CA2419673C - Polymeric networks - Google Patents

Polymeric networks Download PDF

Info

Publication number
CA2419673C
CA2419673C CA002419673A CA2419673A CA2419673C CA 2419673 C CA2419673 C CA 2419673C CA 002419673 A CA002419673 A CA 002419673A CA 2419673 A CA2419673 A CA 2419673A CA 2419673 C CA2419673 C CA 2419673C
Authority
CA
Canada
Prior art keywords
acrylate
polymeric network
network
units derived
monomers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA002419673A
Other languages
French (fr)
Other versions
CA2419673A1 (en
Inventor
Andreas Lendlein
Annette Schmidt
Nok Young Choi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GKSS Forshungszentrum Geesthacht GmbH
Original Assignee
MnemoScience GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MnemoScience GmbH filed Critical MnemoScience GmbH
Publication of CA2419673A1 publication Critical patent/CA2419673A1/en
Application granted granted Critical
Publication of CA2419673C publication Critical patent/CA2419673C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/06Unsaturated polyesters
    • C08L67/07Unsaturated polyesters having terminal carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/061Polyesters; Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • C08G63/08Lactones or lactides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S525/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S525/903Interpenetrating network

Abstract

The present invention relates to polymeric networks, which are characterised by particular mechanical properties and which, furthermore, allow the control of thermal and mechanical properties by simple variation of the components.

Description

Z

POLYMERIC NETWORKS

The present invention relates to polymeric networks, intermediate products, suitable for the preparation of the polymeric networks and processes for the manufacture of the intermediate products and the polymeric networks.

Polymeric networks are used in a wide variety of fields in th+a art. In particular in recent years polymeric networks have attracted much attention which show inducible changes of the shape (shape-memory-properties), namely the so-calleci shapely-mernory-polymers (SMP). Such SMP-materials are, for example, described in the applications and W099/42147. In view of the reversible change of shape, these materials are of high interest in a wide variety of fields, in which, for example, a change of the size is desired.
This is, for example, true for medicinal implants, which desirably should only reach their final size after having reached the final destination, so that the introduction of these implants requires only minimal invasive chirurgical practices.

Although SMP-materials are already known in the prior art, these materials do show several drawbacks. A lot of SMP-materials, for example, lose their sha;pe-memory-properties if the reversible change of shape is induced several times in several cycles.
Furthermore, a lot of SMP-materials do not show the desired compatibility with tissueõ required for the application in the medicinal field. Even the sometimes desired property of being biological degradable, for example, desired for some applications in the medical field, is sometimes not achievable. Furthermore, the known biodegradable SMP-materials do often show the undesired property, that the mechanical properties of the material change rapidly after having reached a certain threshold, although the degradation is not yet complete. A typical embodiment of this drawback is a strong embrittlement, which may cause problems in particular in the medical field, for example, when these materials are used as implants.
Furthermore, a lot of the known SMP-materials are hard to modify with respect to desired thermal and mechanical properties.
It is therefore the object of the present invention to provide a SMP-material which overcomes the drawbacks of the SMP-materials known.

This object is solved with a shape memory polymeric network comprising an effective amount of copolyester segments derived from glycolic acid monomers, wherein the copolyester segments comprise up to 30 wt % of units derived from glycolic acid monomers, and wherein the total strain recovery value of the network after 5 cycles (Rr,ges) is from 85% to 99.7% and the shape fixity of the network is up to 99.5%.

The invention also provides a shape memory polymeric network comprising an effective amount of copolyester segments comprising units derived from glycolic acid monomers and at least one other hydroxy carbonic acid monomer, wherein the copolyester segments comprise up to 30 wt % of units derived from glycolic acid monomers and wherein the number average of units derived from glycolic acid monomers ranges from 1 to 4.

Furthermore, the present invention provides an intermediate product, suitable for the preparation of the polymeric network in accordance with the present invention. Finally, the present invention provides methods for the manufacture of the polymeric network and for the intermediate product.

Figures la and lb are schematic representations of two embodiments of the present invention. The polymeric network of the present invention can be regarded as a network of copolyester segments, bonded or cross-linked at cross-linking units which are nearly cross-linking points. If a homo-network is given (Figure la) the copolyester segments are the only components of the network. If, however, a further component is present, preferably an acrylate component, the network comprises, in addition to the copolyester segments, further segments derived from the additional component (Figure 1 b).

2a The polymeric network, in accordance with the present invention, comprises as an essential component, copolyester segments, comprising units derived from glycolic acid (glycolate units). These copolyester segments comprise preferably from 5 to 70 weight %
units, derived from glycolic acid. More preferred are 8 to 50 weight %, in particular, 10 to 30 weight %. These ranges are, in particular, preferred for copolyester segments which comprise, as additional component, caprolactone units. The preferred lactide containing copolyester segments which yield amorphous networks, the glycolic acid content is again in the range of from 5 to 70 weight %, preferably 8 to 50 weight %, more preferably 10 to 30 weight %.

As further component the copolyester segments comprise units derived from other hydroxy carbonic acids, in particular, units derived from e-caprolactone (caprolactone units) and/or lactic acid (lactide units).
The copolyester segments comprise preferably, units derived from glycolic acid, in the range defined above, as well as, units derived from e-caprolactone or lactic acid, but no further units.

