CA2283471A1 - Anti-mitotic agents which inhibit tubulin polymerization - Google Patents

Anti-mitotic agents which inhibit tubulin polymerization Download PDF

Info

Publication number
CA2283471A1
CA2283471A1 CA002283471A CA2283471A CA2283471A1 CA 2283471 A1 CA2283471 A1 CA 2283471A1 CA 002283471 A CA002283471 A CA 002283471A CA 2283471 A CA2283471 A CA 2283471A CA 2283471 A1 CA2283471 A1 CA 2283471A1
Authority
CA
Canada
Prior art keywords
compound
thiophene
arh
methoxyphenyl
mmol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002283471A
Other languages
French (fr)
Inventor
Maria Del Pilar Majia
Vani P. Mocharla
Kevin G. Pinney
Anupama Shirali
George R. Pettit
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baylor University
Arizona Biomedical Research Commission
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2283471A1 publication Critical patent/CA2283471A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C205/00Compounds containing nitro groups bound to a carbon skeleton
    • C07C205/27Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by etherified hydroxy groups
    • C07C205/35Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by etherified hydroxy groups having nitro groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C205/36Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by etherified hydroxy groups having nitro groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton to carbon atoms of the same non-condensed six-membered aromatic ring or to carbon atoms of six-membered aromatic rings being part of the same condensed ring system
    • C07C205/37Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by etherified hydroxy groups having nitro groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton to carbon atoms of the same non-condensed six-membered aromatic ring or to carbon atoms of six-membered aromatic rings being part of the same condensed ring system the oxygen atom of at least one of the etherified hydroxy groups being further bound to an acyclic carbon atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/20Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring
    • C07C43/23Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring containing hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/76Ketones containing a keto group bound to a six-membered aromatic ring
    • C07C49/84Ketones containing a keto group bound to a six-membered aromatic ring containing ether groups, groups, groups, or groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/78Benzo [b] furans; Hydrogenated benzo [b] furans
    • C07D307/79Benzo [b] furans; Hydrogenated benzo [b] furans with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the hetero ring
    • C07D307/80Radicals substituted by oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D333/52Benzo[b]thiophenes; Hydrogenated benzo[b]thiophenes
    • C07D333/54Benzo[b]thiophenes; Hydrogenated benzo[b]thiophenes with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the hetero ring
    • C07D333/56Radicals substituted by oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D333/52Benzo[b]thiophenes; Hydrogenated benzo[b]thiophenes
    • C07D333/62Benzo[b]thiophenes; Hydrogenated benzo[b]thiophenes with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the hetero ring
    • C07D333/64Oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2602/00Systems containing two condensed rings
    • C07C2602/02Systems containing two condensed rings the rings having only two atoms in common
    • C07C2602/04One of the condensed rings being a six-membered aromatic ring
    • C07C2602/10One of the condensed rings being a six-membered aromatic ring the other ring being six-membered, e.g. tetraline

Abstract

Methoxy and ethoxy substituted 3-aroyl-2-arylbenzo[b]thiophenes and benzo[b]thiophene analogues are described for use in inhibiting tubulin polymerization. The compounds' use for treating tumor cells is also described.
Additional aspects described here are certain diaryl ether benzo[b]thiophene derivatives. Also described are particular analogs derived from dihydronaphthalene which have proven particularly effective. Certain new benzofuran analogs are described, as well as certain sulfur oxide benzo[b]thiophene analogs. Important compounds described herein include the first nitrogen-containing derivatives of combretastatin. These include nitro, amino and azide combretastatin derivatives.

Description

DESCRIPTION
ANTI-MITOTIC AGENTS WHICH INHIBIT TUBULIN POLYMERIZATION
BACKGROUND OF THE INVENTION
1. Field of the Invention The present invention relates generally to the field of tubulin polymerization inhibitors...
More particularly, it concerns the use of 3-aroyl-2-aryl-benzo[b]thiophenes and analogues thereof as anti-tumor agents.
2. Description of Related Art An aggressive chemotherapeutic strategy toward the treatment and maintenance of solid tumor cancers continues to rely on the development of architecturally new and biologically more potent anti-tumor, anti-mitotic agents. A variety of clinically-promising compounds which demonstrate potent cytotoxic and anti-tumor activity are known to effect their primary mode of action through an efficient inhibition of tubulin polymerization (Gerwick et al. ). This class of compounds undergoes an initial binding interaction to the ubiquitous protein tubulin which in turn arrests the ability of tubulin to polymerize into microtubules which are essential components for cell maintenance and cell division (Owellen et al.).
Currently the most recognized and clinically useful tubulin polymerization inhibitors for the treatment of cancer are vinblastine and vincristine (Lavielle, et al.).
Additionally, the natural products rhizoxin (Nakada, e~ al., 1993a and 1993b; Boger et al.; Rao et al., 1992 and 1993;
Kobayashi et al., 1992 and 1993) combretastin A-4 and A-2 (Lin et al.; Pettit, et al., 1982, 1985, and 1987) and taxol (Kingston et al.: Schiff et al: Swindell, et a. 1991;
Parness. el al.) as well as certain synthetic analogues including the 2-styrylquinazolin-4(3H)-ones (SQO) (Jiang et al.l and highly oxygenated derivatives oC crs- and ~rans-stilbene (Cushman et ul ) and dihydrostilbcne arc all know to mediate their cytotoxic activity through a binding interaction with tubulin. The exact nature of this interaction remains unknown and most likely varies somewhat between the series of compounds.
Tubulin is a heterodimer of the globular a and (3 tubulin subunits. A number of photoaffinity labeling reagents for tubulin have been developed and evaluated (Rao et al., 1992 and 1994; Chavan et al.; Sawada et al., 1991, 1993a and 1993b; Staretz et al.;
Hahn et al; Wolff et al.; Floyd et al.; Safa et al.; Williams et al.). These reagents have identified three distinct small molecule binding sites on tubulin: the colchicine site, the vinblastine site and the maytansine/rhizoxin site. Additionally, a first generation rhizoxin-based photoaffinity labeling reagent has suggested binding to the Met-363-Lys-379 site on ~i-tubulin (Sawada et al., 1993a), and a taxol-based reagent has been found to label the N-terminal 31 amino acid residues 'of (3-tubulin (Swindell et al, 1991 and 1994; Rao et al., 1994). Taxol itself is known to bind to polymerized microtubules, but not at distinct sites on the monomer subunits of tubulin (Kingston et al.; Schiff et al.; Swindell et al., 1991; Parness et al.). ..
The discovery of new antimitotic agents may result from the judicious combination of a molecular template which in appropriately substituted form (i.e.. phenolic moieties, etc..) interacts with the estrogen receptor suitably modified with structural features deemed imperative for binding to the colchicine site on p-tubulin (arylalkoxy groups, certain halogen substitutions, pseudo aryl ring stacking, e/c. ). The methoxy aryl functionality seems especially important for increased interaction at the colchicine binding site in certain analogs.
(Shirai et al., D'Amato et al., Hamel, 1996). Recent studies have shown that certain estrogen receptor (ER) binding compounds as structurally modified congeners (2-methoxyestradiol, for example) interact with tubulin and inhibit tubulin polymerization. (D'Amato et al., Cushman et al., 1995, Hamel, et al., 1996, Cushman et al., 1997). Estradiol is, of course, perhaps the most important estrogen m humans, and it is intriguing and instructive that the addition of the methoxy aryl motif to this compound makes it interactive with tubulin. As a steroid, however, the use of methoxyestradiol as an anti-cancer agent may lead to unwanted side effects.
Even before the discovery and realization that molecular templates (of traditionally estrogen receptor active compounds) suitably modified with alkoxyaryl or other groups deemed necessary for tubulin binding often result in the formation of new classes of inhibitors of tubulin polymerization, antiestrogens were developed to treat hormone-dependent cancers and a number of nonsteroidal agents were developed. Tamoxifen, for instance, has been widely used to treat estrogen-dependent metastatic mammary carcinoma (Mouridsen, et al.). The structure of trioxifene mesylate, a tetralin based compound which exhibits anti-ttunor effects at the same or higher level as tamoxifen (Jones et al., 1979), includes a ketone moiety as part of its triarylethylene core, thereby overcoming the isomerization tendencies of the ethylene double bond of this class of compounds, assuring the stability of the molecule's three-dimensional structure. Unfortunately, despite their antiestrogen properties, tamoxifen and the related triarylethylene derivatives retain some intrinsic estrogen agonist properties, reducing their ability to fully inhibit biological responses to exogenous or endogenous estrogens (Jones et al., 1984).
r T

WO 98%39323 ' PCT/US98/04380 The benzo(b]thiophenes are another example of a class of compounds which often exhibit very high affinity for the estrogen receptor (Kym et al.; Pinney et al., I991a and 1991b; WO
95/10513). The 2,3-diaryl substituted benzo[bJthiophenes greatly resemble the triarylethylene-based core structure of tamoxifen. The estrogenicity of the triarylethylene compounds has been shown to be substantially overcome in 3-aroyl-2-arylbenzo[b]thiophene compounds substituted-.
at the 3-aroyl group with basic amine moieties (Jones et al., 1984). A prime example of this type of compound is LY117018 (U.S. Patent No. 4,656,187). 3-aroyl-2-arylbenzo[b]thiophenes have also been found to be useful antifertility agents (U.S. Patent No. 4,133,814) and as inhibitors for 5-lipoxygenase (U.S. Patent No. 5,532,382).
SUMMARY OF THE INVENTION
The present invention provides benzo[b]thiophene-based inhibitors of tubulin polymerization, thereby providing novel anti-tumor compounds of increased cytotoxicity and fewer side effects. This is accomplished through the introduction of small alkoxy aryl substituents to the estrogenic benzo[b]thiophene skeleton or the skeleton of compounds similar to benzo[b]thiophene, such as indene. benzofuran, and indole. The tubulin polymerization inhibitors of this invention are illustrated by the structure:
R~ Z-Y-Ar' R2 ' I ~ Ar X' wherein X is S, O. NH, or Ci I:.
'0 R,-Ra are independently chosen from the group includin6 H, OIi and C,-CS
alkoxy, Z is C=O, CI-Iz, CZH~, CHOH, or CIIOCH3, Y is a covalent bond. CH2, or CI-I,CH~
Ar and Ar' are aryl moieties, chosen from the group consisting of phenyl and napthyl, wherein each aryl group is further substituted with at least one C~-C5 alkoxy group.
Preferably, the tubulin polymerization inhibitors of this invention will be of the above formula wherein X is S. The most preferred R group substitution pattern will be wherein R3 is OCH3 and R~, R2 and R4 are H. Z will preferably be C=O, Y will preferably be a covalent bond, and Ar will preferably be 4-methoxyphenyl. The most preferred Ar' groups will be singly and multiply substituted phenyl groups containing para ethoxy or methoxy substituents. The most preferred tubulin polymerization inhibitor of this invention is 3-(3',4',5'-trimethoxybenzoyl)-2-(4'-methoxyphenyl)-6-methoxybenzo[b]-thiophene.
The term "C,-CS alkoxy" as used herein contemplates both straight chain and branched S chain alkyl radicals and therefore defines groups such as, for example, methoxy, ethoxy, n- _.
propoxy, isopropoxy, n-butyloxy, isobutyloxy, tert-butyloxy, sec-butyloxy, pentyloxy, isopentyloxy, t-pentyloxy, neopentyloxy, and the like. The preferred alkoxy groups are methoxy and ethoxy.
The novel compounds of this invention are of the structure:
R1 Z-Y-Ar' Ar R
to wherein X is S, O, NH, or CHz, R~-R4 are independently chosen from the group including H, OH and C,-CS
alkoxy, Z is C=O, CH2, CZH2, CHOH, or CHOCH3, 15 Y is a covalent bond, CHI, or CH,CH2, Ar and Ar' are aryl moieties, chosen from the group containing phenyl and napthyl, each aryl Eroup substituted with at least one Ci-CS alkoxy group; wherein when Ar' is 3,4,5-trimethoxyphenyl or 4-methoxyphenyl, X is S, Z is C=O, ~' is a covalent bond, R3 is OCH3, R,, R,, and R, are 1i, and Ar is a phenyl Eroup that contains at least one methoxy substituent, then Ar 20 must be substituted with a total of at least two alkoxy groups.
The preferred novel compounds of this invention will be those wherein X is S, Z is C=O, R3 is methoxy and Ar is 4-methoxyphenyl. The preferred novel compounds of this invention include:
3-(2',6'-dimethoxybenzoyl)-2-(4'-methoxyphenyl)-6-methoxybenzo[b]thiophene, 25 3-(3',5'-dimethoxybenzoyl)-2-(4'-methoxyphenyl)-6-methoxybenzo[b]thiophene, 3-(3',4'-dimethoxybenzoyl)-2-(4'-methoxyphenyl)-6-methoxybenzo[b]thiophene, 3-(4'-ethoxybenzoyl)-2-(4'-methoxyphenyl)-6-methoxybenzo[b]thiophene, 3-(3',4',5'-triethoxybenzoyl)-2-(4'-methoxyphenyl)-6-methoxybenzo[b]-thiophene, and T ~

3-[3'-(3",4",5"-trimethoxyphenyl)propanoyl]-2-(4'-methoxyphenyl)-6-methoxybenzo[b]thiophene.
The most preferred novel compounds of this invention will be those wherein X
is S, Z is C=O, Ar is 4-methoxyphenyl, R3 is methoxy, and Ar' is a phenyl group substituted with an 5 alkoxy group at the para position. The most preferred novel compounds of this invention., include:
3-(3',4'-dimethoxybenzoyl)-2-(4'-methoxyphenyl)-6-methoxybenzo[b]thiophene, 3-(4'-ethoxybenzoyl)-2-(4'-methoxyphenyl)-6-methoxybenzo[b]thiophene, 3-(3',4',5'-triethoxybenzoyl)-2-(4'-methoxyphenyl)-6-methoxybenzo[b]-thiophene, and 3-[3'-(3",4",5"-trimethoxyphenyl)propanoyl]-2-(4'-methoxyphenyl)-6-methoxybenzo[b]thiophene.
As a preferred embodiment of the invention, the tubulin polymerization inhibitors will be used as part of pharmacologically active compositions for treating leukemias, melanomas, and colon, lung, ovarian, CNS, and renal cancers, as well as other cancers. In the most preferred embodiment of this aspect of the invention, the tubulin polymerization inhibitors will be used to treat colon cancers.
As a further preferred embodiment, the tubulin polymerization inhibitors of this invention may be used to treat any disease for which tubulin polymerization plays a crucial role. In addition to anti-tumor activity, caused by lack of mitosis in cells in which tubulin polymerization is absent, the tubulin polymerization inhibitors of this invention would also be useful in treating diseases caused by flagellated parasites, for whom tubulin polymerization is crucial to movement. In particular, the tubulin polymerization inhibitors of this invention will be useful in treating Chagas' disease or diseases caused by the parasite Lrishmania.
The present invention also includes a compound of the structure Rs R~ Rs Rg ~R4 H
where R, is H or CH30; RZ is H, CH30 or C2H50; R3 is CH30 or C2H50; R4, R5, R~
and R8 are independently H, CH30, CzH50, or F; Rb is H, CH30, C2H50, OH, F or N(CH3)2;
and X is O O O O
(:CH2 , ~CzH4 , or ~C~H2 .
The present invention also includes a compound of the structure U

where X is S or S=O.
Also included is a compound of the structure O
CH30 ~ OCH3 as well as a compound of the structure r ~

