radioopaque, iodine functionalized phenylalanine-based poly(ester urea)s
RU2565810C1 (en) * 2014-06-16 2015-10-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кемеровский технологический институт пищевой промышленности" Method of personalised intraoperative contact local hyperthermia for treatment of locally advanced malignant tumours
US9814791B2 (en) 2014-07-01 2017-11-14 Augusta University Research Institute, Inc. Bio-compatible radiopaque dental fillers for imaging
WO2016103224A2 (en) 2014-12-23 2016-06-30 Rutgers, The State University Of New Jersey Biocompatible iodinated diphenol monomers and polymers
US10774030B2 (en) 2014-12-23 2020-09-15 Rutgers, The State University Of New Jersey Polymeric biomaterials derived from phenolic monomers and their medical uses
RU2603480C2 (en) * 2014-12-24 2016-11-27 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Казанский (Приволжский) Федеральный Университет" (ФГАОУ ВПО КФУ) Radiopaque agent based on barium sulphate and method for its production
US10709555B2 (en) 2015-05-01 2020-07-14 Jenavalve Technology, Inc. Device and method with reduced pacemaker rate in heart valve replacement
US10485897B2 (en) * 2015-10-12 2019-11-26 Erik Erbe Osteogenic and angiogenic implant material
RU2620162C1 (en) * 2016-04-18 2017-05-23 Акционерное общество "Медсил" X-ray-contrast marker for chronic constipation diagnostics and capsule with x-ray contrast markers
EP3454795B1 (en) 2016-05-13 2023-01-11 JenaValve Technology, Inc. Heart valve prosthesis delivery system for delivery of heart valve prosthesis with introducer sheath and loading system
US10201416B2 (en) 2016-05-16 2019-02-12 Boston Scientific Scimed, Inc. Replacement heart valve implant with invertible leaflets
US10781315B2 (en) 2016-12-01 2020-09-22 Lawrence Livermore National Security, Llc Optically clear photo-polymerization resists for additive manufacturing of radiopaque parts
CN110392557A (en) 2017-01-27 2019-10-29 耶拿阀门科技股份有限公司 Heart valve simulation

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4638045A (en) 1985-02-19 1987-01-20 Massachusetts Institute Of Technology Non-peptide polyamino acid bioerodible polymers
US4863735A (en) 1985-02-19 1989-09-05 Massachusetts Institute Of Technology Biodegradable polymeric drug delivery system with adjuvant activity
US4980449A (en) * 1988-07-14 1990-12-25 Rutgers, The State University Polyiminocarbonate synthesis
US5194581A (en) * 1989-03-09 1993-03-16 Leong Kam W Biodegradable poly(phosphoesters)
US5216115A (en) * 1990-06-12 1993-06-01 Rutgers, The State University Of New Jersey Polyarylate containing derivatives of the natural amino acid L-tyrosine
US5587507A (en) * 1995-03-31 1996-12-24 Rutgers, The State University Synthesis of tyrosine derived diphenol monomers
US5198507A (en) 1990-06-12 1993-03-30 Rutgers, The State University Of New Jersey Synthesis of amino acid-derived bioerodible polymers
US5192225A (en) * 1990-11-08 1993-03-09 Yazaki Corporation Connector locking connection detection device
US5469867A (en) 1992-09-02 1995-11-28 Landec Corporation Cast-in place thermoplastic channel occluder
US5466439A (en) * 1992-11-12 1995-11-14 Magnetic Research, Inc. Polymeric contrast enhancing agents for magnetic resonance images
US5443477A (en) * 1994-02-10 1995-08-22 Stentco, Inc. Apparatus and method for deployment of radially expandable stents by a mechanical linkage
US6831116B2 (en) 1995-03-07 2004-12-14 Landec Corporation Polymeric modifying agents
AU697536B2 (en) * 1995-03-31 1998-10-08 Rutgers, The State University Improved synthesis of tyrosine-derived diphenol monomers
US5735872A (en) * 1995-11-13 1998-04-07 Navius Corporation Stent
US5658995A (en) * 1995-11-27 1997-08-19 Rutgers, The State University Copolymers of tyrosine-based polycarbonate and poly(alkylene oxide)
US6319492B1 (en) 1996-11-27 2001-11-20 Rutgers, The State University Copolymers of tyrosine-based polyarylates and poly(alkylene oxides)
US5912225A (en) * 1997-04-14 1999-06-15 Johns Hopkins Univ. School Of Medicine Biodegradable poly (phosphoester-co-desaminotyrosyl L-tyrosine ester) compounds, compositions, articles and methods for making and using the same
AU746351B2 (en) * 1997-06-18 2002-04-18 Guilford Pharmaceuticals Inc. Two-stage solution polymerization of high molecular weight poly(phosphoesters)
ATE307110T1 (en) 1997-11-07 2005-11-15 Univ Rutgers RADIATION TRANSPARENT POLYMERIC BIOMATERIAL
US6492462B2 (en) 1998-01-16 2002-12-10 Landec Corporation Side chain crystalline polymer as rheology modifier for crosslinked polymer
EP0930343A3 (en) 1998-01-16 2000-05-31 Landec Corporation Low profile additives for crosslink resins
US6623521B2 (en) * 1998-02-17 2003-09-23 Md3, Inc. Expandable stent with sliding and locking radial elements
PL342996A1 (en) 1998-02-23 2001-07-16 Mnemoscience Gmbh Shape memory polymers
US6015424A (en) 1998-04-28 2000-01-18 Microvention, Inc. Apparatus and method for vascular embolization
US6273909B1 (en) * 1998-10-05 2001-08-14 Teramed Inc. Endovascular graft system
EP1141129A1 (en) * 1998-12-18 2001-10-10 Bayer Aktiengesellschaft Use of polycarbonates containing iodine and/or bromine for moulded parts with high x-ray contrast and moulded parts produced with same
US6200338B1 (en) * 1998-12-31 2001-03-13 Ethicon, Inc. Enhanced radiopacity of peripheral and central catheter tubing
US6599448B1 (en) * 2000-05-10 2003-07-29 Hydromer, Inc. Radio-opaque polymeric compositions
US6550480B2 (en) 2001-01-31 2003-04-22 Numed/Tech Llc Lumen occluders made from thermodynamic materials
US7455687B2 (en) * 2002-12-30 2008-11-25 Advanced Cardiovascular Systems, Inc. Polymer link hybrid stent
US6932930B2 (en) 2003-03-10 2005-08-23 Synecor, Llc Intraluminal prostheses having polymeric material with selectively modified crystallinity and methods of making same
US8685367B2 (en) 2003-09-25 2014-04-01 Rutgers, The State University of of New Jersey Inherently radiopaque polymeric products for embolotherapy
CN1997686B (en) 2004-07-08 2010-06-30 雷瓦医药公司 Side-chain crystallizable polymers for medical applications
WO2006020616A1 (en) 2004-08-13 2006-02-23 Reva Medical, Inc. Inherently radiopaque bioresorbable polymers for multiple uses