The copolyester segments of the polymeric networks of the present invention may be prepared by copolymerisation of the corresponding monom:ric units using an initiator, preferably ethylene glycol. For the introduction of glycolate units, diglycolate isprefexably used, which may be copolymerised with s-caprolactone. In orde:r to introduce factide units, it is preferred to use LL-dilactide. Preferably, the reaction with s-caprolactone is carried out in accordance with reaction (2), whereby an intermediate product iof formula (1) is obtained:

Ho~,,_.,,oH + o rAo y reaction (2) ~~J o HO iOH
O p formula (1)' This reaction (2) is preferably carried out in bulk, optionally using a catalyst, for example, dibutyl tin(IV)oxide. Without use of a catalyst, the distribution of the comonomers yields more or less blocky distributions, while the use of a catalyst yields a distribution resembling more closely a raridom distribution of the comonomers in the copolyester. Since most of the suitable catalysts, in particular, the tin compounds, are toxic the remaining catalyst in the copolyester has to be removed, in particular, if the copolyester segrnents are to be used in materials for medicinal purposes. The respective process conditions are known to the person skilled in the art and are illustrated in the following examples. The reaction using LL-dilactide is carried out in an analogous manner, yielding the intermediate product of formula (1 a) which corresponds to the intermediate product of formula (1).
4.
0 HO"-/ OH
+ + O~O O O R OH
O l~. O
Hoy R O y O O
C-i CH
R/ = HZ CH3 formula (la) The intermediate products produced in accordance with this reaction are suitable, after proper functionalisation, for example, by introducing terminal acrylate groups, preferably methacrylate groups, for the preparation of the poiymeric network of the present invention.

The copolyester segments which are contained in the polymeric network in accordance with the present invention do show preferably a distribution of caprolactone units and glycolate units yieldirig the following statistic number average values:

Number average of the caprolactone units (ZMCE) (average number of caprolactone units connected with each other up to the next glycolate unit): from 2: to 21, preferably from 2 to 8, in particular, preferably from 2.6 to 7.5.

20. = Number average of glycolate units. (ZMGE) (average number cif glycolate units connected with each other up to the next caprolactone unit): from I to 4, preferably from 1 to 2, in particular, preferably from 1.1 to 1.3.

This distribution can be controlled by adapting the ratios of the monomers employed in the copolyrnerisation.

The copolyester segments of the polymeric network, in accordance with the present invention, if caprolactone units are present, preferably do show a number average molecular weight, determined by GPC, of from 2000 to 20000, preferably from 4000 to 30 15000 and, in particular, preferably from 8000 to 12000. If, however, lactide units are present, the number,average molecular. .weight preferably is from 600 to 20000, more preferably from 1000 to 17500 and, in particular, preferably from 1100 to 10000. The molecular weight can be controlled during the copolymerisation of the starting monomers, since the length (i.e. the mofecular weight) of the copolyester segments corresponds to the length of the intermediate products prepared in advance, The parameters necessary are known to the skilled person and are illustrated in the following examples, By varying the molecular weight, different crosslinking densities can be obtained. Uniform copolyester segments (i.e. small variability of 'the molecular weight) yield more uniform polymeric networks, which is preferred in order to obtain the desired reproducability of properties.

The production of the polymeric network, in accordance with the present invention, is preferably carried out using the intermediate products of formula (1) and (1a), respectively, after 'having been subjected to a suitable functionalisation. The functionalisation is preferably carried out by introducing terminal acrylate units, preferably using methacryloyl chloride, for example, in accordance with reaction (3), wherein K represents the main chain of the intermediate product:

reaction (3) HOK-OH + 2 Cl + 2 O
O cH3 ,~.
o K o~~. ?
cH3 0 This reaction preferably is carried out in solution, for example, in a solution using THF as solvent. The necessary process parameters are known to the skilled person and are illustrated in the following examples. The reaction (3) of lactide containing intermediate products of the formula (1a) is carried out analogously.
the functionalisation in this manner yields macromonomers, suitable for the preparation of the polymeric networks in accordance with the present invention through subsequent crosslinking reactions. The degree of functionalisation, for example, the degree of methacrylisation when miethacrylate groups are introduced, is preferably higher than 70%. Functionalisation with methacrylate typically gives degrees of inethacrylisation of from 85-99%, a degree of methacrylisation of 100% represents the total functionalisation of the two terminals per molecule of the intermediate product. The intermediate product, thus functionalised, may be used for the preparation of the polymeric networks in accordance with the present invention. A certain content of intermediate products which are not completely functionalised is not detrimental.
The intermediate products not completely functionalised yield, after the crosslinking reaction, lose chain terminals and oligomers not covalently bond to the polymeric network.
Lose chain terminals as well as oligomers are not detrimental as long as their content is not unduly high. Degrees of functionalisation in the range of 70-100% are suitable for the preparation of polymeric networks in accordance with the present invention.

Crosslinking of the macromonomers after functionalisation preferably is carried out by irradiation with UV, initiating the reaction of the reactive, functionalised terminals. Since the macromonomers can be regarded as tetrafunctional a crosslinking may occur, yielding the polymeric networks of the invention, comprising the copolyester segments.
Accordingly, a three dimensional, covalently crosslinked network is obtained, showing the above discussed crosslinking points.