WO 98/39323 ' PCT/US98/04380 where X is CHOH or C=O. A compound of the following structure is also included in the present invention C2H ~ R2 where R, and R2 are independently CH30, NO2, NHS or N3 and CH30; and C2H2 is in the E or Z
configuration; with the proviso that one of R, and R~ is CH30 and the other is NO~, NH, or N3.
One preferred embodiment is where C~I-l, is E C~H2, R, is CH30 and R~ is NH, in the immediately prior structure. Another embodiment is where C~H~ is E CzH~, R, is NH, and R~ is CH30 in the immediately prior structure. Yet another embodiment is where CZHZ
is Z C~HS. R, is CH30 and R2 is NHS in the immediately prior structure. Another embodiment is where C~H~ is Z C2H2, R, is NHS and R, is CH30 in the immediately prior structure. Another embodiment is where C,H, is E C~H~, R, is CH30 and R, is NO: in the immediately prior structure. In another embodiment C2H2 is E CzH2, R, is NO~ and R~ is CH30 in the immediately prior structure.
One preferred embodiment of the present invention is where C2H~ is Z C2H5, R, is CH30 and R2 is NOZ in the immediately prior structure.
One embodiment is where C:H~ is Z C:H,, R, is NO~ and R, is CH30 in the immediately prior structure.
Yet another embodiment is where C:I I: is E CZI i:, R, is CI-I,O and R~ is N, in the immediately prior structure. A preferred embodiment also is where C=Ii: is E
C=hI2, R, is N, and R: is CH30 in the immediately prior structure. .Also preferred is the compound where C:H: is Z
CZHs, R, is CH30 and R, is N3 in the immediately prior structure. Another embodiment described is where C~H, is Z C2H2, R, is N3 and R~ is CI I30 in the immediately prior structure.
BRIEF DESCRIPTION OF THE DRAWINGS
The following drawings form part of the present specification and are included to further demonstrate certain aspects of the present invention. The invention may be better understood by reference to one or more of these drawings in combination with the detailed description of specific embodiments presented herein.
FIG. 1 shows the general structure of certain tubulin polymerization inhibitor compounds.
FIG. 2 shows the pseudo-cis (FIG. 2A) and pseudo-traps (FIG 2B) orientations of 3-aroyl-benzo[b]thiophene compounds and the structure of Combretastatin A-4 (FIG. 2C).
FIG. 3 shows the X-ray crystal structure of 3-(3',4',5'-trimethoxybenzoyl)-2-(4'-_.
methoxyphenyl)-6-methoxybenzo[b]thiophene (FIG. 3A) and the energy minimized (MM2) structure of Combretastatin A-4 (FIG. 3B).
FIG. 4 shows a general scheme for the synthesis of the .s-aroy-~-phenybenzo[b]thiophene compounds.
FIG. 5 shows compound 2A, 3-(2', 6'-dimethoxybenzoyl)-2-(4'-methoxyphenyl)-6-methoxybenzo[b]thiophene FIG. G shows compound 3A, 3-(3', 5' - dimethoxybenzoyl)-2-(4'-methoxyphenyl)-6-methoxybenzo[b]thiophene FIG. 7 shows compound 4A, 3-(3', 4'-dimethoxybenzoyl)-2-(4'-methoxyphenyl)-6-methoxybenzo[b]thiophene FIG. 8 shows compound SA, 3-(4'-methoxybenzoyl)-2-(4'-methoxyphenyl)-6-methoxybenzo[b]thiophene FIG. 9 shows compound 6A, 3-(4'-ethoxybenzoyl)-2-(4'-methoxyphenyl)-6-methoxybenzo[b]thiophene FIG. 10 shows compound 7A, 3-(3', 4', 5'-triethoxybenzoyl)-2-(4'-methoxyphenyl)-6-methoxybenzo[b]thiophene FIG. 11 shows compound 8A, 3-[3'-(3', 4', 5'-trimethoxyphenyl)propionyl]-2-(4'-mcthoxyphenyl ~6-methoxybenzo[b]thiophene FIG. 12 shows compound 9A, 3-(3',4',S'-triethoxybenzoylh2-(4'-ethoxyphenyl)-6-ethoxybenzo[b]thiophene FIG. 13 shows compound IUA, 3-(4'-ethoxy-3', 5'-dimethoxybenzoyl)-2-(4'-methoxyphenyl)-6-methoxybenzo[b]thiophene FIG. 14 shows compound 11A, 3-(4'-N,N-dimethylaminobenzoyl)-2-(4'-methoxyphenyl)-6-methoxybenzo[b]thiophene FIG. 15 shows compound 12A, 7-(3', 4', 5'-trifluorobenzoyl)-2-(4'-methoxyphenyl)-4-methoxybenzo[b]thiophene WO 98%39323 PCT/US98/04380 FIG. 16 shows compound 13A, 7-(3', 4', S'-trimethoxybenzoyl)-2-(4' -methoxyphenyi)-4-methoxybenzo[b]thiophene FIG. 17 shows compound 14A, 3-(3', 4', 5'-trifluorobenzoyl)-2-(4'-methoxyphenyl)-6-methoxybenzo[b]thiophene FiG. 18 shows compound 15A, 3-(2', 3', 4', 5', 6'-pentafluorobenzoyl)-2-(4'- .
methoxyphenyl)-6-methoxybenzo[b]thiophene FIG. 19 shows compound 16A, 3-(3', 4', 5'-trimethoxybenzoyl)-2-(4'-methoxyphenyl)-benzo[b]thiophene FIG. 20 shows compound 17A, E-3-[3'-(3', 4', 5'-trimethoxyphenyl)cinnamoyl]-2-(4'-methoxyphenyl)-6-methoxybenzo[b]thiophene FIG. 21 shows compound 18A, 3-(3', 4', 5'-trimethoxybenzoyl)-2-(4'-ethoxyphenyl)-6-ethoxybenzo(h]thiophene FIG. 22 shows compound 19A, 3-(4'-hydroxy -3'.5'-dimethoxybenzoyl)-2-(4'-methoxyphenyl)-6-methoxybenzo[b]thiophene FIG. 23 shows compound 20A, 3-(phenylacetyl)-2-(4'-methoxyphenyl)-6-methoxybenzo[h]thiophene FIG. 24 shows compound 21A, 3-(3', 4', 5'-trimethoxy)phenylacetyl)-2-(4'-methoxyphenyl)-6-methoxybenzo[b]thiophene FIG. 25 shows compound 22B, 3-(3',4',5'-trimethoxyphenoxy)-2-{4'-methoxyphenyl)-6-methoxybenzo[b]thiophene S-oxide FIG. 26 shows compound 23B, 3-(3'.4'.S'-trimethoxyphenoxy)-2-(4'-methoxyphenyl)-6-methoxybenzo[b]thiophene FIG. 27 shows compound 24C, 3-(3',4',5'-trimethoxybenzoyl)-2-(4'-methoxyphenyl>-6-methoxybenzo( b] furan 'S FIG. 28 shows compound 25D. 1-(hydroxymethyl-3',4',5'-tnmcthoxyphcnyl)-6-mcthoxy-3.4-dihydronaphthalene FIG. 29 shows compound 26D, 1-(3',4',5'-trimethoxybenzoyl)-6-methoxy-3,4-dihydronaphthalene FIG. 30 shows compound 27E, (~-1-(3'-methoxy-4'-nitrophenyl)-2-(3",4",5"-trimethoxyphenyl) ethene FIG. 31 shows compound 28E, (E)-1-(3'-methoxy-4'-nitrophenyl)-2-(3",4",5"-trimethoxyphenyl) ethene FIG. 32 shows compound 29E, (~-1-(4'amino-3'-methoxyphenyl)-2-(3",4",5"-trimethoxyphenyl)ethene FIG. 33 shows compound 30E, (~-1-(4'azido-3'-methoxyphenyl)-2-(3",4",5"-trimethoxyphenyl)ethene 5 FIG. 34 shows compound 31E, (~-1-(4"-methoxy-3"-nitropheny!)-2-(3',4',5'-trimethoxyphenyl)ethene FIG. 35 shows compound 32E, (E~-1-(4"-methoxy-3"-nitrophenyl)-2-(3',4',5'-trimethoxyphenyl)ethene FIG. 36 shows compound 33E, (~-1-(3'-amino-4'-methoxyphenyl)-2-(3",4",5"-10 trimethoxyphenyl)ethene FIG. 37 shows compound 34E, (~-1-(3'azido-4'-methoxyphenyl)-2-(3",4",S"-trimcthoxyphenyl)ethene DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS
The present example relates to the inventors' discovery that certain compounds described herein, including 3-(3'4'S'-trimethoxybenzoyl)-2-(4'-methoxyphenyl)-6-methoxybenzo(b]thiophene, inhibit tubulin polymerization and inhibit tumor cell population to nearly the same extent as Combretastatin A-4, one of the most potent inhibitors known. The tubulin polymerization ICso of the methoxyaroyl-substituted benzo[b]thi'ophene, for example, was 1.5 - 2.5 ~tM while that of Combretastatin A-4 was 0.75 pM. 3-(3'4'5'-trimethoxybenzoyl)-2-(4'-methoxyphenyl)-6-methoxybenzo(b]thiophene and other examples also showed significant cell growth inhibitory activity against the growth of several tumor ccll lines. The compounds were particularly effective against the colon HM20L2 cell line, exhibiting a Glso of 4.9 x 10-2 Irg/ml or less.
The molecular structure of certain tubulin polymerization inhibitors of the present invention are based on the structure of benzo(6]thiophene and the similar structures of indolc.
benzofuran and indene (FIG. 1 ). The six-membered ring of these fused systems is substituted by one or more hydroxy or alkoxy groups, in any substitution pattern. C:-Z of the benzo[b]thiophene, benzofuran or indole or C-3 of the indene is substituted with an aromatic moiety, preferably phenyl. This aromatic substituent will also contain one or more alkoxy substituents. Although it is unlikely that this group will interact at the colchicine binding site of tubulin, elaboration of the molecules at this site may provide interactions with other small molecule binding sites on tubulin. C-3 of the benzo[b]thiophene, indole, or benzofuran and C-2 of the indene is also substituted with an alkoxy-substituted aryl moiety, and will contain a linker group connecting the parent benzo[b]thiophene, benzofuran, indole, or indene structure and the aromatic substituent. The linker group is of between one and three carbons, and may or may not contain a carbonyl functionality or another oxygen-containing group, such as alpoxy such as methoxy or ethoxy, e.g. Possible linker groups include C=O, CH2, C2H2, C2H4, C3H6, CHOH, CHOCH3, C(=O)CH2, CH(OCH3)CHz, CH(OH)CHz, C(=O)CHZCH2, C(OCH3)CHZCH2, and C(OH)CH~CHz.
The design of this new class of benzo[b]thiophene-based and related molecules takes advantage of the known estrogenicity of the benzo[b]thiophenes (Jones et al., 1984) and combines this trait with alkoxy substitution of the aryl rings, a factor recently discovered to be important in tubulin binding (Shirai, et al., D'Amato et al.) The 3-aroyl substituent of many of these new compounds is particularly useful because the carbonyl moiety, by forcing the adjoining atoms into or nearly into planarity, serves to reduce the number of three-dimensional configurations available to the substituted benzothiophene. Recent studies have shown that less flexible ligands, although they may bind to fewer molecules, generally have higher binding affinities. More flexible molecules, on the other hand, are less discriminatory in finding a binding partner, but usually bind with lower affinity (Eaton et al.).
The most likely configurations for the 3-aroylbenzo[bJthiophenes is either the pseudo-cis configuration (FIG 2A) or the pseudo-traps configuration (FIG 2B). It is well know that the cis or Z form of the stilbenoid Combretastatin A-4 (F1G. 2C) has a much higher binding affinity for tubulin as compared to its traps or E counterpart (Cushman et al. ). As shown in FIG. 2, both the pseudo-cis and pseudo-traps configurations of the aroyl benzo[b]thiophenes retain a great deal of structural overlap with the cis conformation of Combretastatin A-4. Recently, the 7i-ray cn~stal structures of 3-(3'.4'.5'-trimethoxybenzoyl~-2-(4'-methoxyphenylr6-methox}~benzo[h]thiophenc ''S and other 3-aroyl-2-phenylbenzo[h]thiophencs were solved and show that the preferred conformation of the 3-aroylbenzo[b]thiophene compounds is indeed the pseudo-traps configuration (Muilica et al.). The X-ray crystal structure of 3-(3',4',5'-trimethoxybenzoyl)-2-(4'-methoxyphenyl)-6-methoxybenzo[bJthiophene and the computationally minimized (MM2) structure of Combretastatin A-4 are shown for comparison in FIG. 3.
A typical synthesis of the benzo[b]thiophene compounds is shown in FIG. 4 for (3',4',5'-trimethoxybenzoyl)-2-(4'-methoxyphenyl)-6-methoxybenzo[bJthiophene 1. Intermediate 5, 6-methoxy-2-(4'-methoxyphenyl)-benzo[b]thiophene, was prepared from 3-methoxybenzene thiol 2 and bromoacetotophenone 3 according to the method of Kost et al. The polyphosphoric acid (PPA) catalyzed cyclization of the substituted thiol 4 produced regioisomers 5 and 6 in a 3:1 ratio separable due to differences in the molecules' solubility (e.g., in acetone). The use of other thiols and acyl halides can allow for alternative substitution patterns on the benzene ring of the benzo[b]thiophene and the C-2 substituent aryl group. Alternatively, phenols or anilines may be _.
used in place of the thiol to produce benzofurans or indoles. Friedel-Crafts aroylation of 5 results in functionaiization at C-3 of the benzo[b]thiophene skeleton, giving the 3-aroyl-2-phenylbenzo[b]thiophene 1. By a similar scheme, Friedel-Crafts alkylation of 6-methoxy-2-(4'-methoxyphenyl)benzo[b]thiophene provides a route to the benzyl and phenylethyl substituted benzo[b]thiophenes, while reduction of the aroyl carbonyl can lead to the hydroxybenzyl compounds. Suitable reduction agents include lithium aluminum hydride and sodium borohydride. The hydroxy compounds can be further elaborated with the addition of alkoxy substituents through a variety of nucleophilic substitution reactions. For example, deprotonation of the benzylic alcohol formed from reduction of compound 1, followed by reaction with an I S alkyl halide could be used to form a benzylic ether. In addition, dehydration of a CH(OH)CHz or a CH(OH)CH~CfI~ linker group would lead to linker groups containing double bonds. The indenes of this invention could be made by a different route, invoiving treatment of the proper 1-indanone with tosyl hydrazine followed by a modified Shapiro reaction with the resulting hydrazone to complete attachment of the alkoxy-substituted benzoyl moiety. An organocuprate ~0 l,4 addition to the resultant a,[3-unsaturated ketone will effect suitable attachment of the additional aryl group, while treatment with phcnylselenium chloride, followed by oxidation and elimination would regenerate the indene double bond, completing the synthesis.
The ability of the various above described compounds to inhibit tubulin polymerization can be determined by in vitro assay. A suitable assay system is that described by Qai et al. A
~5 method for purifying tubulin from bovine brain cells is described by Hamel and Lin. The ICso values for tubulin polymerization determined for some of the compounds of this invention demonstrate the importance of the alkoxy substituent at the para position of the 3-aroyl phenyl group. As described above, the ICso of 3-(3',4',5'-trimethoxybenzoyl)-2-(4'-methoxyphenyl)-6-methoxybenzo[b]thiophene is comparable to that of Combretastatin A-4.
Otherwise identical 30 3,5-dimethoxybenzoyl, 2,6-dimethoxybenzoyl and 3,5-dimethoxy-4-hydroxybenzoyl compounds showed no observable tubulin polymerization inhibition activity. It is contemplated, however, that any novel. benzo[b]thiophene compounds of this invention that do not inhibit tubulin WO 98)39323 PCT/US98/04380 polymerization may still be useful based upon their inherent estrogenicity, for example, as anti-fertility theraputics.
A measurement of each compound's tubulin affinity may also be determined through the compound's ability to inhibit colchichine-tubulin binding. A suitable assay is that described by Kang et al., involving the use of commercially available tritiated colchicine.
Decreases in the .
amount of [3H]colchicine-tubulin interaction due to the competitive binding of one of the novel inhibitors of this invention may be measured by autoradiography or scintillation counting.
The tubulin polymerization compounds can also be tested for their ability to inhibit tumor cell growth. Initially, cytotoxicity of the various compounds may be measured against the leukemia P388 cell line or other appropriate cell lines in vitro to determine which compounds will be most effective against each type of tumor cell. As in the tubulin polymerization assays, the para methoxy substituent of the 3-aroyl phenyl group was very important in producing cytotoxic activity against P388 leukemia cells. Significantly, the compounds that failed to inhibit tubulin polymerization, the 3,5-dimethoxybenzoyl, ?,6-dimethoxybenzoyl and the 3,5-dimethoxy-4-hydroxybenzoyl compounds also failed to show measurable activity against the leukemia cells. Another significant finding was that 3-(3',4',5'-trimethoxybenzoyl)-2-(4'-methoxyphenyl)-6-methoxybenzo[b]thiophene had a smaller EDso value than a nitrogen derivative of combretastatin, 5-[(~-2-(3',4',5'-trimethoxyphenyl)ethenyl]-2-methoxy-h! N bis-(phenylmethyl)aniline. The in vitro activities of 3-(3',4',5'-trimethoxybenzoyl)-2-(4'-methoxyphenyl)-6-methoxybenzo[bJthiophene against other cell lines are listed in Table 1 of Example 4 below.
As will be obvious to one of skill in the art, tubulin polymerization plays a role in disesises .other than cancer. Chagas' disease, for example, is caused by Tnpanosnma cru:i, a flagellate protozoa which has a substantial protein composition containing tubulin both as a ?5 component of the subpellicular microtubule system and the flagellum (De Souzal. Chagas' disease is characterized by lesions in the heart, alimentary tract and nervous system. The disease currently affects approximately 16-18 million people and is the leading cause of myocarditis in the Americas (WHO). Inhibition of tubulin polymerization, crucial to the parasite's mobility, would provide an effective treatment. Indeed, the use of agents that selectively affect tubulin polymerization has precedence in the therapy of other parasitic diseases. The benzimidazoles are very effective anti-helmenthic drugs (Katiyar, et al.), and the dinitroanilines have shown promise against Leishmania, a parasite closely related to Trypanosoma (Chan and Gong).
Currently, only two drugs exist for the treatment of Chagas'disease: benznidazole and nifurtimox. Both of these compounds are nitroheterocycles that are converted into nitro anion radicals that then interfere with macromolecular synthesis. These drugs have several adverse effects, including thrombocytopenic purpura and polyneropathy. These compounds may also cause genotoxicity in children (Mary et al., De Castro). A suitable assay for determining the tubulin polymerization inhibitors ability to treat parasites is described by Maldonado et al.
For their use in treating disease, the tubulin polymerization inhibitors may be present as part of pharmacologically active compositions suitable for the treatment of animals, particularly htunans. The tubulin polymerization inhibitor or tubulin polymerization inhibitor-containing composition must then contact the tubulin-containing system wherein tubulin polymerization needs to be inhibited, for example, the tumor cells or the cells of the flagellate parasite.
Pharmacologically active compositions of the tubulin polymerization inhibitors can be introduced via intravenous injection or orally in solid formulations such as tablets, chewable tablets or capsules. The preparation may also be a parenteral preparation for injection directly at the site of the tumor or parasitic infection.
The preferred dosage of the active ingredient inhibitor compound will vary depending upon the size and type of tumor or degree of parasitic infection, the patient's weight and age, and the exact identity of the tubulin polymerization inhibitor employed. The number of administrations of the pharmaceutically active composition will also vary according to the response of the individual patient to the treatment. For the treatment of cancer. suitable dosages of the tubulin polymerization inhibitors occur in amounts between 0.5 mg/kg of body weight to 100 mg/l:g of body weight per day, preferably of between 1.0 mg/kg of body weight to about 20 mg//kg of body weight. it is contemplated that a similar dosage range would be: suitable for the treatment of parasitic infections. Moreover, tubulin inhibition assays can also provide one of skill in the art with the appropriate concentrations of inhibitors that must reach the tubulin-containing cells, and the appropriate dosage can be calculated from that information.
The preparations of tubulin polymerization inhibitors may require the use of suitable phamaceutically acceptable carriers. As used herein, "pharmaceutically acceptable carrier"
includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents and isotonic agents and the like. The use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active ingredient, its use in the therapeutic composition is contemplated.

Supplementary active ingredients can also be incorporated into the compositions. The phrase 'pharmaceutically acceptable" also refers to molecular entities and compositions that do not produce an allergic or similar untoward reaction when administered to an animal or a human.
The following examples are included to demonstrate preferred embodiments and best 5 modes of the invention. It should be appreciated by those of skill in the art that the techniques _.
disclosed in the examples which follow represent techniques discovered by the inventor to function well in the practice of the invention, and thus can be considered to constitute preferred modes for its practice. However, those of skill in the art should, in light of the present disclosure, appreciate that many changes can be made in the specific embodiments which are 10 disclosed and still obtain a like or similar result without departing from the spirit and scope of the invention.