Also Published As

Publication number Publication date
US20060036316A1 (en) 2006-02-16
CA2577018C (en) 2012-03-27
EP1778761B1 (en) 2021-09-29
RU2007108783A (en) 2008-09-20
WO2006020616A1 (en) 2006-02-23
US7473417B2 (en) 2009-01-06
RU2396289C2 (en) 2010-08-10
CN101014642B (en) 2010-04-21
AU2005272944B2 (en) 2009-01-15
JP2008510034A (en) 2008-04-03
AU2005272944A1 (en) 2006-02-23
CN101014642A (en) 2007-08-08
JP4768736B2 (en) 2011-09-07
EP1778761A1 (en) 2007-05-02

Similar Documents

Publication Publication Date Title
CA2577018A1 (en) Inherently radiopaque bioresorbable polymers for multiple uses
AU769786B2 (en) Ladder-type expandable stent
US5578075A (en) Minimally invasive bioactivated endoprosthesis for vessel repair
JP4982369B2 (en) Radiopaque polymeric stent
US20100131037A1 (en) Radiopaque polymeric stents
US20080051873A1 (en) Bioabsorbable polymeric medical device
JP2003093518A5 (en)
JP2012526609A (en) Bioerodible endoprosthesis
JP2009505775A (en) Stent with expanding side branch configuration
JP2005507285A (en) Improved endoprosthesis
WO2011005840A2 (en) Hydrogel enhanced medical devices
Orive-Calzada et al. Severe epithelial hyperplasia as a complication of a novel biodegradable stent
JP2009540946A (en) Medical devices containing composite materials
Álvarez B et al. The current state of biodegradable self-expanding stents in interventional gastrointestinal and pancreatobiliary endoscopy
Chung et al. Endoscopie management of advanced oesophageal cancer
Lee et al. Percutaneous endovascular stent-graft treatment of aortic aneurysms and dissections: new techniques and initial experience
JP2022553794A (en) Stent with protruding features for anchoring
Shidhaye et al. CORONARY PERFORATIONS AND GENERATION OF STENTS: AN UPDATE AND REVIEW
Beyar et al. Newer stents: materials and designs
JP2023550224A (en) Segmented balloon expandable stent system to preserve arterial lumen during bending
WO2021247024A1 (en) Radiopaque biodegradable metallic scaffold with a non-biodegradable coating, and which includes radial support rings and resiliently flexible, preferentially fracturable axial links therebetween
KITAGAWA et al. A CASE OF MALIGNANT STRICTURE OF CERVICAL ESOPHGUS (GASTRIC TUBE) PALLIATED BY THE MATALLIC STENTS USING STENT IN STENT TECHNIQUE
Heuser et al. Stents
KR20060062359A (en) Biodegradable polymer film for drug eluting stent and covering method thereof
Franz Unique operative approach for dealing with a tortuous external iliac artery during abdominal aortic aneurysm endografting

Legal Events

Date Code Title Description
EEER Examination request