If the crosslinking reaction, which is preferably carried out in a melt of the macromonomers, is carried out with the macromonomers only, the homopolymeric networks depicted schematically in Figure (1 a) are produced. A preferred embodiment of the present invention comprises the crosslinking reaction in the presence of an additional copolymerisable monomer. The use of the further copolymerisable monomers yields the production of segments of these further monomers, which are bonded covalently within the growing network. The network produced in this case is depicted schematically in Figure (1 b).

In addition to the copolyester segments the segments of the additional copolymerisable monomer are shown. Such networks may be designated AB-networks, comprising segments A of the additional polymer and segments B, corresponding to the copolyester segments.

The additional monomer is preferably selected among acrylate monomers, preferred in this connection are ethyl acrylate, n-butyl acrylate and hexyl acrylate, in particular n-butyl acrylate.

The additional monomer may be present in an amount of from 5 to 70 weight %, based on the final network, preferably in an amount of from 15 to 60 weight %. The introduction of varying amounts of additional monomer may be carried out by adding corresponding amounts of monomer to the mixture which is to be crosslinked. The introduction of the additional monomer into the network of the present invention is obtained in an amount, corresponding to the amount present in the mixture to be crosslinked. Specific parameters of the process are illustrated in the following examples.

The polymeric networks in accordance with the present invention, do show the following advantages, which are, based on the knowledge of the prior art, surprising.

The polymeric networks of the present invention do show good SMP properties, which are improved with respect to the known SMP-materials. The polymeric networks in accordance with the present invention do show a noticeable increased preservation of the SMP
properties, even after multiple induction of the shape memory effect. Shape recovery and shape fixity, which may decrease with the known networks using caprolactone down to 85 to 90%, are, for the polymeric networks in accordance with the present invention, in particular for the networks using caprolactone units, 97 to 99 %. The lactide containing polymeric networks do show values for shape recovery of from 85 to 99.7% and for shape fixity of up to 99.5%. Accordingly, the polymeric networks in accordance with the present invention do not show the strong decrease of the SMP properties characteristic for the materials known from the prior art.

At the same time, the variation of the amount of glycolate units enables a control of the temperature, which is designated transfer temperature, i.e. the temperature at which the polymeric networks of the present invention do show a change of shape. For the networks on the basis of glycolic acid and caprolactone, the transfer temperature may, for example, be controlled within the range of from 20 to 50 C, depending on the amount of glycolate units and the amount of additional monomer, copolymerized during the crosslinking reaction of the macromonomers. These transfer temperatures, furthermore, are within a range enabling their application in the field of medicine, where transfer temperatures within the range of the usual body temperature are desired.

The use of basic units which are not toxic and biologically degradable, (caprolactone, lactide acid and glycolic acid) secures a good bio compatibility. The optional use of additional monomers, preferably n-butyl acrylate, enables a further control of the $

mechanical properties and the degradation properties of the polyrneric networks in accordance with the present invention.

By varying the amounts of the components of the copolyester segments even the mechanical properties can be controlled. Networks on the basis of glycolic acid and Caprolactone, for example, may give values for E-module and elongation, determined at 70 C, of from 0.2 to 0.9 MPa and from 120 to 260% respectively, while the corresponding values, determined at 25 C, are 0.8 to 46 MPa and 200 to 480%, respectively.
Networks comprising in addition, n-butyl acrylate (AB-networks) do show values of from 0.41 to 2.29 MPa and 63 to 142%, respectively, at 70 C, and 6.4 to 11 MPa and 271 to 422%
at 25 C, respectively. Lactide containing networks, depending inter alia upon the molecular weight of the 'copolyester segments, show values for E-module and elongation at break of from 3 to 11 MPa and 50 to 200%, respectively.

The selection of the second component of the copolyester segment enables a further control of the mechanical properties. While the use of caprolactone units usually yields partially crystalline materials, for which the transfer between the different shapes is controlled thermodynamically, the use of lactide units yields a rnaterial in which the transfer is controlled kinetically. Accordingly, the transfer from temporairy to permanent shape can, in principle, be carried out in infinite slow motion. Furthermore, polymeric networks with lactide units are transparent, below as well as above of the transfer temperature, which is of advantage for certain applications.

The possibility to control the length of the copolyester segments, furthermore, allows the preparation of polymeric networks having different crosslinking densities. The crosslinking density enables the control of the strength of the polymeric rietworks, while at the same time the glass transition temperature is maintained.

Accordingly, the polymeric networks of the present invention da provide a unit construction system enabling the well directed preparation of molecular architectures having a desired profile of properties using simple starting materials and simple reactions.
The copolyester segments comprising glycolate units do serve as transfer segments for the shape memory properties.

Due to the above described properties, the polymeric networks in accordance with the present invention, are in particular suited for applications in the field of medicine, as implants, as temporary ligament augmentation, for the preparation of sustained release formulations as well as inter-vertebra disc replacement.

The present invention is described further by the following examples, which are intended as illustration only.