BENZO]b]THIOPHENES
Synthesis of 3-(3' 4' S'-trimethoxybcn7ovl)-2-(4'-methoxyt~henyl)-6-methoxy-henzofhlthiophene 15 LCompound 1 and 1 A) 2-(4'-methoxyphenyl)-6-methoxybenzo[b]thiophene was prepared according to the procedure of Kost et al. To a well-stirred solution of 5 ( 0.500 g, 1.85 mmol) and 3,4,5-trimethoxybenzoyl chloride (0.640 g, 2.77 mmol) in CH2CIz (20 ml), was added A1C13 (0.123 g, 0.925 mmol) portion-wise over a 15 minute period. After 5 hours (total reaction time), water was added. and the product was isolated initially by extraction with CH:CI~
and subsequently by extraction with ethyl acetate (EtOAc). The organic layers were separately washed with brine and then combined and dried over MgSO,. Purification by flash chromatography (silica gel. 60:40 EtOAc/hexane) afforded 3-(3',4'.5'-trimethoxybenzoyl)-2-(4'-methoxyphenyl~6-methoxyberlTO[h)thiophene (0.537 g. l .16 mmol. 63°~0) as an off white solid. Recy stallitation (hexane/ethanol) afforded a highly pure crystalline sample of the compound with mp 131-133°C.
~ H-NMR _ -(CDC13, 360 Mhz): o = 7.66 (d, J = 8.9 Hz, 1 H, ArH), 7.32 (d, J =
2.4 Hz 1 H, ArH), 7.31 (d; J = 8.8 Hz, 2H, ArH), 7.07 (s, 2I-I, ArH), 7.01 (dd, J = 8.9, 2.4 Hz, 1 H, ArH), 6.75 (d, J
= 8.8 Hz, 2H; ArH), 3.89 (s, 3H, -OCH3), 3.83 (s, 3H, -OCH3), 3.74 (s, 3H, -OCH3), 3.73 (s, 6H, -OCH3);'3C-NMR (CDC13, 90 Mhz): 8 = 192.9, 159.9, 157.7, 152.7, 143.7, 142.6, 140.1, 133.9, 132.3, 130.3, 129.9, 126.1, 124.2, 114.9, I 14.1, 107.5, 104.4, 60.8, 56.1, 55.6, 55.2. HRMS (EI) M+ calcd for C26H2aO6S 464.1294, found 464.1294. Anal. Calcd for C26HzaO6S: C, 67.23; H, 5.21; S, 6.90. Found: C, 67.20; H, 5.26; S, 6.88.
Synthesis of 3-( 2' 6'-dimethoxybenzovl)-2-(4'-methoxyphenyl)-6-methoxvbenzofblthionhene To a well-stirred solution of 2-(4'-methoxyphenyl) - 6-methoxybenzo[b]thiophene (0.500 g, 1.85 mmol) and 2,6-dimethoxybenzoyl chloride (1.11 g, 5.56 mmol) in CH2C12 (40 mL) was added A1C13 (0.986 g, 7.40 mmol) portion-wise over a 15 minute period. After 6 hours, water was added, and the product was isolated initially by extraction with CHzCl2 and subsequently by ..
extraction with EtOAc. The organic layers were separately washed with brine and then combined and dried over MgS04. Purification by flash chromatography (silica gel, 60:40 EtOAc/hexane) afforded the title compound (0.484 g, 1.11 mmol. 60%) as an off white solid.
Recrystallization (hexane/ethanol) afforded a highly pure, crystalline sample with mp 146 - 152 °C: ~ Hl-NMR (CDC13, 360 Mhz): 8 = 8.54 (dd, J = 9. I , 0.3 Hz, 1 H, ArH), 7.25 (d, J = 2.1 Hz, 1 H, ArH), 7.12 (d, J = 8.8 Hz, 2I-I, ArH), 7.10 (dd, J = 9.0, 2.5 Hz, 1 H, ArH), 6.98 (t, J = 8.4 Hz, IHArH ), 6.58 (d, J= 8.8 Hz, 2I-I, ArH), 6.20 (d, J= 8.4 Hz, 2H, ArH), 3.88 (s, 3H, -OCH3), 3.73 (s, 3H, -OCH3), 3.60 (s, 6H, -OCH3);'3C-NMR (CDC13, 90 Mhz): 8 = 190.3, 159.5, 157.5, 157.3, 151.3, 139.3, 132.9, 131.9. 130.8, 130.5, 126.4, 125.7, 120.3 115.0, 112.6, 103.9, 103.6, 55.6, 55.5. 55.3. HRMS (EI) M' calcd for C25H~zO5S 434.1188, found 434.1188.
Anal. Calcd for CZSH2~OSS: C, 69.11; H, 5.10; S, 7.38. Found: C, 69.19; H, 5.18; S, 7.28.
S~rnthesis of 3-( 3' S' - dimethoxybenzoyl)-~-(4'-methoxvQhenyl)-6-methoxybenzolhlthiophene To a well-stirred solution of 2-(4'-methoxyphenyl) - 6-methoxybenzo[b]thiophene (0.615 g, 2.27 mmol) and 3,5-dimethoxybenzoyl chloride ( 1.37 g, 6.83 mmol) in CH2CI2 (45 mL) was added AlCl3 ( 1.21 g, 9.09 mmol) portion-wise over a 15 minute period. After 17 hours, water was added, and the product was isolated initially by extraction with CH~CI~
and subsequently by extraction with EtOAc. The organic layers were separately washed with brine and then combined and dried over MgSO,. Purification by flash chromatography (silica g,el. 60:40 EtOAc/hexane) afforded the title compound (0.475 g. 1.09 mmol. 48%) as an off white solid.
Recrystallization (hexane/ethanol) afforded a highly pure, crystalline sample with mp 1 14-120 °C: ~H-NMR (CDC13, 360 Mhz): 8 = 7.59 (d, J= 8.9 Hz, 1H, ArH), 7.32 (d, J= 8.5 Hz, 2H, Ark, 7.32 (d, J = 2.4 Hz, 1 H, ArH), 6.98 (dd, J = 9.0, 2.4 Hz, 1 H, ArH), 6.94 (d, J = 2.1 Hz, 2H, ArH ), 6.76 (d, J = 8.7 Hz, 2H, ArH), 6.52 (t, J = 2.4 Hz, 1 H, Arl~, 3.89 (s, 3H, -OCH3), 3.76 (s, 3H, -OCH3), 3.71 (s, 6H, -OCH3); ~3C-NMR (CDC13, 90 Mhz): 8 = 194.0, 160.5, 159.8, 157.7, 143.9, 140.0, 139.3, 133.8, 130.3, 130.1, 126.0, 124.1, 114.9, 114.0, 107.6, 106.1, 104.4, 55.6, ....

55.5, 55.2. HRMS (EI) M+ calcd for C25H220sS 434.1188, found 434.1245. Anal.
Calcd. for C2sH220sS: C, 69.11; H, 5.10; S, 7.38. Found: C, 69.00; H, 5.16; S, 7.34.
Synthesis of 3-(3'y4'-dimethoxybenzoyl)-2-(4'-methoxyphenyl)-6-methoxybenzofblthiophene To a well stirred solution of 2-(4'-methoxyphenyl)-6-methoxybenzo[b]thiophene (0.327g, 1.21 mmol) and 3,4-dimethoxybenzoyl chloride (0.557 g, 2.77 rnmol) in CHzCl2 (20 ml) was w added A1C13 (0.616 g, 4.62 mmol) portion-wise over a 15 minute period. After 7 hours, water was added, and the product was isolated initially by extraction with CHZCl2 and subsequently by extraction with EtOAc. The organic layers were separately washed with brine and then combined and dried over MgS04. Purification by flash chromatography (silica gel, 60:40 EtzO/hexanes) afforded the title compound (0.402 g, 0.92 mmol, 76%) as a pale yellow solid.
Synthesis of 3-(4'-methoxybenzoyl)-2-(4'-methoxyphenyl)-6-methoxvbenzofh)-thionhene To a well stirred solution of 2-(4'-methoxyphenyl)-6-methoxybenzo[b]thiophene (0.305 g, 1.13 mmol) and 4-methoxybenzoyl chloride (0.378 g. 2.22 mmol) in CH~C1~ (45 ml) was added A1C13 (0.550 g, 4.12 mmol) portion-wise over a 15 minute period. After 1.3 hours, water was added. and the product was isolated initially by extraction with CH~C1~
and subsequently by extraction with EtOAc. The organic layers were separately washed with brine and then combined and dried over MgS04. Purification by flash chromatography (silica gel, 70:30 EtOAc/hexanes) afforded the title compound (0.3576 g, 0.88 mmol, 78%) as a pale yellow solid.
Recrystallization (EtOAc/hexanes) afforded a highly pure, crystalline sample with mp 119 - 120 "C. X11-NMR (CDC13.360 MHz): b = 7.77 (d, J= 9.0 Hz, 2Ii. ArH), 7.52 (d, J=
8.9 Hz. 1H.
ArH). 7.35 (d, J = 8.9 ~Iz. 2H. Ar~-1), 7.31 (d, J = ?.3 IiL, 1 H. ArH). 6.95 (dd. J = 8.9, 2.4 Hz. 1 H.
Ar~l_). 6.76 (d, J = 9.0, 21 i, ArH). 6.75 (d, J = 8.9, 2H, Ark), 3.87 (s, 3H.
-OC~3). 3.79 (s. 3H. -OC~- s), 3.74 (s, 311. -OCR-i~): ~~C-NMR (CDCI3. 90 MHz): ~ = 193.2, 193,7.
159.7, 157.6, 142.4, 140.0, 134Ø 13~.'', 130.5, 130.4, 130.2. 1 ~6.0, 124.0, 114.7. 114.0, 113.6. 104.5, 55.6, 55.4, 55.2. HRMS (EI) M' calcd for CZ4HZOO4S, 404.1082, found 404.1059. Anal.
Calcd for CiaHzoOaS~ C, 71.27; H, 4.98; S, 7.93. Found: C, 71.39; H, 4.98; S, 7.90.
S~rnthesis of 3-(4'-ethoxybenzoyl)-2=(4'-methoxyphenvl)-6-methoxvbenzofbl-thiophene To a well stirred solution of 2-(4'-methoxyphenyl)-6-methoxybenzo[b]thiophene (0.300 g, 1.11 mmol) and 4-ethoxybenzoyl chloride (0.555 g, 3.01 mmol) in CHzCl2 {45 ml) was added A1C13 (0.502 g, 3.76 mmol) portion-wise over a 15 minute period. After 45 minutes, water was added, and the product was isolated initially by extraction with CH2C12 and subsequently by extraction with EtOAc. The organic layers were separately washed with brine and then combined and dried over MgS04. Purification by flash chromatography (silica gel, 70:30 EtOAc/hexanes) afforded the title compound (0.389 g, 0.93 mmol, 84%) as a white solid.
Recrystallization (EtOAc/hexanes) afforded a highly pure, crystalline sample with mp 124 - 125 ._.
°C: 'H-NMR (CDC13. 360 MHz): 8 = 7.77 (d, J= 8.9 Hz, 2H, ArH), 7.52 (d, J= 8.9 Hz, IH, ArH), 7.3 5 (d, J = 8.8 Hz, 2H, ArH), 7.31 (d, J = 2.4 Hz, 1 H, ArH), 6.95 (dd, J = 8.9, 2.4 Hz, 1 H, ArH), 6.76 (d, J = 8.8 Hz, 2H, ArH), 6.75 (d, J = 8.9 Hz, 2H, ArH), 4.01 (q, J
= 7.0 Hz, 2H, CHZ)3.88 (s, 3H, -OCH3), 3.74 (s, 3H, -OCH3), 1.39 (t, J= 7.0, 3H, CH3); '3C-NMR (CDC13, 90 Mhz): 8 = 193.1, 163.1, 159.7, 157.6, 142.3, 140.0, 134.0, 132.3, 130.6, 130.2, 126, 124.0, 114.7, 114.0, 114.0, 104.3, 63.7, 55.6, 55.2. 14.6. HRMS (EI) M+ calcd for C~SH~z04S
418.1239, found 418.1241. Anal. Calcd for C~SH~204S: C, 71.75; H, 5.30; S, 7.66. Found: C, 71.68; H, 5.30; S, 7.61.
Synthesis of 3-(3' 4' S'-trietho~cvbenzoyl)-2-(4'-methoxyphenvl)-6-methoxvbenzofblthiophene To a well stirred solution of 2-(4'-methoxyphenyl)-6-methoxybenzo[b]thiophenc (0.501 g, 1.85 mmol) and 3,4,5-triethoxybenzoyl chloride ( 1.00 g, 3.66 mmol) in CH~C1~
(45 ml) was added A1C13 (0.870 g, 6.52 mmol) portion-wise over a 15 minute period. After 30 minutes, water was added, and the product was isolated initially by extraction with CH2C12 and subsequently by extraction with EtOAc. The organic layers were separately washed with brine and then combined and dried over MgS04. Purification by flash chromatography (silica gel.
70:30 EtOAc/hexanes) afforded the title compound (0.827 g, 1.63 mmol, 88%) as a pale yellow solid. Recrystallization (EtOAc/hexanes) afforded a highly pure, crystalline sample with mp 108-I 10 °C. _'H-NMR ICDC13. 360 Mhz): o = 7.64 (d, J = 8.9 Hz, 1 Hl, ArH ). 7.32 (d, J =
2.311z. -lli. ArH), 7.29 (d, J= 8.7 Hz. 2H, ArEI), 7.02(s, 2H. ArH), 6.99 (dd, J = 9Ø 2.4 >-lz 1H.
ArH), 6.73 (d,J= 8.7, IH, ArH), 4.06 (q,J =7.1 Hz, 2H, CH2), 3.91 (q,J= 7.0, 4H, Cl~lz), 3.89 (s; 3H, -OCH3), 3.74 (s, 3H, -OCH3), 1.34 (t, J= 7.0 Hz, 6H, CH3), 1.28 (t, J=
7.1 Hz, 3H, CH3);
'3C-NMR (CDC13, 90 MHz): 8 = 193.2, 159.8, 157.7, 152.5, 143.6, 142.6, 140.0, 133.9, 132.3, 130.3, 130.1, 126.0, 124.2, 114.8, 114.0, 108.9, 104.4, 68.8, 64.6, 55.6, 55.2, 15.4, 14.7. HRMS
(EI) M+ calcd for C29H3o06S 506.1763, found 506.1777. Anal. Calcd for C29H3oO6S: C, 68.75;
H, 5.97; S, 6.33. Found: C, 68.67; H, 5.97; S, 6.27.
, ... r.
Synthesis of 3-[3'-( 3" 4" 5" - trimethoxvphenyl)propionvll-2-(4'-methoxvuhenvl)-6-methoxybenzo f blthiophene To a well-stirred solution of 2-(4'-methoxyphenyl) - 6-methoxybenzo[b]thiophene (0.206 g, 0.762 mmol) and 3-(3', 4', 5'-trimethoxyphenyl)propionyl chloride (0.390 g, 1.51 mmol) in CH2C12 (50 mL) was added A1C13 (0.520 g, 3.89 mmol) portion-wise over a 15 minute period.
After 18 hours (total reaction time), water was added, and the product was isolated initially by extraction with CH2C12 and subsequently by extraction with EtOAc. The organic layers were separately washed sequentially with NaHC03 (sat) and brine and then combined and dried over MgS04. Purification by flash chromatography (silica gel, 70:30 EtOAc/hexane) afforded the title compound as an off white solid. ~H-NMR (CDC13, 360 Mhz): 8 = 7.92 (d, J=
8.9 Hz, 1H, ArH); 7.35 (d, J= 8.7 Hz, 2H. ArH), 7.25 (m, 1H, ArH), 7.04 (dd, J= 8.9, 2.4 Hz, 1H, ArH), 6.93 (d, J= 8.7 Hz, 2H, ArH). 6.15 (s, 2H, ArH) 3.88 (s, 3H, -OCH3), 3.85 (s, 3H, -OC~i3), 3.78 (s, 3H, -OC~I3), 3.72 (s, 6H, -OCH3), 3.80 (t, 2H. CH2), 3.70 (t, 2H, CH2).
TUBULIN POLYMERIZATION ASSAY
1 S ICso values for tubulin polymerization were determined according to the procedure described in Bai et al. Purified tubuiin is obtained from bovine brain cells as described in Hamel and Lin. Various amounts of inhibitor were preincubated for l5 minutes at 37°C with purified tubulin. After the incubation period, the reaction was cooled and GTP was added to induce tubulin polymerization. Polymerization was then monitored in a Gilford spectrophotometer at ''0 350 nm. The final reaction mixtures (0.25 ml) contained 1.5 mg/ml tubulin, 0.6 mg/ml microtubule-associated proteins (MAPS), 0.5 mM GTP, 0.~ mM MgCl2, 4% DMSO and 0.1 M
4-morpholineethanesulfonate buffer (!~4ES, pH 6.41. ICto is the amount of inhibitor needed to inhibit tubulin polymerization 50°~0 ~~ith respect to the amount of inhibition that occurs in the absence of inhibitor. The ICso value determined for 3-(3',4'.S'-'I~rimethoxvbenzoylr2-(4'-25 methoxyphenyl)-6-methoxybenzo[h]thiophene was 1.5 - 2.5 ~tM.

Some of the newly prepared compounds were evaluated for cytotoxic activity against P388 leukemia cells using an assay system similar to the National Institutes of Cancer procedure described below and in Monks et al. The EDso value (defined as the effective dosage required to 30 inhibit 50% of cell growth) of 3-(3',4',5'-trimethoxybenzoyl)-2-(4'-methoxyphenyl)-6-methoxybenzo[b]thiophene was found to be 22.2 pg/ml. The EDso values of 3,5-WO 98%39323 PCTIUS98/04380 dimethoxybenzoyl, 2,6-dimethoxybenzoyl and 3,5-dimethoxy-4-hydroxybenzoyl derivatives of 2-(4-methoxyphenyl)-6-methoxybenzo-[b]thiophene compounds were estimated as greater than 100 pg/ml. The EDSO value of a nitrogen derivative of combretastatin, 5-[(~-2-(3',4',S'-trimethoxyphenyl)ethenyl]-2-methoxy-N,N bis-(phenylmethyl)aniline was 33.9 ~g/ml.

3-(3',4',5'-Trimethoxybenzoyl)-2-(4'-methoxyphenyl)-6-methoxybenzo[b]-thiophene was evaluated in terms of growth inhibitory activity against several human cancer cell lines, including ovarian CNS, renal, lung, colon and melanoma lines. The assay used is described in Monks et al. Briefly, the cell suspensions, diluted according to the particular cell type and the 10 expected target cell density (5,000 - 40,000 cells per well based on cell growth characteristics), were added by pipet ( 100 ~1) to 96-well microtiter plates. Inoculates were allowed a preincubation time of 24 - 28 hours at 37°C for stabilization.
Incubation with the inhibitor compounds lasted for 48 hours in 5% CO~ atmosphere and 100% humidity.
Determination of cell growth was done by in situ fixation of cells, followed by staining with a protein-binding dye, 15 sulforhodamine B (SRB), which binds to the basic amino acids of cellular macromolecules. The solubilized stain was measured spectrophotometrically. The results of these assays are shown in Table 1. GIso is defined as the dosage required to inhibit tumor cell growth by 50%.

