Optimal Control for Chemical Engineers

Front Cover
CRC Press, Nov 13, 2012 - Science - 305 pages

Optimal Control for Chemical Engineers gives a detailed treatment of optimal control theory that enables readers to formulate and solve optimal control problems. With a strong emphasis on problem solving, the book provides all the necessary mathematical analyses and derivations of important results, including multiplier theorems and Pontryagin’s principle.

The text begins by introducing various examples of optimal control, such as batch distillation and chemotherapy, and the basic concepts of optimal control, including functionals and differentials. It then analyzes the notion of optimality, describes the ubiquitous Lagrange multipliers, and presents the celebrated Pontryagin principle of optimal control. Building on this foundation, the author examines different types of optimal control problems as well as the required conditions for optimality. He also describes important numerical methods and computational algorithms for solving a wide range of optimal control problems, including periodic processes.

Through its lucid development of optimal control theory and computational algorithms, this self-contained book shows readers how to solve a variety of optimal control problems.

 

Other editions - View all

Common terms and phrases

About the author (2012)

Simant Ranjan Upreti is a professor of chemical engineering at Ryerson University in Toronto. His research interests include the mathematical modeling, computer simulation, optimization, and optimal control of chemical engineering processes. Dr. Upreti has been involved in the application of optimal control to determine concentration-dependent diffusion of gases in heavy oils and polymers and to enhance the recovery of heavy oils.

Bibliographic information