EXAMPLES

Preparation of Intermediate Products (Macrodiols) Copolyesters of diglycolide and E-caprolactone were prepared using ring opening polymerisation of the monomers in bulk. As initiator ethylene glycol was used.
In some examples (05), (09), (11 a), (13a), (18) Dibutyl tin (IV) oxide was used as catalyst. The starting monomers were purified prior to the polymerisation using usual procedures. The following Table shows the essential properties of the intermediate products prepared. Tm, and Tm2 were determined by DSC and represent the local maxima in the DSC
diagram.
Example Wt % Number ZMCE ZMGE Tm, Tm2 Glycolate Molecglar 'C C Avera Weight (10) 10 7600 21 3,1 47 51 (11) 11 8300 11 3,2 48 53 (13) 13 9300 9,2 3 46 51 (16) 16 9700 8,3 3,6 50 (05) 5 7,5 1,1 44 (09) 9 5,9 1,1 39 43 (11 a) 11 11000 4,5 1,1 37 42 (13a) 13 10600 3,3 1,2 28 37 (18) 18 11200 J2,6 1,3 16 28 The presence of two adjacent maxima in the DSC diagram is an indication of the presence of crystallites having different thermodynamical stability.

Some of the intermediate products given above were provided with terminal methacrylic groups using methacryloyl chloride and a basic catalytic action with triethyl amine in THF at 25 C, employing reaction times of up to three days. The degree of methacrylisation was from 86 to 96% for the used intermediate products (05), (09), (11a), (13a), (18).

These macromonomers were then crosslinked at 70 C using UV irradiation of 308 nm. The 10 essential data for the polymeric networks are shown in the following Table.
The mechanical properties were determined by stress-strain experiments. T9 and Trr, designate the glass transition temperature and the melting temperature, Tt,ans designates the shape memory transfer temperature, E the module of elasticity and R,,9e$ the total strain recovery value after five cycles. R,,9es was determined in accordance with published procedures for shape memory properties using a stress-strain apparatus.

Example Tg Tm E Rr,ges Ttrans (05) -59 46 0,97 99 43 (09) -55 39 0,90 99 37 (11 a) -56 37 0,24 99 36 (13a) -52 30 0,34 99 27 (18) -52 20 0,45 99 The macromonomers of examples (09) and (11 a) were crosslinked in the presence of n-butyl acrylate. The other reaction conditions were identical. The following Table shows the essential data for the polymeric networks obtained.

Example Wt. % butyl acrylate in the network, E-module MPa Elongation at determined b 13C-NMR break (09)B17 17 11 271 (09)B28 28 -- - 8 1 422 (09)B41 41 6,4 400 (09)B56 56 6,5 399 (11 a)B18 18 8,8 372 The examples in accordance with the present invention do show that a simple variation of the molecular units of the polymeric networks enables the preparation of desired profiles of properties.

Claims (26)

1. A shape memory polymeric network comprising an effective amount of copolyester segments derived from glycolic acid monomers, wherein the copolyester segments comprise up to 30 wt % of units derived from glycolic acid monomers, and wherein the total strain recovery value of the network after 5 cycles (Rr,ges) is from 85% to 99.7% and the shape fixity of the network is up to 99.5%.
2. The polymeric network of claim 1 wherein the copolyester segments are further derived from caprolactone monomers.
3. The polymeric network of claim 2 wherein the number average of the units derived from caprolactone monomers is between 2 and 21 and/or wherein the number average of the units derived from glycolic acid monomers is between 1 and 4.
4. The polymeric network of claim 2 further comprising monomeric units derived from acrylate.
5. The polymeric network of claim 4 wherein the acrylate is selected from the group consisting of ethyl acrylate, n-butyl acrylate, and hexyl acrylate.
6. The polymeric network of claim 5 wherein the acrylate is n-butyl acrylate.
7. The polymeric network of claim 1 wherein the copolyester segments are further derived from lactic acid monomers.
8. The polymeric network of claim 7 further comprising monomeric units derived from acrylate.
9. The polymeric network of claim 8 wherein the acrylate is selected from the group consisting of ethyl acrylate, n-butyl acrylate, and hexyl acrylate.
10. The polymeric network of claim 9 wherein the acrylate is n-butyl acrylate.
11. The polymeric network of claim 1 further comprising segments derived from acrylate monomers.
12. The polymeric network of claim 11 wherein the acrylate is selected from the group consisting of ethyl acrylate, n-butyl acrylate, and hexyl acrylate.
13. The network of claim 12 wherein the acrylate monomer is n-butyl acrylate.
14. The polymeric network of claim 11 wherein the concentration of acrylate is between about 5% and about 70% by weight of the final network.
15. The polymeric network of claim 1 wherein the copolyester segments derived from glycolic acid monomers comprise between about 10% and about 30% by weight glycolide.
16. The polymeric network of claim 1 wherein the copolyester segments have a number average molecular weight of between about 5000 and about 20,000 Daltons.
17. The polymeric network of claim 1, wherein the number average of units derived from glycolic acid range from 1 to 4.
18. A method for preparing a polymeric network comprising reacting an intermediate product of formula (1) with methacrylic acid molecules to form a compound functionalized by the methacrylic acid molecules;
and crosslinking the functionalized compound, optionally in the presence of an additional acrylate monomer, wherein the copolyester segments comprise up to 30wt % of units derived from glycolic acid monomers, and wherein the total strain recovery value of the network after 5 cycles (Rr,ges) is from 85% to 99.7%
and the shape fixity of the network is up to 99.5%.
19. The method of claim 18 wherein the polymeric network comprises copolyester segments which comprise monomeric units derived from caprolactone.
20. The method of claim 18 wherein the polymeric network comprises copolyester segments which comprise monomeric units derived from lactic acid.
21. The method of claim 18 wherein the optional additional acrylate monomer is selected from the group consisting of ethyl acrylate, n-butyl acrylate, and hexyl acrylate.
22. The method of claim 21 wherein the acrylate monomer is n-butyl acrylate.
23. The method of claim 18 wherein the crosslinking is initiated by ultraviolet irradiation.
24. The method of claim 18 wherein the crosslinking occurs in the melt.
25. A shape memory polymeric network comprising an effective amount of copolyester segments comprising units derived from glycolic acid monomers and at least one other hydroxy carbonic acid monomer, wherein the copolyester segments comprise up to 30 wt % of units derived from glycolic acid monomers and wherein the number average of units derived from glycolic acid monomers ranges from 1 to 4.
26. The polymeric network of claim 25 wherein the at least one other hydroxy carbonic acid is selected from the group consisting of caprolactone monomers, lactic acid monomers, and combinations thereof.
CA002419673A 2002-02-26 2003-02-24 Polymeric networks Expired - Lifetime CA2419673C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10208211A DE10208211A1 (en) 2002-02-26 2002-02-26 Polymer networks
DE10208211.1 2002-02-26