Activity of 3-(3',4',5'-Trimethoxyphenyl)-2-(4'-methoxyphenyl)-6-'?0 methoxybenZO[bJthiophenc Cancer Cell Lines Against Human Cell Type Cell-Line GIs (pg/ml) Ovarian OVCAR-3 1.9 x 10' CNS SF-295 2.0 x 10'' Renal A498 4.6 x 10~' Lung-NSC NCI-H460 1.3 x 10-' Colon KM20L2 4.9 x 10-z Melanoma SK-MEL-5 4.8 x 10-' r _ r EXAMPLE lA
Improved Benzolblthiophene Derivative Syntheses Experimental procedures for certain of the following compounds are described in Example 1. The biological activity presented in Example 1 (other than with P388 cells) related to compound 1 (and 1 A) (3-(3', 4', 5'-trimethoxybenzoyl)-2-(4'-methoxyphenyl)-methoxybenzo[b]thiophene). The information for compound 1 is now updated. The inventors now report the ICSO for inhibition of tubulin polymerization as an inhibition of the rate (Compound 1 A and 1 OA) rather than a final "steady-state" number (all other compounds).
Compound lA [same as compound 1 in Example 1] - 3-(3', 4', 5'-trimethoxybenzoyl)-2-(4'-methoxyphenyl)-6-methoxybenzo[b]thiophene (see FIG.
2A, FIG.
2B and FIG. 4), was retested for various activities.
Inhibition of tubulin polymerization with compound 1 A gave 50% inhibition of the maximum tubulin assembly rate at 1.1 pM. The same assay with combretastatin A-4 gave a maximum rate of 0.73 pm. Electron microscopy failed to demonstrate any morphological difference in polymer formed in the presence or absence of compound 1 A. In both cases a mixture of microtubules and ribbons composed of parallel protofilaments was observed.
The human Burkitt lymphoma line CA46 was treated with varying concentrations of compound 1 A, and a 50% growth inhibition occurred at 2 pM. Cells treated with a 10 ~M
concentration had a marked increase in the mitotic index, from 3% to 30%. Such an antimitotic effect, when combined with the tubulin assembly data, is strong evidence that tubulin is the intracellular target of compound IA.
Modest inhibition (23%) of the binding of [3H]colchicine to tubulin was observed with S
pM compound 1 A, as compared with the total inhibition caused by combretastatin A-4.
Increasing the concentration of compound 1 A to SO 1rM resulted in little additional inhibition.
'S Compound 2A - 3-(2', 6'-dimethoxybenzoyl)-2-(.t'-methoxyphenylr6-methoxybenzo[b[thiophene (see FIG. 5) was found only mildly active with P388 cells as shown in Table 2.
Table 2 P388 Leukemia Data (Compound 2A) Cell Type Cell Line EDso (pg/ml) Mouse Leukemia P388 >100 Compound 3A -- 3-(3', 5' - dimethoxybenzoyl)-2-(4'-methoxyphenyl)-6-methoxybenzo[b]thiophene (see FIG. 6) was also only mildly active with the P388 cell line as shown in Table 3.
Table 3 P388 Leukemia Data (Compound 3A) ..
Cell Type Cell Line EDSO (Pg/ml) Mouse Leukemia P388 >100 Compound 4A -- 3-(3', 4'-dimethoxybenzoyl)-2-(4'-methoxyphenyl)-6-methoxybenzo[b]thiophene (see FIG. 7) was synthesized and tested anew. The improved experimental as compared to that in Example 1 is included (immediately below) for compound 4A, found better than that in Example I .
To a well stirred solution of 2-(4' methoxyphenyl)-6-methoxybenzo[b]thiophene (0.327 g, _1.21 mmol) and 3,4-dimethoxybenzoyl chloride (0.557 g. 2.77 mmol) in CH,CIz (20 ml) was added AlCl3 (0.616 g, 4.62 mmol) portion-wise over a 15 min period. After 7 h, water was added, and the product was isolated initially by extraction with CHZCIZ and subsequently by extraction with EtOAc. The organic layers were separately washed with brine, combined and dried over Mg S04. Purification by flash chromatography (silica gel, 60:40 Et~O/hexanes) afforded 5 (0.402 g, 0.92 mmol. 76%) as a pale yellow solid. H-NMR (CDC13, 360 MHz) d 7.54 (d: J= 8.9 Hz. 1H. ArH), 7.50 (d. J= 1.9 Hz, 1H, ArH), 7.34 (d, J= 8.9 Hz. 2H, ArH), 7.33 (m, 4th. ArH), 6.96 (dd. J = 8.9, 2.4 )-Iz, 11 i, Arrl), 6.75 (d. J = 6.7, 2H.
ArH), 6.66 (d. J = 8.5.
111. Ar-E~, 3.88 (s, 3H. -OCE_is), 3.85 (s. 6H. -OCH ). 3.74 (s, 3H. -OCH ).
Compound 4A, 3-(3', 4'-dimethoxybenzoyl~2-(4' -methoxyphenyl~6-methoxybenzo[h]thiophene, had biological activity as shown in Tables 4 and 5.
Compound 4A gave inhibition of tubulin polymerization with an ICso > 40 pM.
Table 4 P388 Leukemia Data (Compound 4A1 Cell Type Cell Line EDso (~glml) Mouse Leukemia P388 >10 Table 5 Human Cancer Cell Line Studies (Compound 4A1 Cell Type Cell Line GIso (~g/ml) Pancreas adn BXPC-3 5.2 Neuroblast SK-N-SH 3.2 ..

Thyroid ca SW1736 >10 Lung-NSC NCI-H460 4.6 Pharynx-sqam FADU 4.7 Prostate DU-145 > 10 Compound SA -- 3-(4'-mcthoxybenzoyl)-2-(4'-methoxyphenyl)-6-methoxybenzo[b]thiophene (see FIG. 8), as shown in Table 6 and 7, had certain biological activity.
Table 6 P388 Leukemia Data (Compound SA) Cell Type Cell Line EDSO (pg/ml) Mouse Leukemia P388 >100 Table 7 Human Cancer Cell Line Studies (Compound SAl Cell Type Cell Line Glso (pglml) Pancreas adn BXPC-3 8.9 Melanoma RPM!-7951 > 10 CNS 0251 > 10 Lung-NSC NCI-H460 > 10 Pharynx-sqam FADU > 10 Prostate DU-145 > 10 Compound 6A - 3-(4'-ethoxybenzoyl)-2-(4'-methoxyphenyl)-6-methoxybenzo[bJthiophene (see FIG. 9) has notable biological activity as seen in Tables 8 and 9.

Table 8 P388 Leukemia Data (Compound 6Al Cell Type Cell Line EDso (p.g/ml) Mouse Leukemia P388 >l0U

Table 9 Human Cancer Cell Line Studies (Compound 6A) Cell Type Cell Line GISO (pg/ml) Pancreas adn BXPC-3 0.65 Melanoma RPMI-7951 3.2 CNS 0251 0.43 Lung-NSC NCI-H460 2.4 Pharynx-sqam FADU 0.48 Prostate DU-145 3.9 Compound 7A - 3-(3', 4', 5'-triethoxybenzoyl)-2-(4'-methoxyphenyl)-6-methoxybenzo[bJth iophene (see FIG. 10) is described in Example 1.

Compound 7 A was found to be mildly active in the cell toxicity tests as shown in Tables 10 and 11.

Table 10 P388 Leukemia Data (Compound 7A) Cell Type Cell Linc EDso (p~/m1) Mouse Leukemia P388 > 100 Table 11 Human Cancer Cell Line Studies (Compound 7Al Cell Type Cell Line GISO (pg/ml) Pancreas adn BXPC-3 >10 Melanoma RPMI-7951 >10 _ CNS U251 > 10 Lung-NSC NCI-H460 > I 0 Pharynx-sqam FADU > 10 Prostate DU-145 > 10 Compound 8A -- 3-[3'-(3', 4', 5'-trimethoxyphenyl)propionyl]-2-(4'-methoxyphenyl) S 6-mcthoxybcnzo[bJthiophene (see FIG. 11 ) was synthesized as follows (an improved synthesis is compared to that in Example 1 ).
To a well stirred solution of 2-(4'-methoxyphenyl)-6-methoxybenzo[b] thiophene (0.500 g, 1.85 mmol) and 3'-(3',4',5'trimethoxyphenyl) propionyl chloride (1.43 g, 5.55 mmol) in CH,CI, (~0 mL) was added AIC13 (1.00 g, 7.50 mmol) portion-wise over a 15 min period. After 10 18 h, water was added, and the product was isolated initially by extraction with CHzCIz and subsequently by extraction with EtOAc. The organic layers were separately washed with NaHC03 (sat) and brine, and then combined and dried over Mg S04. Purification by flash chromatography (silica gel, 70:30 hexanelEtOAc) afforded 4 (0.089 g, 0.18 mmol, 9.8%) as an off white solid. Recrystallization (ethanol/hcxane) yielded a highly pure, crystalline sample with t 5 an mp -= 127-128°C. 'I ~-NMR (CDC1~. 360 Mliz) d 7.92 (d. J =
8.91iz. I II, ArH), 7.35 (d. J =
8.7 Hz. 211. Ark). 7.25 (d,J= 2.4 Hz, lli. Ark). 7.04 Idd.J = 8.9 liz. 2.4 liz 111. ArH). 6.93 d, J = 8.71-!z. 2H1, ArHI), 3.88 (s, 31i. -OCH ). 3.85 (s, 311. -OCI_13). 3.78 (s. 3H. -OC~i ). 3.72 (s.
6H, -OCH ). 3.8 (t, J = 7.SHz. 2H, CFIz), 3.7 (t, J = 7.45 , 2H, C1-i,); ~3C-NMR(CDCI.~, 90Mhz) 200.8. 160.5, 157.8, 153.0, 146.0, 140.0, 136.5, 136.2, 132.5, 132.3, 130.8, 126.2, 124.7, 115.1, 20 114.3, 105.2, 104.3, 60.8, 55.9, 55.6, 55.3, 44.8, 31.1. HRMS (EI) M' calcd for C28Hz806S
492.1607, found 492.2337. Anal. Calcd for C2xH2806S: C, 68.27; H, 5.73; S, 6.51. Found: C, 68.17; H, 5.80; S, 6.50.
Compound 8A, 3-[3'-(3', 4', 5' - trimethoxyphenyl)propionyl]-2-(4'-methoxyphenyl)-6-methoxybenzo[b]thiophene (see FIG. I I), had biological activity as shown in Tables 12 and 13.

Table 12 P388 Leukemia Data (Compound 8A) Cell Type Cell Line EDSO (p.g/ml) Mouse Leukemia P388 >10 Table 13 Human Cancer Cell Line Studies (Compound 8A) Cell Type Cell Line Glso (pg/ml) Pancreas adn BXPC-3 > 10 Melanoma RPMI-7951 > 10 CNS U251 4.5 Lung-NSC NCI-H460 3.8 Pharynx-sqam FADU 9.1 Prostate DU-145 > 10 Compound 9A - 3-(3',4',5'-triethoxybenzoyl)-2-(4'-ethoxyphenyl)-6-ethoxybenzo[b[thiophene (see FIG. 12) was synthesized as follows.
To a well-stirred solution of 2-(4'ethoxyphenyl)-6-ethoxybenzo[b]thiophene (0.087 g, 0.291 mmol) and 3, 4, 5-triethoxybenzoyl chloride (0.200 g, 0.733 mmol) in CH~CIz (30m1) was added AIC13 (0.126 g, 0.942 mmol) portionwise over a 5 min period. After 24 h, water was added, and the product was isolated initially by extraction W th CE1_CI: and subsequently by extraction with EtOAc. The organic layers were washed separately with brine and then combined and dried over Mg SO,. Purification by flash chromatography (silica gel. 80:20 hexane/EtOAc ) afforded a highly pure sample of the desired product (0.043 g.
28%) as a white solid with mp -126-128°C. ~ H -NMR (CDC13, 360MHz) d 7.64 (d. J = 8.9 Hz, 1 I l, ArH), 7.31 (d, J = 2.3 Hz, 1 H, ArH), 7.27 (d, J = 9.3 Hz, 2I-I, ArH), 7.02 (s, 2H, Ark, 6.99 (dd, J = 8.9, 2.3 Hz, 1 H, ArH), 6.71 (d, J = 8.7 Hz, 2H, ArH), 4.11 (q, J = 6.9 Hz, 2 H, -OCH ), 4.06 (q, J = 7. I Hz, 2H, OCH,), 3.95 (q, J = 3.9Hz, 2H, -OCH ), 3.91 (q, J= 6.96Hz, 4H, -OCH ), 1.46 (t, J= 7.OHz, 3H, CH ), 1.37 (t, J= 7.OHz, 3H, CH ), 1.34 (t, J= 7.OHz, 6H, CH ), 1.28 (t, J= 7.OHz, 3H, CH ); ~3C-NMR (CDC13, 90 MHz) d 193.3, 159.2, 157.0, 152.5, 143.6, 143.3, 140.0, 133.9, 132.3, 130.3, 130.1, 126.0, 124.2, 115.3, 114.5, 109.0, 105.3, 68.9, 64.7, 63.9, 63.4, 15.5, 14.8, r WO 98/39323 PCTlUS98/04380 14.8, 14.7. HRMS (EI) M+calc for C3~H3406S 534.753, found 534.2185. Anal calcd for C3,H34O6S: C, 69.64; H,6.41; S, 5.99. Found: C, 69.45; H, 6.50; S, 5.94.
Compound 9A was tested for biological activity as shown in Tables 14 and 15.
Table 14 P388 Leukemia Data (Compound 9A) Cell Type Cell Line EDso (Pg/ml) Mouse Leukemia P388 >10 Table 15 Human Cancer Cell Line Studies (Compound 9A1 Cell Type Cell Line GISO (pg/ml) Pancreas adn BXPC-3 > 10 Melanoma RPMI-7951 > 10 CNS U251 > 10 Lung-NSC NCI-H460 > 10 Pharynx-sqam FADU > 10 Prostate DU-145 > 10 Compound l0A -- 3-(4'-ethoxy-3', 5'-dimethoxybenzoyl)-2-(4'-methoxyphenyl)-6-methoxybenzo[b)thiophene (see FIG. 13) was synthesized as follows.
To a well stirred solution of NaH (0.0498, 2.041 mmol) and 3-(3'. 5'-dimethoxy-4'hydroxybenzoyl)-2-(4'-methoxyphenyl)'6-methoxybenzo[h]thiophene (0.105 8.
0.'_'33 mmol>
in TIiF (30 ml), cooled in ice was added ethyltrifluoromethane sulfonate (0.1 ml. 0.137 8, 0.771 mmoll. After 30 min, water was added and the product was isolated intially by extraction with CH:CI: and subsequently by extraction with Et0/1c. The organic layers were washed with NaHC03 followed by brine and then the combined organic layers were dried over M8S04.
Purification by flash chromatography (silica gel, 70:30 hexane/EtOAc) afforded the desired product as a white solid (0.0378, 0.077 mmol, 35%) with mp 138-139°C.
1H -NMR (CDC13, 360MHz) d 7.69 (d, J = 8.9 Hz, 1 H, ArH), 7.33 (d, J = 2.3 Hz, 1 H, ArH), 7.29 (d, J = 8.7I-Iz, 2H, ArH), 7.05 (s, ZH, ArH), 7.01 (dd, J = 8.9, 2.4 Hz, I H, ArH), 6.74 (d, J =
8.7 Hz, 2H, ArH), 4.05 (q, J= 7.1 Hz, 2H, -OCH ), 3.90 (s, 3H, OCH ), 3.74 (s, 3H, -OCH ), 3.71 (s, 6H, -OCH ), 1.29 (t, J= 7.0, 3H, CH ); HRMS (EI) M+ calcd for CZ~H2606S 478.1450, found 478.1434.

Compound 1 OA behaves very similarly to compound 1 A. It demonstrates clear inhibition of tubulin polymerization of rate, but not of plateau. The polymerization curves obtained with 4, 10, and 40 ~M of compound l0A were nearly identical. Biological activity of compound l0A is shown in Table 16.
Table 16 -.
Human Cancer Cell Line Studies (Compound lOAI
Cell Type Cell Line GIso (pg/ml) Pancreas adn BXPC-3 0.22 Melanoma SK-N-SH 0.17 Thyroid ca SW1736 0.31 Lung-NSC NCI-H460 0.32 Pharynx-sqam FADU 0.31 Prostate DU-145 0.35 Compound 11A - 3-(4'-N,N-dimethylaminobenzoyl)-2-(4'-methoxyphenyl)-6-methoxybenzo[b]thiophene (see FIG. 14) was synthesized as follows.
To a well stirred solution of 2-(4'-methoxyphenyl)-6-methoxybenzo(b] thiophene (0.501 g, 1.85 mmol) and 4-N,N-dimethylaminobenzoyl chloride (1.43 g, 5.55 mmol) in CH~C1~ (50 mL) was added A1C13 ( 1.147 g, 8.60 mmol) portion-wise over a 15 min period.
After 24 h, the reaction mixture was refluxed for 2 h and then quenched with water. The product was isolated initially by extraction with CH~C1: and subsequently by extraction with EtOAc.
The organic layers were separately washed with saturated NaHC03 and then with brine. They were then combined and dried over MgSO,. Purification by flash chromatography (silica gel, 70:30 hexane/EtOAc) afforded 6 (0.408 g, 0.98 mmol, 53%) as an pale yellow solid.
Recrystallization (ethanol/hexane/CH~C12) yielded a highly pure, crystalline sample of 6 with an mp = 163-164°C.
~H -NMR (CDC13, 360 MHz) d 7.74 (dt, J= 9.1, Hz, 2H, ArH), 7.45 (d, J = 8.7Hz, 1)-i, ArH), 7.42 (dt, J = 8.9, 2.2 Hz, 2H, ArH), 7.31 (d, J = 2.3 Hz, 1 H, ArH), 6.92 (dd, J = 8.9, 2.4 Hz, 1 H, ArH), -6.75 (dt, J = 8.9, 2.2 Hz, 2H, ArH), 6.51 (dt, J = 9.2, Hz, 2H, ArH), 3.87 (s, 3H, -OCH ), 3.75 (s, 3H, -OCH ), 3.01 {s, 6I-I, -N(CH )2); ~3C-NMR(CDC13, 90MHz) HRMS (EI) M+
calcd for C25H2303NS 417.1400, found417.1390. Anal. Calcd for C25H2303NS: C, 71.92; H, 5.81; N, 3.36; S, 7.68. Found C, 71.81; H, 5.55; N, 3.38; S, 7.68.

Compound I IA showed an inhibition of tubulin polymerization with an ICso > 40 p.M.
Further biological activity of compound 11 A is shown in Table 17.
Table 17 Human Cancer Cell Line Studies~Compound 11A) Cell Type Cell Line GIso (p,g/ml) Pancreas adn BXPC-3 >10 Neuroblast SK-N-SH > 10 Thyroid ca SW1736 >10 Lung-NSC NCI-H460 > 10 Pharynx-sqam FADU > 10 Prostate DU- I 45 > 10 Compound 12A - 7-(3', 4', 5'-tritluorobenzoyl)-2-(4'-methoxyphenyl)-4-methoxybenzo[bJthiophene (see FIG. 15) was synthesized as follows:
To a well stirred solution of 2-(4'-methoxyphenyl)-4-methoxybenzo[b]thiophene (0.2018, 0.74 mmol) and 3,4,5-uifluorobenzoyl chloride (0.2888, 1.48 mmol) in CH2Cl2 (7 mL) was added AICl3 (0.3048, 2.~2mmol) portion-wise over a 15 minute period. After 18h, water was added, and the product was isolated initially with CHZCI~ and subsequently by extraction with EtOAc. The organic layers were separately washed sequentially with NaHC03 and brine and then dried over MgS04. Purification by flash chromato8raphy (silica gel, 80:20 hexane/EtOAc) afforded benzo[bJthiophene (0.0328. 0.08mmo1. 10%) as a white solid.
Recrystallization (>rthanollhexane/CI1:C1:) yielded a hi8hly pure crystalline sample. ~H-NMR(CDCl3, 360 MHz) b7.74 (d. J=8.9Hz. 2H. Ark, 7.70 (d. J~.3 liz. I 11, ArH_). 7.68 (s. I li, Ark. 7.43 (dd. J=7.5, 6.61 iz.'_El. ArH). 7.00 (d. J=8.9 Elz. 2H. Ar~i , 6.83 (d. J=8.4 f iz. 111.
Ar -Li). 4.09 (s. 3H, -OC~), 3.87 (S, 3H. -OCN ). ~3C-NMR (CDC13, 90MHz) 190.5. 160.1, 159.1. 152.3.
150.0, 146.6, 141.3, 134.4, 132.9, 132.1, 127.9, 126.9, 122.4, 114.5. 114.1, 114.1, 114.0, 113.9, 113.8, 56.0, 55.4. HRMS (EI) M+ calcd for C23H,SF3O3S 428.0694 found 428.0620.
Compound 12A
shows an inhibition of tubulin polymerization > 40 pM. Biological activity of compound 12A is shown in Table 18.

Table 18 Human Cancer Cell Line Studies (Compound 12A) Cell Type Cell Line GISO (~g/ml) Pancreas adn BXPC-3 >10 Neuroblast SK-N-SH > 10 ..

Thyroid ca SW1736 >10 Lung-NSC NCI-H460 > 10 Pharynx-sqam FADU 6.7 Prostate DU-145 > 10 Compound 13A - 7-(3', 4', 5'-trimethoxybenzoyl)-2-(4' -methoxyphenyl)-4-5 methoxybenzo[b]thiophene (see FIG. 16) are synthesized as follows:
To a well stirred solution of 2-(4'-methoxyphenyl)-4-methoxybenzo[b]thiophene (0.2008, 0.74mmo1) _and 3,4,5-trimethoxybenzoyl chloride (0.1848, 0.74mmol) in CH,CIZ
(7mL) was added AlCl3 (0.2008, 1.48mmo1) portion-wise over a 15 minute period. After 18h, water was added, and the product was isolated initially with CH:Ch and subsequently by extraction with 10 EtOAc. The organic layers were separately washed sequentially with NaHC03 and brine and then dried over MgS04. Purification by flash chromatography (silica gel, 70:30 hexane/EtOAc) afforded benzo[b]thiophene (0.0238, O.OSmmol, 7%) as a white solid.
Recrystallization (Ethanol/hexane/CHZC12) yielded a highly pure crystalline sample. ~H-NMR
(CDC13, 360 MHz) 87.80 (d. J=8.4Hz, 1 H, ArH), 7.73 (d, J=8.8Hz, 21 i, Ark, 7.66 (s, 1 H. ArH), 7.02 (s. 2H, Arl-i), 15 6.96 (d, J=8.8Hz, 2H, ArH), 6.70 (d, J=8.3Hz. 11-1. ar~i. 4.08 (s, 31i. -OCH ), 3.95 (s, 3H, -OCH ). 3.91 (s, 6Ii, -OCR). 3.87 (S. 3H1. -OC1,). HRI~lS (Ll) ht' calcd for C261-li~O6S
464.1294, found 464.1310. Anal. Calcd for CZ6Hi~ObS: C. 67.23; H, 5.21; S.
6.90. Found C, 67.19; H, 5.26; S, 6.87. Compound 13A shows an inhibition of tubulin polymerization >
pM. Biological activity of compound 13A is shown in Table 19.

Table 19 Human Cancer CellLineStudies (Compound 13A
Cell Type Cell Line GIso (pg/ml) Pancreas adn BXPC-3 > 10 Neuroblast SK-N-SH > 10 _ Thyroid ca SW1736 >10 Lung-NSC NCI-H460 > 10 Pharynx-sqam FADU 7.8 Prostate DU-145 > I 0 Compound 14A - 3-(3', 4', 5'-trifluorobenzoyl)-2-(4'-methoxyphenyl)-6-methoxybenzo[b]thiophene (see FIG. 17) was synthesized as follows.
To a well-stirred solution of 2-(4'methoxyphenyl)-6-methoxybenzo[b]thiophene (0.112 g, 0.414 mmol) and 3, 4, 5-trifluorobenzoyl chloride (0.437 g, 2.271 mmol) in CHzCI~ (40 ml) was added A1C13 (0.471 g, 3.532 mmol) portionwise over a 15 min period under reflux conditions.
After 30 h, water was added, and the product was isolated initially by extraction with CH~Cl2 and subsequently by extraction with EtOAc. The organic layers were washed separately with brine and then combined and dried over MgS04. Purification by flash chromatography (silica gel, first with hexanes then with 95:5 hexane/EtOAc) afforded a yellow liquid (0.068 g, 43%). 'H -NMR
(CDC13, -360MHz) d 7.69 (d. J = 8.9 Hz, l li, ArH), 7.37 (d, J = 6.7 Hz, 1 H, ArH), 7.35 (d, J =
6.7 Hz. 1 H, ArH), 7.33 (d, J= 2.4 Hz, 1 H, ArH). 7.26 (d. J = 8.8 Hz. 2H, ArH), 7.04 (dd. J = 8.9, 2.4 liz. 1 H. ArHJ, 6.77 (d. J = 8.8 Hz, 2H. Ark. 3.90 (s. 3H, OC~1 ), 3.77 (s. 3H. -OCH ).
Compound 14A showed inhibition of tubulin polymerization with an 1C~ > 40 uM.
Biological activity of compound 14A is shown in Table 20.

Table 20 Human Cancer Cell Line Studies (Compound 14A
Cell Type Cell Line GIso (pg/ml) Pancreas adn BXPC-3 > 10 Neuroblast SK-N-SH > 10 Thyroid ca SW1736 >10 Lung-NSC NCI-H460 > 10 Pharynx-sqam FADU 13.6 Prostate DU-145 > 10 Compound 15A - 3-(2', 3', 4', 5', 6'-pentafluorobenzoyl)-2-(4'-methoxyphenyl)-S methoxybenzo[b]thiophene (see FIG. 18) was synthesized as follows.
To a well-stirred solution of 2-(4'mehoxyphenyl)-6-methoxybenzo[bJthiophene (0.538 g, 1.989 mmol) and 2, 3, 4, 5, 6-pentafluoro benzoyl chloride (1.000 g, 4.338 mmol) in CH2C12 (80 ml) was added AlCl3 (2.147 g, 16.103 mmol) portionwise over a 5 min period.
After 4.5 h, water was added, and the product was isolated initially by extraction with CH2C12 and subsequently by extraction with EtOAc. The organic layers were washed separately with brine and then combined and dried over MgS04. Purification by flash chromatography (silica gel, 90:10 hexane/EtOAc then with 80:20 hexane/EtOAc) afforded the desired product (0.5086 g, 60%) as a yellow colored solid. Recrystallization with ethylacetate/hexane mixture, gave highly pure product (0.206g). ~H-NMR (CDC13. 360MHz) d 8.47 (d, J = 9.0 Hz, 1 H, Arl~, 7.30 (d, J = 2.4 Hz, -1 H. ArH), 7.24 (d, J = 8.8 Hz. 2H. Ark, 7.16 (dd, J = 9.0, 2.2 Hz, 1 H.
ArH), 6.77 (d, J =
8.8.11T ?.Ii. Ar -~i , 3.91 (s, 3H, -OCI~), 3.78 (s, 3H. OCH ). HRMS (EI) M~
calc for C~~11,~03SF~ 464.0537, found 464.0506.
Compound 15A shows an inhibition of tubulin polymerization with an ICso> 40 pM.
Biological activity of compound 1 SA is shown in Table 21.

Table 21 Human Cancer Cell Line Studies (Compound 15A) Cell Type Cell Line Glso (pg/ml) Pancreas adn BXPC-3 5.9 Neuroblast SK-N-SH 1.4 _.

Thyroid ca SW1736 4.0 Lung-NSC NCI-H460 7.9 Pharynx-sqam FADU 1.3 Prostate DU-145 5.0 Compound 16A - 3-(3', 4', 5'-trimethoxybenzoyl)-2-{4'-methoxyphenyl)-S benzo(b]thiophcne (see FIG. 19) was synthesized as follows:
To a well-stirred solution of 2-(4'-methoxyphenyl)benzo[b]thiophene (0.081 g, 0.32 mmol) and 3,4,5-trimethoxybenzoyl chloride (0.148 g, 0.64 mmol) in CH2C12 (15 mL) was added AICl3 (0.144g, 1.08 mmol) portion-wise over a 5 minute period. After 3h 20min, water was added, and the product was isolated initially by extraction with CH,CI~
and subsequently by extraction with EtOAc. The organic layers were separately washed with brine and then combined and dried over MgS04. Purification by flash chromatography (silica gel, 90:10 hexane/EtOAc then with 80:20 hexane/EtOAc) afforded desired benzo[b]thiophene (0.035 g, 26%) as white solid. ' H-NMR (CDC13, 360 MHz) 8 7.87 (m, 1 H, ArH), 7.78 (m, 1 H, ArH), 7.37 Im, 4H. ArH). 7.07 (s, 2H. ArH~. 6.76 (d, J=6.7, 2Ii, Ark, 3.84 (s, 3H. -OCH
), 3.75 (s, 3H, -OCH,). 3.73 (S. 611. -OCR).
Compound 16A shows an inhibition of tubulin polymerization with an ICso > 40 pM.
Biological activity of compound I 6A is shown in Table '_''_'.

Table 22 Human Cancer Cell Line Studies (Compound 16A) Cell Type Cell Line GISO (p.g/ml) Pancreas adn BXPC-3 1.7 Neuroblast SK-N-SH 0.83 _.

Thyroid ca SW1736 4.6 Lung-NSC NCI-H460 2.7 Pharynx-sqam FADU 0.63 Prostate DU-145 4.8 Compound 17A -- E-3-[3'-(3', 4', 5'-trimethoxyphenyi)cinnamoyl]-2-(4'-S methoxyphenyl)-6-methoxybenzo[b~thiophene (see FIG. 20) was synthesized as follows.
To a well stirred solution of 2-(4'-methoxyphenyl)-6-methoxybenzo[b]thiophene (1.006 g; 3.721 mmol) and 3-(3',4',5'trimethoxy)cinnamoyl chloride (1.834 g, 7.146 mmol) in CH2Cl2 (SO mL) was added AlCl3 (2.093 g, 15.697 mmol) portion-wise over a 15 min period. After 4 h, water was added, and the product was isolated initially by extraction with CH~C12 and subsequently by extraction with EtOAc. The organic layers were separately washed with saturated NaHC03 And then with brine. They were then combined and dried over MgS04.
Purification by flash chromatography (silica gel, 60:40 hexane/EtOAc) afforded the desired product (0.586g> 1.20 mmol, 32.1%) as a pale yellow solid. Recrystallization (ethanol/hexane) yielded a highly pure, crystalline sample with an mp = 154-155°C. ~I1-NMR (CDC13, 360 MHz) d 8.18 (d, J = 9.0 Hz 1 H, ArH), 7.5 (d. J = 15 Hz, 11 i. Ark). 7.49 (dt, J =
8.9. 2.2 Hz, 2H, Ark, 7.30 (d. J = 2.3Hz. 1 H. ArH), 7.08 (dd, J = 9Ø 2.5 Hz 1 H. Ar -~l), 6.95 (dt, J = 8.8. 2.1 Hz, 211. Ark- ). 6.55 (d, J = 15.7 liz, lli, Ark, 6.41 (s, 21~i, Ar~1 . 3.90 (s. 3H. OCH3), 3.84 (s, 3H. _OCH3), 3.80 (s, 3H, OCH3), 3.77 (s, 6H, OCH3); ~3C-NMR (CDC13, 90MHz),HRMS (EI) M' calcd for C2gH2606S 490.1450, found 490.1300. Anal. Calcd for C2gH26O6S: C, 68.55; H, 5.30; S, 6.54. Found C, 68.57; H, 5.39; S, 6.52.
Compound 17A showed an inhibition of tubulin polymerization with an ICSO > 40 ltM.
Biological activity of compound 17A is shown in Table 23.

WO 98%39323 PCT/US98/04380 Table 23 Human Cancer Cell Line Studies (Compound l7Al Cell Type Cell Line GISO (pg/ml) Pancreas adn BXPC-3 2.3 Neuroblast SK-N-SH I .3 _ Thyroid ca SW1736 5.2 Lung-NSC NCI-H460 3.9 Pharynx-sqam FADU 1.8 Prostate DU-145 7.5 Compound 18A - 3-(3', 4', 5'-trimethoxybenzoyl)-2-(4'-ethoxyphenyl)-6-5 ethoxybenzo[b]thiophene (see FIG. 21 ) was synthesized as follows.
To a well-stirred solution of 2-(4'-ethoxyphenyl)-6-ethoxybenzo[b]thiophene (0.095 g, 0.32 mmol) and 3,4,5-trimethoxybenzoyl chloride (0.159 g, 0.69 mmol) in CH:CIz(15 mL) was added A1C13 (0.1398, 1.04 mmol) portion-wise over a 5 minute period. After 30 min., water was added, and the product was isolated initially by extraction with CH~C1~ and subsequently by 10 extraction with EtOAc. The organic layers were separately washed with brine and then combined and dried over MgS04. Purification by flash chromatography (silica gel, 80:20 hexane/EtOAc) afforded benzo[b]thiophene (0.110 g, 0.2 mmol, 69%) as an off white solid.
~ H-NMR - -(CDCI j, 360 Mhz) 8 7.65 (d, J = 8.9 Hz. 1 H. ArH), 7.32 (d, J =
2.3 Hz. 1 H, ArH), 7.29 (d, J = 8.8 Flz. 2I-i. Arl-1), 7.06 (s, ''l~i, Arli), 7.00 (dd. J = 8.9, 2.4 liz. 1 H, Ar~i), 6.73 (d, J = 8.7 1 ~ Hz. '_'1!. Ark- ). 4.12 (q. J = 7.0 liz. 2H. -Cue), 3.97 (q, J = 6.9 liz, 2H. -Cl~,). 3.83 (s, 3H, -OCR), 3.73 (S, 6H, -OCR), 1.47 (t, J = 6.9 lii. 31~1. -C~l,t), l .37 (t. J=
7.0 Hz 3H, -Cue).
Compound 18A showed an inhibition of tubulin polymerization with an lCs~ > 40 pM.
Biological activity of compound 18A is shown in Table 24.

Table 24 Human Cancer Cell Line Studies (Compound 18A1 Cell Type Cell Line GISO (p,g/ml) Pancreas adn BXPC-3 1.6 Neuroblast SK-N-SH 0.33 Thyroid ca SW1736 2.3 Lung-NSC NCI-H460 1.4 Pharynx-sqam FADU 0.60 Prostate I7U-145 3.6 Compound 19A -- 3-(4'-hydroxy -3',5'-dimethoxybenzoyl)-2-(4'-methoxyphenyl)-6-methoxybenzo[b]thiophene (see FIG. 22) was synthesized as follows.
To a well-stirred solution of 2-(4'-methoxyphenyl)-6-methoxybenzo[b]thiophene (0.250 g, 0.925 mmol) and 3,4,5-trimethoxybenzoyl chloride (0.320 g, 1.39 mmol) in CHZCIZ (20 mL) was added A1C13 (0.925 g, 6.94 mmol) portion-wise over a 15 min period. After 20 h, water was added, and the product was isolated initially by extraction with CHZC12 and subsequently by extraction with EtOAc. The organic layers were separately washed with brine and then combined and dried over MgS04. Purification by flash chromatography (silica gel, 60:40 EtOAc/hexane) followed by recrystallization (hexane/ethanol) afforded a highly pure, crystalline sample of 2 (0.018 g. 0.040 mmol) with mp = 142 - 143°C. ~H -NMR
(CDCl3, 360 MHz) d 7.62 (dd, J = 8.9, 0.3 Hz, 1 H, ArH), 7.33 (d. J = 8.9 Hz, 2H, ArH), 7.33 (d, J =
2.5 Hz, 1 H, Arl~, 7.12 (s, 21i. Ark, 7.00 (dd, J = 8.9, 2.4 Hz. 1 H, Ark, 6.76 (d, J = 8.9 Hz, 21-1, ArH), 5.90 (s, 1 H, -O~, 3.89 (s, 3H. -OCR). 3.77 (s. 611, -OCH ). 3.76 (s. 3H, - OCl-~); ~3C-NMR
(CDC13, 90 MHz) d 192.7. 159.9, 157.8, 146.6. 142.9, 140.2, 139.9, 134.1. 130.3, 130.1, 128.7. 126.2. 124.2, 114.9. I 14.2, 107.5, 104.5. 56.4, 55.7, 55.3. HRMS (EI) Mf calcd for Cz5Hu06S
450.1137, found 450.1139. Anal. Calcd for C25H2206S: C, 66.65; H, 4.92; S, 7.12. Found:
C, 66.52; H, 5.01; S, 6.97.
Table 25 shows biological activity of compound 19A.

WO 98%39323 PCT/US98/04380 Table 25 P388 Leukemia Data~Compound 19A1 Cell Type Cell Line EDso (pg/ml) Mouse Leukemia P388 >IUU
Compound 20A -- 3-(phenylacetyl)-2-(4'-methoxyphenyl)-6-methoxybenzo[b]thiophene (see FIG. 23) was synthesized as follows.
To a well stirred solution of 2-(4'-methoxyphenyl)-6-methoxybenzo[bJthiophene (0.452 g, 1.67 mmol) and phenylacetyl chloride (0.52 g, 3.34 mmol) in CHZC12 (50 mL) was added A1C13 (0.670 g, 5.02 mmol) portion-wise over a 15 min period. After 1'/z h (total reaction time), water was added, and the product was isolated initially by extraction with CHZCI~ and subsequently by extraction with EtOAc. The organic layers were separately washed sequentially with NaHC03 and brine and then dried over MgS04. Purification by flash chromatography (silica gel, 70:30 hexane/EtOAc) afforded benzo[b]thiophene 2 (0.11 g, 0.29 mmol, 17.1%) as a white solid. Recrystallization (Ethanol/hexane) yielded a highly pure, crystalline sample. ~H -NMR (CDC13, 360 MHz) d 7.87 (d, J= 9 Hz, 1H, Arl~, 7.45 (td, J= 8.82, 2.16 Hz, 2H, Arl~, 7.2 (m, 4H, ArH), 7.0 (m, SH, ArH), 3.88 (s, 3H, -OCH ), 3.86 (s, 3H, -OCH ), 3.73 (s, 2H, CH ).
Tables 26 and 27 show biological activity of compound 20A.
Table 26 P388 Leukemia Data (Compound 20A1 Cell Type Cell Line EDT (pg/ml) Mouse Leukemia P388 > 10 ?0 WO 98%39323 PCT/US98/04380 Table 27 Human Cancer Cell Line Studies (Compound 20A1 Cell Type Cell Line GISO (p.g/ml) Pancreas adn BXPC-3 >10 Melanoma RPMI-7951 > 10 ..

CNS U251 > 10 Lung-NSC NCI-H460 > 10 Pharynx-sqam FADU 9.2 Prostate DU-145 > 10 Compound 21A - 3-(3', 4', 5'-trimethoxy)phenylacetyl)-2-(4'-methoxyphenyl)-6-methoxybenzo[b)thiophene (see FIG. 24) was synthesized as follows.
To a well stirred solution of 2-(4'-methoxyphenyl)-6-methoxybenzo[b]thiophene (0.302 g; 1.12 mmol) and 3',4',5'trimethoxyphenyl acetyl chloride (0.541 g, 2.21 mmol) in CH~CI, (40 mL) was added A1C13 {0.600 g, 4.50 mmol) portion-wise over a 15 min period.
After 4'/z h, water was added, and the product was isolated initially by extraction with CIi~CI=
and subsequently by extraction with EtOAc. The organic layers were separately washed with NaHC03 (sat) and brine, and then combined and dried over MgS04. Purification by flash chromatography (silica gel, 60:40 hexane/EtOAc) afforded benzo[b]thiophene 3 (0.470 g, 0.99 mmol, 88.7%) as a white solid. Recrystallization (ethanol/hexane) yielded a highly pure, crystalline solid with an mp =
117-118°C.
~H-NMR (CDC13, 360 MHz) d 7.89 (d. J T 9 llz. 111. Arj~). 7.43 (td. J = 8.82.
2.16 Hz, 'll. ArH). 7.25 (d, J= 2.3 Hz, IH, Ar~i), 7.0 Im. 311. Ark). 6.15 (s, 211.
Ark. 3.88 (s, 3H, -OC~1 ). 3.87 (s. 3H, -OCR-1~). 3.77 (s, 31i. -OCII,). 3.72 (s, 6f1, -OCfI_,), 3.66 (s. 21i. Cfl_) ~3C-NMR(CDC13. 90 Mhz) 198.9, 160.6. 157.8, 153.0, 145.6, 140.0, , 132.8. , 130,9.
129.8, 126.1, 124.5, 115.2, 114.5, 106.4, 104.2, 60.8, 56.0, 55.6, 55.4, 49.9. HRMS (EI) M~
calcd for CZ~H2606S 478.1450, found 478.1609. Anal. Calcd for C2~H26O6S: C, 67.77; H, 4.48; S, S, 6.70.
Found C, 67.85; H, 5.55; S, 6.73.
Tables 28 and 29 show biological activity of compound 21 A.