Publications (2)

Publication Number Publication Date
CA2419673A1 CA2419673A1 (en) 2003-08-26
CA2419673C true CA2419673C (en) 2008-09-02

Family

ID=27635321

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002419673A Expired - Lifetime CA2419673C (en) 2002-02-26 2003-02-24 Polymeric networks

Country Status (6)

Country Link
US (1) US7217744B2 (en)
EP (1) EP1338613B1 (en)
AT (1) ATE522556T1 (en)
CA (1) CA2419673C (en)
DE (1) DE10208211A1 (en)
ES (1) ES2372171T3 (en)

Families Citing this family (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6241747B1 (en) 1993-05-03 2001-06-05 Quill Medical, Inc. Barbed Bodily tissue connector
US8795332B2 (en) 2002-09-30 2014-08-05 Ethicon, Inc. Barbed sutures
US5931855A (en) 1997-05-21 1999-08-03 Frank Hoffman Surgical methods using one-way suture
US7056331B2 (en) 2001-06-29 2006-06-06 Quill Medical, Inc. Suture method
US6848152B2 (en) 2001-08-31 2005-02-01 Quill Medical, Inc. Method of forming barbs on a suture and apparatus for performing same
US20040030062A1 (en) * 2002-05-02 2004-02-12 Mather Patrick T. Castable shape memory polymers
US6773450B2 (en) 2002-08-09 2004-08-10 Quill Medical, Inc. Suture anchor and method
US8100940B2 (en) 2002-09-30 2012-01-24 Quill Medical, Inc. Barb configurations for barbed sutures
US20040088003A1 (en) 2002-09-30 2004-05-06 Leung Jeffrey C. Barbed suture in combination with surgical needle
US7794494B2 (en) * 2002-10-11 2010-09-14 Boston Scientific Scimed, Inc. Implantable medical devices
US7091297B2 (en) * 2002-10-11 2006-08-15 The University Of Connecticut Shape memory polymers based on semicrystalline thermoplastic polyurethanes bearing nanostructured hard segments
US7976936B2 (en) * 2002-10-11 2011-07-12 University Of Connecticut Endoprostheses
AU2003300377B2 (en) * 2002-10-11 2009-04-02 University Of Connecticut Blends of amorphous and semicrystalline polymers having shape memory properties
US7524914B2 (en) 2002-10-11 2009-04-28 The University Of Connecticut Shape memory polymers based on semicrystalline thermoplastic polyurethanes bearing nanostructured hard segments
ATE534704T1 (en) * 2002-10-11 2011-12-15 Univ Connecticut CROSS-LINKED POLYCYCLOOCTENE
US7624487B2 (en) 2003-05-13 2009-12-01 Quill Medical, Inc. Apparatus and method for forming barbs on a suture
CN104224253A (en) 2004-05-14 2014-12-24 伊西康有限责任公司 Suture methods and devices
US8043361B2 (en) * 2004-12-10 2011-10-25 Boston Scientific Scimed, Inc. Implantable medical devices, and methods of delivering the same
CA2593471A1 (en) * 2004-12-10 2006-07-06 University Of Connecticut Shape memory polymer orthodontic appliances, and methods of making and using the same
EP1871306A4 (en) * 2005-04-01 2012-03-21 Univ Colorado A graft fixation device and method
EP2007288A4 (en) * 2006-03-30 2011-03-16 Univ Colorado Regents Shape memory polymer medical devices
DE102006017759A1 (en) 2006-04-12 2007-10-18 Gkss-Forschungszentrum Geesthacht Gmbh Shape memory polymer with polyester and polyacrylic segments and methods for its preparation and programming
US20080085946A1 (en) * 2006-08-14 2008-04-10 Mather Patrick T Photo-tailored shape memory article, method, and composition
US20100192959A1 (en) * 2006-12-19 2010-08-05 The Regents Of The University Of Colorado, A Body Corporate Shape memory polymer-based transcervical device for permanent or temporary sterilization
DE102007010564A1 (en) 2007-02-22 2008-08-28 Gkss-Forschungszentrum Geesthacht Gmbh Method for one-step programming of three-molded plastics
CN101311197B (en) * 2007-03-28 2010-09-22 四川大学 Degradable pH-sensitive hydrogel copolymer, method for preparing same and use
US20080236601A1 (en) * 2007-03-28 2008-10-02 Medshape Solutions, Inc. Manufacturing shape memory polymers based on deformability peak of polymer network
US20080255612A1 (en) 2007-04-13 2008-10-16 Angiotech Pharmaceuticals, Inc. Self-retaining systems for surgical procedures
ES2479290T3 (en) 2007-09-27 2014-07-23 Ethicon Llc A system for cutting a retainer in a suture
US8916077B1 (en) 2007-12-19 2014-12-23 Ethicon, Inc. Self-retaining sutures with retainers formed from molten material
BRPI0820129B8 (en) 2007-12-19 2021-06-22 Angiotech Pharm Inc process of formation of a self-retaining suture and self-retaining suture