Table 28 P388 Leukemia Data (Compound 21A1 Cell Type Cell Line EDso (pg/mt) Mouse Leukemia P388 >lU
Table 29 Human Cancer Cell Line Studies (Compound 21A1 Cell Type Cell Line Glso (pg/ml) Pancreas adn BXPC-3 9.8 Melanoma RPMI-7951 >10 CNS U251 > 10 Lung-NSC NCI-H460 > 10 Pharynx-sqam FADU 7.9 Prostate DU-145 > 10 DIARYL-ETHER benzojblthiophene DERIVATIVES
The following two compounds have been prepared by chemical synthesis and one of them has been evaluated in terms of its biological efficacy. The biological results on the other derivative are forthcoming.
Compound 2213 - 3-(3',4',5'-trimethoxyphenoxy)-2-(4'-methoxyphcnyl~6-methoxybenzo[bJthiophene S-oxide Isee FIG. 25) was synthsized as follows.
To a well stirred solution oC 3.4,5-trimethoxyphenol (0.0816. U.44 mmoll in DMF (5 ml l was added NaH (0.020 g, 0.84 mmol l and stirred at room temperature for 15 min followed by the addition of a mixture of 3,7-dibromo and 3-bromo -2-(4'-methoxyphenyl~6-methoxybenzo[b]thiophene-S-oxide (0.1 SOg, 0.35 mmol). After 2 h the reaction mixture is partitioned between 10% ethanol-ethylacetate mixture and water. The aqueous phase was extracted 3x with 10% ethanol solution. Washing the organic layer with water (Sx) followed by brine, drying over MgS04 and evaporation of the solvent gave a dark colored oil. Trituration of the residue with ether and hexane mixture resulted in desired products as a yellow fluffy solid.
~H-NMR (CDC13, 300 MHz) 8 7.65 (d, J= 8.9 Hz, 2H, ArH), 7.34 (d, J= 2.3 Hz, 1H, ArH), WO 98%39323 PCT/US98/04380 7.22 (d; J = 8.5 Hz, 1 H, ArH), 6.99 (dd, J = 8.6, 2.4 Hz, 1 H, ArH), 6.86 (d, J = 8.9, 2H, ArH), 6.29 (s, 2H, ArH), 3.89 (s, 3H, -OCH ), 3.79 (s, 3H, -OCH ), 3.76 (s, 3H, -OCH
), 3.75 (s, 6H, -OCH ).
Compound 23B -- 3-(3',4',S'-trimethoxyphenoxy)-2-(4'-methoxyphenyl)-6-5 methoxybenzo[b]thiophene (see FIG. 26) was synthesized as follows. _.
To an ice cooled, well stirred solution of mixture of 3-(3',4',5'-trimethoxyphenoxy)-2-(4'-methoxyphenyl)-6-methoxybenzo[bjthiophene S-oxide and 7-bromo-3-(3',4',5'-trimethoxyphenoxy)-2-(4'-methoxyphenyl)-6-methoxybenzo[b]thiophene S-oxides (0.183 g, 0.34 mmol) in THF (10 ml) was added lithium aluminum hydride (0.028 g, 0.72 mmol).
After 1.5 h, 10 the reaction was quenched with water followed by usual work up with ethyl acetate, brine and dried over MgS04. Removal of the solvent followed by purification by flash chromatography (80:20 hexanes:ethylacetate) resulted in desired product (0.011 g, 0.025 mmol) as a white colorless solid with an mp = 129-131°C. ~H-NMR (CDC13, 300 Mhz) b 7.66 (d, J= 8.9 Hz, 2H, Arl~, 7.31 (d, J = 8.7 Hz, 1 H, ArH), 7.25 (d, J = 2.2 Hz, 1 H, Ark, 6.91 (d, J = 9.0 Hz, 2H, 15 Ark, 6.90 (dd, J = 8.8, 2.3 Hz, 1 H, ArH), 6.21 (s, 2H, ArH, 3.88 (s, 3H, -OCH ), 3.82 (s, 3H, -OCH ), 3.78 (s, 3H, -OCH ), 3.71 (s, 6H, -OCH ). HRMS (EI) M' calcd for 452.1248, found 452, 1294. Anal. Calcd for C~SHzqObS: C, 66.36; H, 5.35; S, 7.08. Found: C, 65.12; H, 5.39; S, 6.96.
HRMS (EI) M+ calcd for C25HzaObS 452.1248, found 452.1294. Anal. Calcd for 20 Cz5H2406S: C, 66.36; H, 5.35; S, 7.08. Found: C, 65.12; H, 5.39; S, 6.96.
The biological activity of compound 23B was measured as seen in Tables 30 and 31. The inhibition of tubulin polymerization by compound 23 B gave an ICSO = I .4 ~M.

P388 Leukemia Data (Comround 23B) Cell Type Cell Line EDT (ug/mlj Mouse Leukemia P388 3.09 WO 98)39323 PCT/US98/04380 Human Cancer Cell Line Studies (In Vitro) (Compound 23B
Cell Type Cell Line GISO (pg/ml) Pancreas adn BXPC-3 0.23 Neuroblast SK-N-SH 0.063 _.
Thyroid ca SW1736 0.73 Lung-NSC NCI-H460 0.3 I

Pharynx-sqam FADU 0.098 Prostate DU-145 0.42 Significant biological activity is expected for the as yet untested compound based on the prevalence of such activity for compounds 23B and the compounds described in other Examples.
It will be apparent to anyone skilled in the art that the experimental procedures used to prepare the benzo(b)thiophene derivatives (Example 1 and 1 A) can be suitably modified to incorporate a wide-variety of alkoxy groups and substitution patterns.
In addition, the availability of the vinyl bromide used as a precursor in the preparation of diaryl ether derivatives (22B and 23B -- Example 2) provides a myriad of reaction possibilities for the preparation of related derivatives. For example, the vinylbromide may undergo halogen-metal exchange to form a very nucleophilic vinyl-metal species which will prove very reactive with a wide variety of electrophiles (most notably carbonyl groups). The vinylbromide may also be subject to direct attack by organocuprate reagents which upon 1.4 addition and subsequent elimination of bromide, will render new compounds Hhich arc substituted at the 3-position of the benzo[h)thiophene core structure. This should be especially useful for installing aryl groups (both substituted and unfunctionalized) directly on the 3-position of the bcnzo[bjthiophene con structure.

BENZOFURAN DERIVATIVES
Compound 24C - 3-(3',4',5'-trimethoxybenzoyi)-2-(4'-methoxyphenyl)-6-methoxybenzo[b)furan (see FIG. 27) was prepared as follows.
To a well-stirred solution of 2-(4'mehoxyphenyl)-6-methoxybenzo[b]furan (1.104 g, 0.409 mmol) and 3, 4, 5-trimethoxybenzoyl chloride (0.195 g, 0.846 mmol) in CH2Cl2 (25 ml) was added AlCl3 (0.169 g, 1.270 mmol) portionwise over a 5 min period. After 3 h, water was WO 98%39323 PCT/US98/04380 added, and the product was isolated initially by extraction with CH2C12 and subsequently by extraction with EtOAc. The organic layers were washed separately with brine and then combined and dried over MgS04. Purification by flash chromatography (silica gel, 90:10 hexane/EtOAc then with 80:20 hexane/EtOAc) afforded a highly pure sample of the desired product (0.045 g, 25%) as a yellow colored liquid. ~H-NMR (CDC13, 360MHz) d 7.58 (d, J= 8.8 __ Hz, 1 H, ArH), 7.39 (d, J = 8.9 Hz, 2H, ArH), 7.12 (s, 2H, ArH), 7.10 (d, J =
2.2 Hz, 1 H, Arl~, 6.98 (dd; J= 8.8, 2.2 Hz, 1H, ArH), 6.89 (d, J= 8.9 Hz, 2H, ArH), 3.91 (s, 3H, -OCH3), 3.87 (s, 3H, OCH3), 3.81 (s, 3H, -OCH3), 3.79 (s, 3H, -OCH3). ~3C-NMR (CDC13, 90 MHz) 8 184.2, 161.1, 159.6, 156.1, 152.6, 146.3, 141.9, 132.5, 131.2, 129.7, 123.4, 122.8, 121.4, 114.2, 113.8, 107.3, 95.4, 60.9, 56.1, 55.8, 55.3. HRMS (EI) M+calc for CZ6HzqO~ 448.1522, found 448.1522.
Anal. Calcd for CZ6Hz4O~: C, 69.63; H, 5.39. Found: C, 69.56; H. 5.33.
Compound 24C had the biological activity shown in Table 32. Compound 24C
showed inhibition of tubulin polymerization with an ICSO = 2.1 ~.M (totally flat at 4 PM).

Human Cancer Cell Line Studies (Compound 3IC) Cell Type Cell Line GIso (pg/ml) Pancreas adn BXPC-3 0.038 Neuroblast SK-N-SH 0.025 Thyroid ca SW1736 0.047 Lung-NSC NCI-H460 0.041 Pharynx-sqam FADU 0.035 Prostate DU-14 5 0.062 E?iAMPLE 4 Compound 25D - I-(hydroxymethyl-3',4',5'-trimethoxyphenyl)-6-methoxy-3,4-dihydronaphthalenc (see FIG. 28), was prepared as follows.
To a well stirred solution of tetramethylethylenediamine (20 mL) and BuLi (4.6 mL of 2.5 M solution in hexane, 11.500 mmol) cooled to -50°C in dry ice/acetone bath was added 6-methoxy-3,4-dihydro-I (2H)-naphthalene p-toluenesulfonylhydrazone ( 1.008 g, 2.927 mmol) and stirred at that temperature for 30 min. It was then allowed to warm to room temperature and stirred at room temperature for 30 min. The reaction mixture was cooled to 0°C in ice water, followed by the addition of 3,4,5-trimethoxybenzaldehyde (2.279 g, 11.616 mmol). After 1 h of stirring at 0°C, the reaction was quenched with water, extracted with ethylacetate. The organic layer was washed with aqueous copper sulfate solution followed by brine and dried over MgS04.
Purification of the compound by flash chromatography yielded the desired product as thick yellow oil (0.2897 mg, 0.8128 mmol) in 28% yield which solidified upon keeping it in the refrigerator. ~ H-NMR -(CDC13, 360 MHz) d 7.19 (d, J = 8.6 Hz, 1 H, ArH), 6.72 (d, J = 2.65, 1 H, ArH); 6.68 (s> 2H. ArH), 6.6 (dd, J= 2.7, 8.5 Hz, 1 H, ArH), 6.02 (t, J =
4.7Hz, I H, CH), 5.67 (s, 1H, CH), 3.84 (s, 6H. OCH3), 3.83 (s, 3H, OCH3), 3.78 (s, 3H, OCH3), 2.75 (t, J= 7.7 Hz, 2H, CHZ), 2.34 (m, 2H, CHZ). '3C-NMR (CDC13, 90 MHz) d 157.9, 152.7, 138.2, 138.1, 137.6, 136.7, 125.8, 124.6, 124.4, 113.4, 110.4, 103.6, 73.7, 60.3, 55.6, 54.7, 28.3, 22.6. HRMS (EI) M+calc for C2,H2405 356.4, found mp = 89-92°C.
Certain biological activity of compound 25D is shown in Table 33. Compound 25D
showed inhibition of tubulin polymerization with an ICso > 40 pM.
Table 33 Human Cancer Cell Line Studies (Compound 25D) Cell Type Cell Line GISO (pglml) Pancreas adn BXPC-3 0.53 Neuroblast SK-N-SH 0.30 Thyroid ca SW 1736 2.1 Lung-NSC NCI-H460 1.5 p~,nr_~~ FADU 0.51 Prostate Dtl-145 2.6 Compound 26D -- 1-(3',4',5'-trimethoxybenzoyl)-6-methoxy-3,4-dihydronaphthalene (see FIG. 29) was prepared as follows.
To a well stirred solution of Dess-martin reagent (0.313g. 0.736 mmol) in CH2C12(10 ml) was added 6-methoxy-3,4-dihydronaphthyl-3,4,5-trimethoxyphenyl-methanol (0.050 g, 0.140 mmol). After 2 h water was added and the suspension was partitoned between 1.3 M NaOH (20 mL) and CH2C12 (50 mL) and the organic layer was washed with more of NaOH (20 mL, 1.3 M) followed by many times with water, once with brine and dried over MgS04.
Purification by flash chromatography (silica gei, 80:20 hexane/EtOAc) afforded a highly pure sample of the desired product (0.0495g, 99.6%) as an yellow colored solid. tH-NMR (CDC13, 360MHz) d 7.19 (d; J = 8.5 Hz, 1 H, ArH), 7.15 (s, 2H, ArH), 6.77 (d, J = 2.5 Hz, 1 H, ArH), 6.70 (dd, J = 2.6, 8.5 Hz, IHArH), 6.35 (t, J = 4.7Hz, IH, ArH), 3.92 (s, 3H, OCH3), 3.86 (s, 6H, OCH3), 3.81 (s, 3H, OCH3), 2.86 (t, J= 7.8 Hz, 2H, CH2), 2.49 (m, 2H, CH2). '3C-NMR (CDC13, 90 MHz) d _.
196.1, 159.2, 152.9, 142.5, 138.3, 137.6, 133.0, 132.9, 126.9, 125.2, 114.0, 111.3, 107.6, 60.9, 56.3, 55.2, 28.1, 23.1. HRMS (EI) M+calc for C2,H22O5 354.1467, found 354.0859.
Certain biological activity of compound 26D is shown in Table 34. Compound 26D
showed inhibition of tubulin polymerization with an ICSO = I .7 ~M (total flat at 4 ~M).
Table 34 Human Cancer Cell Line Studies (Compound 26D) Cell Type Cell Line GIso (~g/ml) Pancreas adn BXPC-3 0.003 Neuroblast SK-N-SH <0.001 Thyroid ca SW1736 0.0048 Lung-NSC NCI-H460 0.0033 Pharynx-sqam FADU 0.0013 Prostate DU-145 0.0038 It will be apparent to anyone skilled in the ari that the experimental procedures used to prepare the dihydronaphthalene derivatives 25D and ~6D (Example 4) can be readily modified by appropriate substrate choice to prepare a wide variety of 3.4-dihydronaphthaiene derivatives.
For example, treating the vinyl-lithium intermcdiatc (Fcncratcd in snul with 3,4.5-triethoxvbenzaldehydc (instead of 3.4,5-trimethoxybenzaldehyde) will result in the preparation of ethoxylated ligands. This example can similarly be applied to the preparation of numerous other alkoxy dihydronaphthalene derivatives.
In addition, oxidation of the secondary alcohol to a ketone moiety (as in the conversion of 25D to 26D) renders a molecule (like 26D) which contains an oc,(3-unsaturated ketone will readily undergo 1,4 addition by organocuprate reagents to generate new tetralin compounds which are substituted at both the 1 and 2-positions. This establishes the requisite protocol to install a wide variety of groups (alkyl, vinyl, aryl) both substituted with alkoxy or halogen moieties, and unfunctionalized. These I,2-disubstituted tetralins can also be treated with organoselenium reagents followed by oxidation and elimination to regenerate the 3,4 dihydronaphthalene core structure (with substituents now at both the 1 and 2 positions).

NITROGEN ANALOGS OF COMBRETASTATIN
5 Combretastatins are seen in U.S. Patents 5,409,953 (Pettit et al.), 5,561,122 (Pettit), 4,996,237 (Pettit et al.), and 4,940,726 (Pettit et al.). Related compounds are seen in U.S. Patent 5,430,062 (Cushman et al.).
Compounds 27E and 28E -- (F/~-1-(3'-methoxy-4'-nitrophenyl)-2-(3",4",5"-trimethoxyphenyl) ethene (see FIG. 30 and FIG. 31 ), isomeric compounds, were prepared as 10 follows.
A solution of 3,4,5-trimethoxybenzyltriphenylphosphonium bromide 1 ( 1.50 g, 2.86 mmol) and 3-methoxy-4-nitrobenzaldehyde 2 (0.518 g, 2.86 mmol) in CH~CIZ (50 mL) was stirred under a nitrogen atmosphere. After 30 min. NaH (0.412 g, 17.16 mmol) was added.
After 16 h, water was added and the product was isolated by extraction with CHZC12. The 15 organic phase was washed with brine and dried over MgSU,,. The so)vent was removed under reduced pressure to afford ethene 3 as a mixture of isomers (Z/E:1.46/1.00 as determined by careful integration of ~H-NMR signals).
Purification and characterization of (~ isomer, compound 27E, was done as follows.
Purification by flash chromatography (silica gel, 70:30 hexanes:ethyl acetate) afforded (~-20 ethene 27E (0.319 g, 0.923 mmol, 32%) as a bright yellow solid.
Recrystallization (hexanes/CHZC1~) afforded an analytically pure sample of ethene 27E, mp = 83-85°C. ~H-NMR
(CDCLj. 360 MHz) d 7.80 (d, J= 8.4 liz. 1 f-i. Ark). 6 98 (d, J = 1.3 Hz, l li, ArI_1), 6.95(dd, J
=8.6 Eiz. 1.4 Hz. 1 H, Ard,). 6.72 (d, J = 12.1. 111, mnyl C~), b.54 (d, J =
12.1, 1 Ei, vinyl C~), 6.4b (s. 211. Ark! , 3.84 (s, 311. OCH_~). 3.77 (s, 3H. OC~i3). 3.71 (s. 6Ii.
OCR;); ~3C-NMR
25 (CDCL~, 90 MHz) d 153.2, 153.0, 143.9, 138.0, 137.9. 133.5. 131.6, 127.9, 125.9, 121.1, 113.8.
106.0, 60.9, 56.3, 56.1. HRMS (EI) M~ calcd for Ci8H,9N06345.1212, found 345.1229. Anal.
Calcd for C,gH,9N06: C, 62.60; H, 5.55; N, 4.06. Found: C, 62.68; H, 5.58; N, 4.05.
Compound 27E showed inhibition of tubulin polymerization with an ICSO > 40 pM
and biological activity as seen in Table 35.

Table 35 Human Cancer Cell Line Studies (Compound 27E1 Cell Type Cell Line GIso (p.g/ml) Pancreas adn BXPC-3 1.9 Neuroblast SK-N-SH 2.1 _.