US8118834B1 (en) 2007-12-20 2012-02-21 Angiotech Pharmaceuticals, Inc. Composite self-retaining sutures and method
EP2075279A1 (en) 2007-12-28 2009-07-01 Mnemoscience GmbH Production of shape memory polymer articles by molding processes
EP2075273A1 (en) 2007-12-28 2009-07-01 Mnemoscience GmbH Multiple shape memory polymer networks
EP2075272A1 (en) 2007-12-28 2009-07-01 Mnemoscience GmbH Shape memory polymer networks from crosslinkable thermoplasts
ES2602570T3 (en) 2008-01-30 2017-02-21 Ethicon Llc Apparatus and method for forming self-retaining sutures
US8615856B1 (en) 2008-01-30 2013-12-31 Ethicon, Inc. Apparatus and method for forming self-retaining sutures
EP2249712B8 (en) 2008-02-21 2018-12-26 Ethicon LLC Method and apparatus for elevating retainers on self-retaining sutures
US8216273B1 (en) 2008-02-25 2012-07-10 Ethicon, Inc. Self-retainers with supporting structures on a suture
US8641732B1 (en) 2008-02-26 2014-02-04 Ethicon, Inc. Self-retaining suture with variable dimension filament and method
JP5619726B2 (en) 2008-04-15 2014-11-05 エシコン・エルエルシーEthicon, LLC Self-retaining suture with bidirectional retainer or unidirectional retainer
WO2009132070A2 (en) * 2008-04-22 2009-10-29 The Regents Of The University Of Colorado, A Body Corporate Thiol-vinyl and thiol-yne systems for shape memory polymers
US8961560B2 (en) 2008-05-16 2015-02-24 Ethicon, Inc. Bidirectional self-retaining sutures with laser-marked and/or non-laser marked indicia and methods
US8430933B2 (en) * 2008-07-24 2013-04-30 MedShape Inc. Method and apparatus for deploying a shape memory polymer
US20100170521A1 (en) * 2008-07-24 2010-07-08 Medshape Solutions, Inc. Method and apparatus for deploying a shape memory polymer
US8069858B2 (en) * 2008-07-24 2011-12-06 Medshape Solutions, Inc. Method and apparatus for deploying a shape memory polymer
US9119714B2 (en) * 2008-10-29 2015-09-01 The Regents Of The University Of Colorado, A Body Corporate Shape memory polymer prosthetic medical device
US8932328B2 (en) 2008-11-03 2015-01-13 Ethicon, Inc. Length of self-retaining suture and method and device for using the same
EP2413840B1 (en) 2009-04-02 2016-08-17 Endoshape, Inc. Vascular occlusion devices
WO2011140283A2 (en) 2010-05-04 2011-11-10 Angiotech Pharmaceuticals, Inc. Self-retaining systems having laser-cut retainers
WO2011144257A1 (en) * 2010-05-21 2011-11-24 Rijksuniversiteit Groningen Amorphous resorbable polymeric network materials with shape memory
EP2579787B1 (en) 2010-06-11 2016-11-30 Ethicon, LLC Suture delivery tools for endoscopic and robot-assisted surgery
AU2011285554C1 (en) 2010-08-06 2016-05-12 Endoshape, Inc. Radiopaque shape memory polymers for medical devices
CN103747746B (en) 2010-11-03 2017-05-10 伊西康有限责任公司 Drug-eluting self-retaining sutures and methods relating thereto
MX342984B (en) 2010-11-09 2016-10-19 Ethicon Llc Emergency self-retaining sutures and packaging.
US8974217B2 (en) 2010-11-11 2015-03-10 Spirit Aerosystems, Inc. Reconfigurable shape memory polymer tooling supports
US8815145B2 (en) 2010-11-11 2014-08-26 Spirit Aerosystems, Inc. Methods and systems for fabricating composite stiffeners with a rigid/malleable SMP apparatus
US8877114B2 (en) 2010-11-11 2014-11-04 Spirit Aerosystems, Inc. Method for removing a SMP apparatus from a cured composite part
US8734703B2 (en) 2010-11-11 2014-05-27 Spirit Aerosystems, Inc. Methods and systems for fabricating composite parts using a SMP apparatus as a rigid lay-up tool and bladder
US9427493B2 (en) 2011-03-07 2016-08-30 The Regents Of The University Of Colorado Shape memory polymer intraocular lenses
WO2012129534A2 (en) 2011-03-23 2012-09-27 Angiotech Pharmaceuticals, Inc. Self-retaining variable loop sutures
US20130172931A1 (en) 2011-06-06 2013-07-04 Jeffrey M. Gross Methods and devices for soft palate tissue elevation procedures
US10201351B2 (en) 2011-09-30 2019-02-12 Endoshape, Inc. Continuous embolic coil and methods and devices for delivery of the same
AU2013209672B2 (en) 2012-01-17 2015-11-19 Endoshape, Inc. Occlusion device for a vascular or biological lumen
CN108853610A (en) 2013-02-08 2018-11-23 恩多沙普公司 Radiopaque polymer for medical device
US10590218B2 (en) 2013-03-15 2020-03-17 Endoshape, Inc. Polymer compositions with enhanced radiopacity