Thyroid ca SW1736 3.3 Lung-NSC NCI-H460 2.3 Pharynx-sqam FADU 1.1 Prostate DU-145 2.6 Purification and characterization of (E~ isomer, compound 28E, was done as follows.
Purification by flash chromatography (silica gel, 70:30 hexanes:ethyl acetate) afforded (~-ethene 28E (0.274 g, 0.793 mmol, 28%) as a bright yellow solid.
Recrystallization (hexanes/CH~C12) gave an analytically pure sample of (E )ethene 28E, mp = 187-188°C. 'H-NMR - -(CDCL3, 360 MHz) d 7.92 (d, J= 8.6 Hz, 1H. ArH), 7.16 (m, 2H, ArH), 7.15 (d, J= 16.4 Hz, 1Hvinyl CH), 6.99 (d, J= 16.4 Hz, 1H, vinyl CH), 6.77 (s, 2H, ArH), 4.03 (s, 3H, OCH3), 3.93 (s; 6H, OCH3), 3.89 (s, 3H, OCH3);'3C-NMR (CDCL3, 90 MHz) d 153.7, 153.5, 143.8, 138.9, 138.0, 132.9, 131.8, 126.6, 125.9, 117.9, 111.0, 104.1, 61.0, 56.5, 56.2. HRMS (EI) M+
calcd for Ci8H~9N06 345.1212, found 345.1220. Anal. Calcd for C,8H,9N06: C, 62.60; H, 5.55;
N, 4.06. Found: C, 62.51; H, 5.53; N, 3.95.
Compound 29E - (~-1-(4'amino-3'-methoxyphenyll~2-(3",4",5"-trimethoxyphenyl)ethene (see FIG. 32), was prepared as follows.
(~ -ethene 27E (0.454 g, 1.31 mmol) was dissolved in a mixture acetone ( 10 mL) and water (S mL) and heated at 50° C. After 30 min. Na~S~04 (4.57 g. 26.28 mmol) was added slowly. After 1 h of reflux at 50°C the mixture was cooled to room temperature and water was added. The product was rinsed with NaHC03, and then it was isolated by extraction with ethyl acetate. The organic layer was dried over Na2S04. The solvent was removed under reduced pressure. and the crude product (0.302 g, 0.956 mmol, 73%) obtained was also usable in azide formation.
Compound 30E -- (~-1-(4'azido-3'-methoxyphenyl)-2-(3",4",5"-trimethoxyphenyl)ethene (see FIG. 33) was prepared as follows.

(~-amino ethene 29E (0.166 g, 0.526 mmol) was dissolved in acetone (7.S mL) in the dark, and cooled to 0°C, then HCI (0.22 M, 7.5 ml) was added. After 10 min of stirring under a nitrogen atmosphere, NaN02 (0.160 g, 2.31 mmol) was added. After 30 min, NaN3 (0.427 g, 6.58 mmol) was added. After 15 min. at 0°C, dry ether(7.5 mL) was layered in. After 45 min, water was added and the product was isolated by extraction with ether. The organic layer was _ extracted with brine and dried over MgS04. The solvent was removed under reduced pressure and purified by flash chromatophy (silica gel, 70:30 hexanes:ethyl acetate).
(~ -compound 30E
was obtained as a white solid (0.077 g, 0.226 mmol, 43%) with mp = 61-63° C. 'H-NMR
(CDC13; 360 MHz), d 6.89 (s, 2H, ArH), 6.81 (s, 1H, Ark, 6.54 (d, J= 12.1 Hz,IH, vinyl CH), 6.50 (s2H. ArH), 6.49 (d, J= 12.1 Hz,IH, vinyl CH), 3.83 (s, 3H, OCH3), 3.71 (s, 6H, OCH3), 3.67 (s, 3H. OCH3). ~3C-NMR (CDCL3, 90 MHz) d 153.0, 151.3, 137.3, 134.7, 132.5, 130.2, 129.1, 127.1, 122.3, 119.8, 112.5, 105.9, 60.8, 55.9, 55.7. HRMS (EI) M+ calcd for C,gH,~N304 341.1376, found 341.1360. Anal. Calcd. for C,gH,9N304: C, 63.33; H, 5.62; N, 12.31. Found:
C, 63.23; H, 5.62; N> 12.21.
1 S Compound 30E showed inhibition of tubulin polymerization with an ICso =
1.5 pM.
Certain biological activity of compound 30E, (~-1-(4'azido-3'-methoxyphenyl)-2-(3",4",5"-trimethoxyphenyl)ethene, is shown in Table 36.
Table 36 Human Cancer Cell Line (Compound 30E1 Studies Cell Type Cell Line Glso (pglml) Pancreas adn BXPC-3 0.30 Neuroblast SK-N-SH 0.24 Thyroid ca SW1736 0.45 Luns-NSC NCl- 1460 0.35 Pharynx-sqam FADU 0.42 Prostate DU-145 0.70 Compounds 31E and 32E - (E/~-1-(4"-methoxy-3"-nitrophenyl)-2-(3',4',5'-trimethoxyphenyl)ethene (see FIG. 34 and FIG. 35), isomeric compounds, were prepared as follows.

3,4,5-Trimethoxybenzaldehyde (1.17 g, 5.98 mmol) and 3-methoxy-4- , nitrobenzyltriphenylphosphonium bromide 6 (3.01 g, 5.92 mmol) were dissolved in CH2Cl2 (40 mL) and stirred under a nitrogen atmosphere. After 30 min, NaH (0.710 g, 29.6 mmol) was added. After 14 h, water was added carefully and the product was isolated by extraction with CH2C12. The organic phase was washed with brine and dried over MgS04 to afford a mixture of ..
ethenes compound 32E and 31E (Z/E : 2.9/1.0).
Purification and characterization of (~-ethene (compound 31E) was done as follows.
Purification by flash chromatography (silica gel, 70:30 hexanes:ethyl acetate) afforded (~-ethene 31E (1.44 g, 4.16 mmol, 73%) as a light yellow solid. Recrystallyzation (hexanes /
CH2C12) afforded an analytically pure sample of ethene 31E, mp = 119-121°C. 'H-NMR
(CDC13; 360 MHz) d 7.80 (d, J= 2.2 Hz, 1H, ArH), 7.43 (dd, J= 8.6, 2.2 Hz 1H, ArH), 6.94 (d, J = 8.6 Hz, 1 H, ArH), -6.58 (d, J = 12.2 Hz, 1 H, vinyl CH), 6.45 (d, J =
13.3 Hz, 1 H, vinyl CH), 6.47 (s2H, ArH), 3.94 (s, 3H, OCH3), 3.85 (s, 3H, OCH3), 3.72 (s, 6H, OCH3);
~3C-NMR
(CDCL3, 90 MHz) d 153.2, 151.7, 139.5, 137.7, 134.6, 131.8, 131.3, 129.7, 126.8, 125.9, 113.1, 105.9, 60.9, 56.5, 56Ø HRMS (EI) M~ calcd for C~gH,9N06 345.1212, found 345.1191. Anal.
Calcd for C,gH~9N06: C, 62.60; H, 5.55; N, 4.06. Found: C, 62.53; H. 5.61; N, 3.97.
Compound 31E, (~-1-(4"-methoxy-3"-nitrophenyl)-2-(3',4',5'-trimethoxyphenyl)ethene, showed certain biological activity as seen in Tables 37 and 38.
Table 37 2p P388 Leukemia Data (Compound 3IF) Cell Type Cell Line EDT (pg/ml) Mouse Leukemia P388 4.0 Table 38 Human Cancer Cell Line Studies (Compound 31E) Cell Type CeII Line GISO (p,g/ml) Pancreas adn BXPC-3 0.037 Neuroblast SK-N-SH > 10 .

Thyroid ca SW1736 0.056 Lung-NSC NCI-H460 0.043 Pharynx-sqam FADU 2.6 Prostate DU-145 0.046 Purification and characterization of (E~-ethene 32E was done as follows.
Purification by flash chromatography (silica gel, 70:30 hexanes:ethyl acetate) afforded ethene 32E (0.541 g, 1.57 mmol, 27%) as a bright yellow solid. Recrystalyzation (hexaneslCH~Cl2) afforded an analytically pure sample, mp = 147-148°C. ~H-NMR (CDC13, 360 MHz) d 8.01 (d, J= 2.2 Hz, 1 H, ArH), 7.65 (dd, J = 8.7, 2.3 Hz, 1 H, ArH), 7.15 (d. J = 8.7 I Iz, 1 H, ArH), 7.00 (d, J = 16.2 Hz, IH; vinyl CI~, 6.93 (d, J= 16.2 Hz, 1H, vinyl CH), 6.73 (s, 2H. Ark, 3.99 (s, 3H, OCH3), 3.92 (s, 6H. OCH3), 3.88 (s, 3H, OCH3); ~3C-NMR (CDC13. 90 MHz) d 153.5, 150.2, 140.0, 138.5, 132.4, 131.8, 130.4, 129.6, 125.2, 123.1, 113.8, 103.8, 61.0, 56.7, 56.2. HRMS (EI) M+
calcd for C,8Hi9N06 345.1212, found 345.1206. Anal. Calcd for C,$H,9N06: C, 62.60; H. 5.55;
N, 4.06. Found: C. 62.60; H, 5.60; N, 3.97.
Compound 33F - (~-1-(3'-amino-.t'-methoxyphenyll-2-(3",.l",5"-IS trimethoxyphenyl)ethene (see F1G. 36) was prepared as fullow.
Ethene 31 E ( 1.24 g. 3.58 mmol ) was dissolved m a mixture of acetone (40 mL) and water (20 mL) and heated at 50°C. ARer 30 min, Na:S,O, ( 12.47 g, 71.61 mmol) was added slowly. After 30 min of reflex at 50°C the mixture was cooled to room temperature and water was added. The product was isolated by extraction with ethyl acetate. The organic layer was dried over Na2S04. The solvent was removed under reduced pressure and the product was purified by flash chromatography (70:30, hexanes:ethyl acetate) to afford a pure sample of arylamine (0.423 g, 1.34 mmol, 37%) 33E, mp = 64-66° C. ~H-NMR (CDCL3, 360 MHz) d 6.71 (s,lH, -ArH), 6.68 (s, 2H,ArH), 6.55 (s, 2H, ArH), 6.46 (d, J=12.2 Hz, 1H, vinyl CH), 6.37 (d, J
= 12.0 Hz, 1H, -vinyl CH), 3.84 (s, 3H, OCH3), 3.83 (s, 3H, OCH3), 3.71 (s, 6H, OCH3); 13C-NMR (CDC13, 90 MHz) d 152.9, 146.7, 137.2, 135.8, 133.0, 130.2, 130.0, 128.4, 119.5, I IS.3, 110.1, 106.2, 60.9, 56.0, 55.5. HRMS (EI) M+ calcd for C,BHZ~N04 315.1471, found 315.1466 Compound 33E showed inhibition of tubulin polymerization with an ICso = 1.7 ~M.
Compound 33E, (~-I-(3'-amino-4'-methoxyphenyl)-2-(3",4",5"-trimethoxyphenyl)ethene, had 5 certain biological activity as shown in Table 39. _.
Table 39 Human Cancer Cell Line Studies (Compound 33E1 Cell Type Cell Line GIso (pg/ml) Pancreas adn BXPC-3 0.0013 Neuroblast SK-N-SH <0.0010 Thyroid ca SW1736 <0.0010 Lung-NSC NCI-H460 0.00068 Pharynx-sqam FADU <0.0010 Prostate DU-145 0.00096 Compound 34E - (~-1-(3'azido-4'-methoxyphenyl)-2-(3",4",5"-10 trimethoxyphenyl)ethene (see FIG. 37) was prepared as follows.
(~-amino ethene 33E (0.3278, 1.04 mmol) was dissolved in acetone (IS mL) and cooled to 0°C, then HC1 (0.22 M, I S mL) was added. After 10 min of stirring under a nitrogen atmosphere, the NaN02 (0.316 g, 4.58 mmol) was added. After 30 min, NaN3 (0.852 g, 13.10 mmol) was added. After 15 min. at 0°C, dry ether ( 17 mL) was layered in. After 45 min of 15 stirring the mixture was extracted with brine, the product was dried over MgSO,,. The solvent was removed under reduced pressure and purified by flash column chromatography (70:30 hexanes:ethyl acetate). The product obtained was a yellow oil (0.163 g, 0.478 mmol. 46%). ~EI-NMR -(CDCL3, 360 MHz) d 7.03 (dd, J = 8.4 Hz. 2.1 Hz, 1 H, ArH), 6.97 (d, J =
2.1 Hz, 1 l~i, Ark, 6.76 (d, J = 8.4 Hz, I H, Ark, 6.49 (s, 2H. ArH), 6.49 (d, J = 11.9 Hz, 1 H, vinyl CH), 6.43 20 (d, J= 12.2 Hz, lH,vinyl CH), 3.84 (s, 6 H, OCH3), 3.71 (s, 6 H, OCH3); '3C-NMR (CDCl3. 90 MHz) d 152.9, 150.7, 137.3, 132.4, 130.3, 129.6, 128.3, 127.8, 126.5, 120.4, 111.5, 105.8, 60.8, 55.8. Anal. Calcd for C~gH~9N3:04: C, 63.33; H, 5.61 N, 12.31. Found: C, 63.38; H, 5.64; N, 12.28.

Compound 34E, (~-1-(3'azido-4'-methoxyphenyl)-2-(3",4",5"-trimethoxyphenyl)ethene, had certain biological activity as shown in Tables 40 and 41. Compound 34E
showed inhibition of tubulin polymerization with an ICSO = 1.3 p,M.
Table 40 P388 Leukemia Data(Compound 34E) Cell Type Cell Line EDso (~g/ml) Mouse Leukemia P388 0.0384 Table 41 Human Cancer Cell Line Studies (Compound 34E1 Cell Type Cell Line Glso (pg/ml) Pancreas adn BXPC-3 0.0050 Neuroblast SK-N-SI-I 0.0033 Thyroid ca SW1736 1.2 Lung-NSC NCI-H460 0.0056 Pharynx-sqam FADU 0.0076 Prostate DU-145 0.0091 Functionalization of the nitrogen analogs of combretastatin is as follows. The amino analogs of combretastatin described in this application may be suitably modified through amide linkages to incorporate short peptide oligomers. The new compounds prepared in this fashion may have improved bioavailability (especially in terms of water solubility) and enhanced molecular recognition for the selective colchicine binding site on ~i-tubulin.
A wide variety of amino acid residues may be attached to the nitrogen atom in an analogous fashion. A typical experimental procedure (in this case for the attachment of a serine residue) is described below.
To a well-stirred solution of serine and amino-combretastatin in diethyl ether was added diisopropylcarbodiimide (DIC). After stirring for 12 hours, the solvent was removed under reduced pressure and the amide product was purified by flash chromatography and recrystallization.
It should be clear to anyone skilled in the art that this general procedure may be employed to prepare amides incorporating many amino acid residues (both naturally occurring and synthetic) and may be used to prepare short, medium, or large oligomers.

WO 98%39323 PCT/US98/04380 In addition, functionalization of the amino analogs of combretastatin to include the taxol side-chain through an amide linkage may result in combretastatin-taxol hybrid drugs of enhanced cytotoxicity and selectivity. The taxol side chain may be incorporated through direct reaction with the ojima ~3-lactam (Ojima et al., Nicolaou et al.).
All of the compositions and methods disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure.
While the compositions and methods of this invention have been described in terms of preferred embodiments, it will be apparent to those of skill in the art that variations may be applied to the compositions and/or methods and in the steps or in the sequence of steps of the method described herein without departing from the concept, spirit and scope of the invention.
More specifically, it will be apparent that certain agents which are both chemically and physiologically related may be substituted for the agents described herein while the same or similar results would be achieved. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope and concept of the invention as defined by the appended claims.

References The following references, to the extent that they provide exemplary procedural or other details supplementary to those set forth herein, are specifically incorporated herein by reference.
Bai, Schwartz, Kepler, Pettit and Hamel, Cancer Res., 56:4398-4406, 1996. _, Black and Clemens, U.S. Patent No. 4,656,187 Bogey and Curran, J. Org. Chem., 57:2235, 1992.
Cameron et al.,WO 95/10513.
Carlson et al., U.S. Patent No. 5,532,382.
Chan and Gong, Science, 249:924-926, 1990.
Chavan. Richardson, Kim, Haley, Watt, Forskolin, Bioconjugate Chem., 4:268, 1993.
Cushman et al., U.S. Patent No. 5,430,062 Cushman, He, Katzenellenbogen, Varma, Hamel, Lin, Ram. Sachdeva, J. Med Chem..
40:2323, 1997.
Cushman, Katzenellenbogen, Lin, Hamel, J. Med Chem., 38:2041, 1995.
Cushman. Nagarathnam, Gopal, Chakraborti, Lin. Hamel, J. tlfed. Chem., 34:2579, 1991.
D'Amato, Lin, Flynn, Folkman, Hamel, Proc. Natl. Acad. Sci. USA, 91:3964, 1994.
De Castro, Acta. Trop., 53:83-98, 1993.
De Souza, Internal. Rev. Cytol., 86:197-275, 1984.
Eaton .Gold, Zichi, Chemistry and Biolog~, ?: 633-638, 1995.
Floyd, .Barnes, Williams. Biochemistn~. 28:8515. 1989.
Gerwick, Protean. Nagle, Hamel. Blokhin. Slate, J Org Chem.. 59:1243, 1994.
Hiahn. Hastie. Sundberb, Photochem. Photobiol.. 55:17, 1992.
Hamel. Medicinal Research Reviers~s. 16:207, 1996.
Hamel. Lin, Flynn, D'Amato, Biochemistry, 35:1304, 1996.
Hamel and Lin, Biochemistry, 23:4173, 1984.
Jiang, Hesson, Dusak, Dexter, Kang, Hamel, J. Med Chem., 33:1721, 1990.
Jones and Suarez, U.S. Patent No. 4,133,814.
Jones, Jevnikar, Pike, Peters, Black, Thompson, Falcone, Clemens, J. Med.
Chem., 27:1057, 1984.
Jones, Suarez, Massey, Black, Tinsley, J. Med. Chem., 22:962, 1979.
Kang, Getohun, Muzaffar, Brossi, Hamel, J. Biol. Chem., 265, 10255, 1990.