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5565224A (en) 1978-11-10 1980-05-16 Toagosei Chem Ind Co Ltd Production of polyester di(meth)acrylate
US4700704A (en) * 1982-10-01 1987-10-20 Ethicon, Inc. Surgical articles of copolymers of glycolide and ε-caprolactone and methods of producing the same
US4816094A (en) * 1984-05-01 1989-03-28 Kimberly-Clark Corporation Method of producing a heat shrinkable elastomer and articles utilizing the elastomer
US4575373A (en) * 1984-11-02 1986-03-11 Johnson Don R Laser adjustable intraocular lens and method of altering lens power
US5506300A (en) * 1985-01-04 1996-04-09 Thoratec Laboratories Corporation Compositions that soften at predetermined temperatures and the method of making same
WO1986003980A1 (en) 1985-01-04 1986-07-17 Thoratec Laboratories Corporation Compositions that soften at predetermined temperatures and the method of making same
US4596728A (en) * 1985-02-01 1986-06-24 The Johns Hopkins University Low temperature heat shrinkable polymer material
US4649082A (en) * 1985-03-07 1987-03-10 Ppg Industries, Inc. Radiation curable compositions based on radiation curable esters of polyfunctional hydroxyl-containing carboxylic acids
FR2601285B1 (en) * 1986-07-10 1988-11-04 Pirelli Treficable HEAT SHRINKABLE SLEEVE COMPRISING MEANS FOR CONTROLLING ITS UNIFORM HEATING, AND METHOD FOR MANUFACTURING SAME.
JP2561853B2 (en) 1988-01-28 1996-12-11 株式会社ジェイ・エム・エス Shaped memory molded article and method of using the same
JP2502132B2 (en) * 1988-09-30 1996-05-29 三菱重工業株式会社 Shape memory polyurethane elastomer molded body
JPH0739506B2 (en) * 1988-09-30 1995-05-01 三菱重工業株式会社 Shape memory polymer foam
JPH066342B2 (en) * 1988-10-14 1994-01-26 三菱重工業株式会社 Shape memory film and its use
JPH0723572B2 (en) * 1988-10-17 1995-03-15 三菱重工業株式会社 Woven fabric with shape memory polymer
EP0374961B1 (en) 1988-12-23 1995-08-09 Asahi Kasei Kogyo Kabushiki Kaisha Shape memory polymer resin, resin composition and the shape memorizing molded product thereof
US5189110A (en) * 1988-12-23 1993-02-23 Asahi Kasei Kogyo Kabushiki Kaisha Shape memory polymer resin, composition and the shape memorizing molded product thereof
EP0385443A3 (en) 1989-02-28 1990-10-10 Daikin Industries, Limited Polymer material having shape memory characteristics
US5108755A (en) * 1989-04-27 1992-04-28 Sri International Biodegradable composites for internal medical use
JPH0368611A (en) 1989-08-08 1991-03-25 Daikin Ind Ltd Shape memory polymer material
US5133739A (en) * 1990-02-06 1992-07-28 Ethicon, Inc. Segmented copolymers of ε-caprolactone and glycolide
ES2060075T3 (en) * 1990-02-23 1994-11-16 Minnesota Mining & Mfg SEMI-THERMOPLASTIC COMPOSITION FOR MOLDING THAT HAS MEMORY IN A "CUSTOMIZED" FORM, THERMALLY STABLE.
US5410016A (en) * 1990-10-15 1995-04-25 Board Of Regents, The University Of Texas System Photopolymerizable biodegradable hydrogels as tissue contacting materials and controlled-release carriers
US5665822A (en) * 1991-10-07 1997-09-09 Landec Corporation Thermoplastic Elastomers
DE4226465C2 (en) 1991-08-10 2003-12-04 Gunze Kk Jaw bone reproductive material
US5418261A (en) * 1993-01-25 1995-05-23 Imperial Chemical Industries Plc Polyurethane foams
US5650173A (en) * 1993-11-19 1997-07-22 Alkermes Controlled Therapeutics Inc. Ii Preparation of biodegradable microparticles containing a biologically active agent
WO1995034331A1 (en) 1994-06-10 1995-12-21 Ao-Forschungsinstitut Davos Self-expanding, adaptable cavity plug for use in implantation of endo-joint prosthesis
ATE196486T1 (en) * 1994-08-10 2000-10-15 Peter Neuenschwander BIOCOMPATIBLE BLOCK COPOLYMER
US5765682A (en) * 1994-10-13 1998-06-16 Menlo Care, Inc. Restrictive package for expandable or shape memory medical devices and method of preventing premature change of same
US5800516A (en) * 1996-08-08 1998-09-01 Cordis Corporation Deployable and retrievable shape memory stent/tube and method
JPH10111660A (en) 1996-10-01 1998-04-28 Minnesota Mining & Mfg Co <3M> Retroreflective sheet and its production
US5776162A (en) * 1997-01-03 1998-07-07 Nitinol Medical Technologies, Inc. Vessel implantable shape memory appliance with superelastic hinged joint
GB9715603D0 (en) * 1997-07-25 1997-10-01 Solvay Interox Ltd Thermoplastic polymers
ES2265186T3 (en) 1998-02-23 2007-02-01 Mnemoscience Gmbh POLYMERS WITH FORM MEMORY.
WO1999042147A1 (en) * 1998-02-23 1999-08-26 Massachusetts Institute Of Technology Biodegradable shape memory polymers
US6165202A (en) * 1998-07-06 2000-12-26 United States Surgical Corporation Absorbable polymers and surgical articles fabricated therefrom
CN1133680C (en) * 1999-04-26 2004-01-07 中国科学院化学研究所 Biodegradable three-element copolymerized ester and its processing process
CA2410637C (en) * 2000-05-31 2007-04-10 Mnemoscience Gmbh Shape memory polymers seeded with dissociated cells for tissue engineering
US6730772B2 (en) * 2001-06-22 2004-05-04 Venkatram P. Shastri Degradable polymers from derivatized ring-opened epoxides