Katiyar, Gordon, McLaughlin, Edlind, Antimicrob. Agents Chemother., 38:2086-2090, 1994.
Kingston, Samaranayake, Ivey, J. Nat. Prod, 53:1, 1990.
Kobayashi, Nakada, Ohno, Indian J. Chem., 32B:159, 1993.
Kobayashi, Nakada, Ohno, Pure Appl. Chem., 64:1121, 1992.
Kost, Budylin, Matveeva and Sterligov, Zh. Org Khim, 6:1503, 1970.
Kym, Anstead, Pinney, Wilson, Katzenellenbogen, J. Med. Chem., 36:3910, 1993.
Laitman, TDR News, 30:5, 1989.
Lavielle, Havtefaye, Schaeffer, Boutin, Cudennec, Pierre, J. Med Chem., 34:1998, 1991.
Lin, Ho, Pettit, Hamel, Biochemistry, 28:6984, 1989.
Maldonado, Molina, Payeres and Urbina, Antimicrobial Agents and Chemotherapy, 37:1353-1359, 1993.
Mary and Docamp, Rev. Infect. Dis., 8:884-903, 1986.
Monks, Scudiero, Skehan, Shoemaker, Pauli. Vistica. Hose, Langley, Cronise, Vaigro-Wolff, Gray-Goodrich, Campbell, Mayo, and Boyd, J. Nat. Cancer Inst., 83:757-766, 1991.
Mouridsen, Palshof, Patterson and Battersby, Cancer Treat. Rev., 5:131, 1978.
Mullica. Pinney, Dingeman. Bounds, Sappenfield, J. Chem. Cryst., 26:801-806, 1996.
Mullica, Pinney, Mocharla, Dingeman. Bounds, Sappenfield, J. Chem. Cryst., 1997, (Accepted, In Press).
Muzaffar, Brossi, Lin, Hamel, J. Med. Chem., 33:567, 1990.
Nakada, Kobayashi, Iwasaki, Ohno. Tetrahedron Lett., 34:1035, 1993.
Nicolaou, Yang, Liu, Ueno. Nantermet, Guy, Claiborne. Renaud. Couladouros, Paulvannan.
Sorensen. Nature. 367:630, 1994.
Ojima. Habus. Zhao. Zucco. Park, Sun, Brigaud. Tetrahedron, 48:6985, 1992.
Owellen. Iiartke. Kickerson, Rains, Cancer Res., 36:1499, 1976.
Parness and Horwitz, J. Cell Biol. , 91:479, 1981.
Pettit et al., U.S. Patent No. 4,940,726 Pettit et al., U.S. Patent No. 4,996,237 Pettit et al., U.S. Patent No. 5,409,953 Pettit, Cragg, Herald, Schmidt, Lohavanijaya, Can. J. Chem., 60:1374, 1982.
Pettit, Cragg, Singh, J. Nat. Prod., 50:386, 1987.
Pettit, Singh, Cragg, J. Org. Chem., 50:3404, 1985.
Pettit, U.S. Patent No. 5,561,122 Pinney and Katzenellenbogen, J. Org. Chem., 56:3125, 1991.
Pinney, Carlson, Katzenellenbogen, Katzenellenbogen, Biochemistry, 30:2421, 1991.
Pinney, Dingeman, Bounds, Mocharla, Pettit, Hamel, J. Org. Chem., 1998, (Submitted).
Prata, Infect. Dis. Clin. North. Amer., 8:61-76, 1994.
5 Rao, Bhanu, Sharma, Tetrahedron Lett.34:707, 1993.
Rao, Horwitz, Ringel, J. Natl. Cancer Inst., 84:785, 1992.
Rao, Krauss, Heerding, Swindell, Ringel, Orr, Horwitz, J. Biol. Chem., 269:3132, 1994.
Rao. Sharma, Bhanu, Tetrahedron Lett.33:3907, 1992.
Safa, Hamel, Felsted, Biochemistry, 26:9?, 1987.
10 Sawada, Hashimoto, Li, Kobayashi, Iwasaki, Biochem. Biophys. Res. Commun., 178:558, 1991.
Sawada, Kato, Kobayashi, Hashimoto. Watanabe, Sugiyama, Iwasaki, Bioconjugatc Chent., 4:284, 1993.
Sawada, Kobayashi, Hashimoto, Iwasaki, Biochem Pharmacol., 45:1387, 1993.
Schiff. Fant, Horwitz, Nature, 277:665, 1979.
15 Shirai, Tokuda. Koiso. Iwasaki, Biomedical Chem. Lett., 699, 1994.
Staretz and Hastie, J. Org. Chem., 58:1589, 1993.
Swindell. Heerding, Krauss, Horwitz, Rao, Ringel, J. Med. Chem., 37:1446, 1994.
Swindcll, Krauss, Horwitz, Ringel, J. Med. Chem., 34:1176, 1991.
Williams, Mumford. Williams, Floyd, Aivaliotis, Martinez, Robinson, Barnes, J.
Biol. Chem., 20 260:13794, 1985.
Wolff. IW ipling, Cahnmann, Palumbo, Pror. Natl. Acad. Sci. USA, 88:2820, 1991.
World Health Organization. Tropical disease research progress, 1991-1992.

Claims (13)

CLAIMS:
1. A compound of the structure:
wherein X is S, R1-R4 are independently chosen from the group consisting of H, OH and C1-C5 alkoxy, Z is chosen from the group consisting of C=O, CH2, C2H2, CHOH, and CHOCH3, Y is chosen from the group consisting of a covalent bond, CH2, and CH2CH2, and Ar and Ar' are aryl moieties chosen from the group consisting of phenyl and napthyl, further substituted with at least one C1-C5, alkoxy group, at least one of which has at least two C1-C5 alkoxy groups.
wherein when Ar is 3,4,5-trimethoxyphenyl, Z is C=O, Y is a covalent bond, R9 is methoxy, R1, R2 and R4 are H, and Ar is substituted with a methoxy group.
2. The compound of claim 1, wherein Z is C=O.
3. The compound of claim 1 wherein Ar' is chosen from the group consisting of 3,4,5-trimethoxyphenyl, 3,4-dimethoxyphenyl, 3,4 diethoxyphenyl and 3,4,5-triethoxyphenyl.
4. The compound of claim 1 wherein Ar is 4-methoxyphenyl.
5. The compound of claim 1 wherein R3 is OCH3.
6. A compound of the structure:
wherein R1-R4 are independently chosen from the group consisting of H, OH and C1-C5 alkoxy, Z is C=O.
Y is chosen from the group consisting of a covalent bond, CH2, and CH2CH2, Ar is a phenyl group with at least one C1-C5 alkoxy group and Ar' is a phenyl group with at least two C1-C5 alkoxy groups, wherein when Ar' is 3,4,5-trimethoxyphenyl Z is C=O, Y is a covalent bond, R3 is methoxy and R1, R2 and R4 are H, and Ar is substituted with a methoxy group.
7. The compound of claim 6 wherein Ar' is chosen from the group consisting of 3,4,5-trimethoxyphenyl, 3,4-dimethoxyphenyl, 3,4 diethoxyphenyl and 3,4,5-triethoxyphenyl.
8. The compound of claim 6 wherein Y is a covalent bond.
9. The compound of claim 6 wherein Ar is 4-methoxyphenyl.
10. The compound of claim 5 selected from the group containing 3-(3',4'-dimethoxybenzoyl)-2-(4'-methoxyphenyl)-6-methoxybenzol[b]-thiophene, and 3-(3',4'-5'-triethoxy-benzoyl)-2-(4'-methoxyphenyl)-6-methoxybenzo[b]-thiophene, and 3-[3'-(3",4",5"-timethoxyphenyl)propanoyl]-2-(4' methoxyphenyl)-6-methoxbyenzo[b]
thiophene.
11. A compound of the structure where R1 is H or CH3O;
R2 is H, CH3O or C2H5O;
R3 is CH3O of C2H5O;
R4, R5, R7 and R8 are independently H, CH3O, C2H5O, or F;
R6 is H, CH3O, C2H5O, OH, F or N(CH3)2; wherein at least one of R4, R5, R6, R7 or R8 is F or N(CH3)2;
and X is
12. A compound of the structure where X is S or S=O.
13. A compound of the structure where X is CHOH or C = O.
Applicant respectfully requests a positive preliminary examination report.
CA002283471A 1997-03-06 1998-03-06 Anti-mitotic agents which inhibit tubulin polymerization Abandoned CA2283471A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/813,018 1997-03-06
US08/813,018 US5886025A (en) 1997-03-06 1997-03-06 Anti-mitotic agents which inhibit tubulin polymerization
PCT/US1998/004380 WO1998039323A1 (en) 1997-03-06 1998-03-06 Anti-mitotic agents which inhibit tubulin polymerization

Publications (1)

Publication Number Publication Date
CA2283471A1 true CA2283471A1 (en) 1998-09-11

Family

ID=25211234

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002283471A Abandoned CA2283471A1 (en) 1997-03-06 1998-03-06 Anti-mitotic agents which inhibit tubulin polymerization

Country Status (7)

Country Link
US (1) US5886025A (en)
EP (2) EP1491538A1 (en)
JP (1) JP2001527533A (en)
AU (1) AU732917B2 (en)
CA (1) CA2283471A1 (en)
NZ (1) NZ337866A (en)
WO (1) WO1998039323A1 (en)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6162930A (en) 1998-03-06 2000-12-19 Baylor University Anti-mitotic agents which inhibit tubulin polymerization
US7001926B2 (en) * 2000-03-10 2006-02-21 Oxigene, Inc. Tubulin binding agents and corresponding prodrug constructs
US6201001B1 (en) * 1999-08-02 2001-03-13 Abbott Laboratories Imidazole antiproliferative agents
IL147970A0 (en) * 1999-08-09 2002-09-12 Tripep Ab Pharmaceutical compositions containing tripeptides
EP1214298B1 (en) * 1999-09-17 2012-05-30 Baylor University Indole-containing and combretastatin-related anti-mitotic and anti-tubulin polymerization agents
US6849656B1 (en) 1999-09-17 2005-02-01 Baylor University Indole-containing and combretastatin-related anti-mitotic and anti-tubulin polymerization agents
JP4776843B2 (en) 1999-10-01 2011-09-21 イムノゲン インコーポレーティッド Cancer composition and method using immunoconjugate and chemotherapeutic agent
US7091240B2 (en) * 2000-03-10 2006-08-15 Oxigene, Inc. Tubulin binding ligands and corresponding prodrug constructs
AU4352701A (en) * 2000-03-10 2001-09-24 Univ Baylor Tubulin binding ligands and corresponding prodrug constructs
US6777578B2 (en) * 2000-04-27 2004-08-17 Arizona Board Of Regents Hydroxyphenstatin and the prodrugs thereof
MXPA02011770A (en) 2000-05-31 2003-04-10 Astrazeneca Ab Indole derivatives with vascular damaging activity.
US6392055B1 (en) 2000-07-19 2002-05-21 The University Of Pittsburgh Synthesis and biological evaluation of analogs of the antimitotic marine natural product curacin A
AUPR283801A0 (en) * 2001-02-01 2001-03-01 Australian National University, The Chemical compounds and methods
DE60228448D1 (en) * 2001-06-22 2008-10-02 Ajinomoto Kk PROCESS FOR THE PREPARATION OF AMINO STILENE DERIVATIVES
EP1436317A1 (en) * 2001-09-19 2004-07-14 Tripep Ab Molecules that block viral infectivity and methods of use thereof
US6919324B2 (en) * 2001-10-26 2005-07-19 Oxigene, Inc. Functionalized stilbene derivatives as improved vascular targeting agents
FR2835253B1 (en) * 2002-01-31 2008-02-01 Pape Patrice Le COMPOUNDS, ESPECIALLY FROM UREA DERIVATIVES OR ESTERS OF HALOACETAMIDOBENZOIC ACID AND THEIR USE FOR THE TREATMENT OF PARASITIC DISEASES
EP1515716A2 (en) 2002-04-03 2005-03-23 Astrazeneca AB Indole derivatives having anti-angiogenetic activity
KR20050101221A (en) * 2003-02-21 2005-10-20 트리펩 아베 Glycinamide derivative for inhibiting hiv replication
US20050096319A1 (en) * 2003-02-21 2005-05-05 Balzarini Jan M.R. Identification of compounds that inhibit replication of human immunodeficiency virus
EP1601348A4 (en) * 2003-02-28 2008-12-10 Oxigene Inc Compositions and methods with enhanced therapeutic activity
US7456214B2 (en) * 2004-05-03 2008-11-25 Baylor University Chromene-containing compounds with anti-tubulin and vascular targeting activity
US20050245489A1 (en) * 2004-05-03 2005-11-03 Pinney Kevin G Chromene-containing compounds with anti-tubulin and vascular targeting activity
US20060148674A1 (en) * 2004-12-31 2006-07-06 Luduena Richard F Therapeutic composition
EP1848704A4 (en) * 2005-02-14 2011-05-11 Bionomics Ltd Novel tubulin polymerisation inhibitors
US7265248B1 (en) 2005-04-29 2007-09-04 Technology Innovations, Llc Compositions and methods for the treatment of malaria
EP1883627B1 (en) 2005-05-18 2018-04-18 Pharmascience Inc. Bir domain binding compounds
WO2006138427A2 (en) 2005-06-14 2006-12-28 Baylor University Combretastatin analogs with tubulin binding activity
EP1746087A1 (en) 2005-07-21 2007-01-24 Universitaet Regensburg Derivates of 3-indolylmethylene having cytostatic properties
ATE555091T1 (en) 2006-02-03 2012-05-15 Bionomics Ltd SUBSTITUTED BENZOFURANES, BENZOTHIOPHENES, BENZOSELENOPHENES AND INDOLES AND THEIR USE AS TUBULIN POLYMERIZATION INHIBITORS
NZ572836A (en) 2006-05-16 2011-12-22 Pharmascience Inc Iap bir domain binding compounds
ES2545340T3 (en) 2009-08-27 2015-09-10 Bionomics Limited Combination therapy for the treatment of proliferative diseases
CN102596929A (en) 2009-08-27 2012-07-18 生物学特性有限公司 Treatment of macular degeneration
EP2534170B1 (en) 2010-02-12 2017-04-19 Pharmascience Inc. Iap bir domain binding compounds
WO2011151423A1 (en) * 2010-06-04 2011-12-08 Exonhit S.A. Substituted isoquinolines and their use as tubulin polymerization inhibitors
US10005750B2 (en) 2010-10-06 2018-06-26 J-Pharma Co., Ltd. Developing potent urate transporter inhibitors: compounds designed for their uricosuric action
CN102391164B (en) * 2011-09-23 2014-08-13 中南大学 Diaryl thioether compound, preparation method and application of thereof in tumor resistance
AU2013204313C1 (en) 2012-06-01 2016-04-07 Bionomics Limited Combination Therapy
WO2014089177A2 (en) 2012-12-04 2014-06-12 Massachusetts Institute Of Technology Compounds, conjugates and compositions of epipolythiodiketopiperazines and polythiodiketopiperazines
EP2958907B1 (en) 2013-02-19 2018-02-28 Novartis AG Benzothiophene derivatives and compositions thereof as selective estrogen receptor degraders
AU2014228822A1 (en) 2013-03-15 2015-10-01 Memorial Sloan-Kettering Cancer Center HSP90-targeted cardiac imaging and therapy
WO2017197045A1 (en) 2016-05-11 2017-11-16 Movassaghi Mohammad Convergent and enantioselective total synthesis of communesin analogs
US11932650B2 (en) 2017-05-11 2024-03-19 Massachusetts Institute Of Technology Potent agelastatin derivatives as modulators for cancer invasion and metastasis
CN107163011B (en) * 2017-05-27 2019-10-01 上海应用技术大学 3- (3,4,5- trimethoxybenzoyl)-benzofurans Antitubulin and its preparation method and application
US10640508B2 (en) 2017-10-13 2020-05-05 Massachusetts Institute Of Technology Diazene directed modular synthesis of compounds with quaternary carbon centers
EP3836910A1 (en) 2018-08-17 2021-06-23 Baylor University Benzosuberene analogues and related compounds with activity as anticancer agents
CN109232523B (en) * 2018-11-09 2020-06-19 温州大学 3-acyl benzothiophene derivative and preparation method thereof
CN111253366B (en) * 2018-11-30 2022-06-17 四川师范大学 Phenyl benzothiophene rod-shaped liquid crystal compound and preparation method thereof
US11535634B2 (en) 2019-06-05 2022-12-27 Massachusetts Institute Of Technology Compounds, conjugates, and compositions of epipolythiodiketopiperazines and polythiodiketopiperazines and uses thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GR33441B (en) * 1966-03-10 1967-12-05 Abbott Laboratories METHOD OF PREPARATION OF STEROID ANALOGS.
US4133814A (en) * 1975-10-28 1979-01-09 Eli Lilly And Company 2-Phenyl-3-aroylbenzothiophenes useful as antifertility agents
US4380635A (en) * 1981-04-03 1983-04-19 Eli Lilly And Company Synthesis of acylated benzothiophenes
US4656187A (en) * 1981-08-03 1987-04-07 Eli Lilly And Company Treatment of mammary cancer
US6756388B1 (en) * 1993-10-12 2004-06-29 Pfizer Inc. Benzothiophenes and related compounds as estrogen agonists
US5596106A (en) * 1994-07-15 1997-01-21 Eli Lilly And Company Cannabinoid receptor antagonists
ZA961564B (en) * 1995-02-28 1997-08-27 Lilly Co Eli Methods of inhibiting ovarian cancer.
US5532382A (en) * 1995-03-13 1996-07-02 Eli Lilly And Company Benzothiophenes substituted at the 3-carbonyl

Also Published As

Publication number Publication date
US5886025A (en) 1999-03-23
AU6688698A (en) 1998-09-22
EP0984954A1 (en) 2000-03-15
NZ337866A (en) 2001-06-29
AU732917B2 (en) 2001-05-03
JP2001527533A (en) 2001-12-25
WO1998039323A1 (en) 1998-09-11
EP0984954A4 (en) 2002-01-16
EP1491538A1 (en) 2004-12-29

Similar Documents

Publication Publication Date Title
CA2283471A1 (en) Anti-mitotic agents which inhibit tubulin polymerization
US6162930A (en) Anti-mitotic agents which inhibit tubulin polymerization
EP1263763B1 (en) Tubulin binding ligands
AU2001252574B2 (en) Novel bicyclic compounds
Jones et al. Antiestrogens. 2. Structure-activity studies in a series of 3-aroyl-2-arylbenzo [b] thiophene derivatives leading to [6-hydroxy-2-(4-hydroxyphenyl) benzo [b] thien-3-yl]-[4-[2-(1-piperidinyl) ethoxy] phenyl] methanone hydrochloride (LY 156758), a remarkably effective estrogen antagonist with only minimal intrinsic estrogenicity
Mirzaei et al. Recent advances of cytotoxic chalconoids targeting tubulin polymerization: Synthesis and biological activity
Pinney et al. A new anti-tubulin agent containing the benzo [b] thiophene ring system
Jones et al. Antiestrogens. 3. Estrogen receptor affinities and antiproliferative effects in MCF-7 cells of phenolic analogs of trioxifene,[3, 4-dihydro-2-(4-methoxyphenyl)-1-naphthalenyl][4-[2-(1-pyrrolidinyl) ethoxy] phenyl [methanone
Grese et al. Synthesis and pharmacology of conformationally restricted raloxifene analogues: highly potent selective estrogen receptor modulators
AU2001243527A1 (en) Tubulin binding ligands and corresponding prodrug constructs
EP1896391B1 (en) Combretastatin analogs with tubulin binding activity
KR19990077162A (en) Novel tricyclic compounds and pharmaceutical compositions containing them
EP1214298A2 (en) Indole-containing and combretastatin-related anti-mitotic and anti-tubulin polymerization agents
CA2178184A1 (en) Compounds and compositions with nitrogen-containing non-basic side chains
Acton et al. Tricyclic triarylethylene antiestrogens: Dibenz [b, f] oxepins, dibenzo [b, f] thiepins, dibenzo [a, e] cyclooctenes, and dibenzo [b, f] thiocins
KR20020069215A (en) Novel Substituted Tricyclic Compounds
US20050245490A1 (en) Chromene-containing compounds with anti-tubulin and vascular targeting activity
AU765418B2 (en) Anti-mitotic agents which inhibit tubulin polymerization
CA2178182A1 (en) Compounds and compositions with nitrogen-containing non-basic side chains
AU2003270999A8 (en) Anti-mitotic agents which inhibit tubulin polymerization
MXPA99008166A (en) Anti-mitotic agents which inhibit tubulin polymerization
Sun et al. Design, synthesis, biological evaluation and molecular modeling study of novel macrocyclic bisbibenzyl analogues as antitubulin agents
EP0880496B1 (en) Biphenyl compounds and use thereof as oestrogenic agents
US20050245489A1 (en) Chromene-containing compounds with anti-tubulin and vascular targeting activity
FR2725720A1 (en) METALLOCENE DERIVATIVES OF DIARYLETHYLENE, PROCESSES FOR THEIR PREPARATION AND PHARMACEUTICAL COMPOSITIONS COMPRISING SAID DERIVATIVES

Legal Events

Date Code Title Description
EEER Examination request
FZDE Discontinued