Also Published As

Publication number Publication date
ES2372171T3 (en) 2012-01-16
ATE522556T1 (en) 2011-09-15
CA2419673A1 (en) 2003-08-26
EP1338613B1 (en) 2011-08-31
EP1338613A1 (en) 2003-08-27
US7217744B2 (en) 2007-05-15
DE10208211A1 (en) 2003-09-11
US20030191276A1 (en) 2003-10-09

Similar Documents

Publication Publication Date Title
CA2419673C (en) Polymeric networks
JP5072867B2 (en) Shape memory polymers using polyester and polyester pieces and processing for their preparation and programming
JP3526856B2 (en) Biodegradable polylactide, polyglycolide or lactide-glycolide copolymer / polyε-caprolactone multiblock copolymer and method for producing the same
EP1413592B1 (en) Monomer addition techniques to control manufacturing of bioabsorbable copolymers
MXPA04011846A (en) Methods of making functional biodegradable polymers.
JP2009530430A5 (en)
Kafouris et al. Biosourced amphiphilic degradable elastomers of poly (glycerol sebacate): Synthesis and network and oligomer characterization
CN112469761B (en) Controlled production of polyglycolic acid and glycolide
Feng et al. Synthesis and characterization of hydrophilic polyester‐PEO networks with shape‐memory properties
CN1241970C (en) Process of snthesizing medical biological degradative material by acetic acid organic guanidine as catalast
AU2014237773B2 (en) Polylactone polymers prepared from monol and diol polymerization initiators possessing two or more carboxylic acid groups
WO2005002596A1 (en) Biocompatible polymer networks
JP3744800B2 (en) Biodegradable polymers with reactive substituents
CN113004499B (en) Biodegradable polyester elastomer and preparation method and application thereof
JP2006152196A (en) Biodegradable resin composition
JP2016210894A (en) Stereocomplex multi-block copolymer and molded body
Lecomte et al. Synthesis and characterization of novel biodegradable aliphatic poly (ester amide) s containing cyclohexane units
CN117069923A (en) Block copolymer based on polylactic acid and preparation method thereof
CN111607073B (en) Multi-block copolymer of dioxolane and aliphatic cyclic ester and preparation method and application thereof
JP2009051928A (en) Polyphosphate compound having temperature responsiveness and preparation method
CN1203117C (en) Biodegradable cross-linking agent and its preparing process and application
AU2007231211A1 (en) Polymer compositions and devices
Rokicka et al. Synthesis and Properties of Multiblock Terpoly (Ester-Aliphatic-Amide) and Terpoly (Ester-Ether-Amide) Thermoplastic Elastomers with Various Chemical Compositions of Ester Block
JP3144416B2 (en) Aliphatic polyester and / or copolymer thereof
Xue Synthesis, Modification and Application of Polylactic Acid

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry

Effective date: 20230224